数学分析不定积分概念与基本积分公式
数学分析知识要点整理

数学分析知识要点整理数学分析是数学专业的重要基础课程,它为后续的许多课程提供了必备的知识和方法。
以下是对数学分析中的一些关键知识要点的整理。
一、函数函数是数学分析的核心概念之一。
1、函数的定义设 X 和 Y 是两个非空数集,如果对于 X 中的每个元素 x,按照某种确定的对应关系 f,在 Y 中都有唯一确定的元素 y 与之对应,那么就称 f 是定义在 X 上的函数,记作 y = f(x),x ∈ X。
2、函数的性质(1)单调性:若对于定义域内的任意两个自变量 x1 和 x2,当 x1< x2 时,都有 f(x1) < f(x2)(或 f(x1) > f(x2)),则称函数 f(x)在其定义域上单调递增(或单调递减)。
(2)奇偶性:若对于定义域内的任意 x,都有 f(x) = f(x),则称函数 f(x)为奇函数;若 f(x) = f(x),则称函数 f(x)为偶函数。
(3)周期性:若存在非零常数 T,使得对于定义域内的任意 x,都有 f(x + T) = f(x),则称函数 f(x)为周期函数,T 为函数的周期。
3、反函数设函数 y = f(x),其定义域为 D,值域为 R。
如果对于 R 中的每一个 y,在 D 中都有唯一确定的 x 与之对应,使得 y = f(x),则这样得到的 x 关于 y 的函数称为 y = f(x)的反函数,记作 x = f⁻¹(y)。
二、极限极限是数学分析中的重要概念,用于描述变量在一定变化过程中的趋势。
1、数列的极限对于数列{an},若存在常数 A,对于任意给定的正数ε(不论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A| <ε 恒成立,则称常数 A 是数列{an} 的极限,记作lim(n→∞) an = A。
2、函数的极限(1)当x → x0 时函数的极限:设函数 f(x)在点 x0 的某个去心邻域内有定义,如果存在常数 A,对于任意给定的正数ε,总存在正数δ,使得当 0 <|x x0| <δ 时,不等式|f(x) A| <ε 恒成立,则称常数A 是函数 f(x)当x → x0 时的极限,记作lim(x→x0) f(x) = A。
陈纪修主编的《数学分析》(第2版)辅导书-第6章 不定积分【圣才出品】

第6章 不定积分6.1 复习笔记一、不定积分的概念和运算法则1.微分的逆运算——不定积分(1)原函数若在某个区间上,函数F (x )和f (x )成立关系F'(x )=f (x ),则称函数F (x )是f (x )的一个原函数。
(2)不定积分一个函数f (x )的原函数全体称为这个函数的不定积分,记作这里,“”称为积分号,f (x )称为被积函数,x 称为积分变量。
2.不定积分的线性性质若函数f (x )和g (x )的原函数都存在,则对任意常数k 1和k 2,函数k 1f(x )+k 2g (x)的原函数也存在,且有二、换元积分法和分部积分法1.换元积分法(1)在不定积分中,用u=g (x )对原式作变量代换,这时相应地有du=g'(x )dx ,于是,这个方法称为第一类换元积分法,也被俗称为“凑微分法”。
(2)找到一个适当的变量代换x=φ(t )(要求x=φ(t )的反函数t=φ-1(x )存在),将原式化为这个方法称为第二类换元积分法。
2.分部积分法对任意两个可微的函数u (x )、v (x ),成立关系式d[u (x )v (x )]=v (x )d[u (x )]+u(x)d[v (x )],两边同时求不定积分并移项,就有也即这就是分部积分公式。
三、有理函数的不定积分及其应用1.有理函数的不定积分(1)形如的函数称为有理函数,这里和分别是m 次和n 次多项式,n,m 为非负整数。
若m>n ,则称它为真分式;若m≤n,则称它为假分式。
(2)设有理函数是真分式,多项式有k 重实根α即则存在实数λ与多项的次数低于的次数,成立(3)设有理函数是真分式,多项式有l 重共轭复根,即其中则实数和多项式的次数低的次数,成立2.可化成有理函数不定积分的情况(1)类的不定积分。
这里R (u ,v )表示两个变量μ、υ的有理函数(即分子和分母都是关于u ,v的二元多项式)。
对作变量代换,则。
不定积分的概念及运算法则

y=x2
启示 结论
-1
O 1 C2 C3
于是所求曲线方程为
2
x
华东理工大学《数学分析》电子课件(§6.1)
10 / 18
华东理工大学《数学分析》电子课件(§6.1)
11 / 18
基本积分表:
(1) ( 2)
∫ kdx = k x + C ∫x
∫
μ
(8)
( k 为常数)
∫ cos 2 x = ∫ sec
即 Φ ( x) = F ( x) + C0 属于函数族 F ( x) + C .
华东理工大学《数学分析》电子课件(§6.1)
华东理工大学《数学分析》电子课件(§6.1)
4 / 18
5 / 18
定义 2 f (x) 在区间 I 上的原函数全体称为 f ( x) 在 I 上的不定积分, 记作 ∫ f ( x) d x , 其中
dx
2
xdx = tan x + C
例5. 求
dx =
μ +1
1
x μ +1 + C
( μ ≠ 1)
dx (9) ∫ 2 = ∫ csc 2 xdx = cot x + C sin x (10) (11) (12) (13) (14) (15)
12 / 18
∫x3 x .
∫x
4 3 1 3
3 dx = x 4 +C 3 +1
i =1 i i i =1 i i
n
n
ex 5 = 2x +C ln 2 + 1 ln 2
例8. 求 ∫ tan xdx .
2 2 解: 原式 = ∫ (sec x 1)dx
数学分析 不定积分概念与基本积分公式

xdx x1 C . 1
( 1)
启示 能否根据求导公式得出积分公式?
结论 既然积分运算和微分运算是互逆的, 因此可以根据求导公式得出积分公式.
基 (1) kdx kx C (k是常数);
本
积
(2)
xdx x1 C ( 1); 1
分 表
(3)
dx x
说明:
ln x x 0,
C;
dx x
ln
x
C
,
x 0, [ln( x)] 1 ( x) 1 ,
x
x
dx x
ln(
x
)
C
,
dx x
ln
|
x
|
C
,
简写为
dx x
ln
x
C.
(4)
1
1 x
2
dx
arctan
x
C;
(11) csc x cot xdx csc x C;
(12) e xdx e x C;
(13)
a
xdx
ax ln a
C;
(14) sinh xdx cosh x C;
(15) cosh xdx sinh x C;
例 求积分 x2 xdx.
(5)
1 dx arcsin x C; 1 x2
(6) cos xdx sin x C;
(7) sin xdx cos x C;
华东师范大学数学系《数学分析》(第4版)(上册)(课后习题 不定积分)【圣才出品】

第8章 不定积分§1 不定积分概念与基本积分公式1.验证下列等式,并与(3)、(4)两式相比照(1)(2)(3)式为(4)式为解:(1)因为,所以它是对f(x)先求导再积分,等于f(x)+C,(3)式是对f(x)先积分再求导,则等于(2)因为,由(1)可知它是对f(x)先微分后积分,则等于f(x)+C;而(4)式是对f(x)先积分后微分,则等于f(x)dx.2.求一曲线y=f(x),使得在曲线上每一点(x,y)处的切线斜率为2x,且通过点(2,5).解:由题意,有f'(x)=2x,即又由于y=f(x)过点(2,5),即5=4+C,故C=1.因而所求的曲线为y=f(x)=x2+1.3.验证是|x|在(-∞,+∞)上的一个原函数.证明:因为所以而当x =0时,有即y'(0)=0.因而即是在R 上的一个原函数.4.据理说明为什么每一个含有第一类间断点的函数都没有原函数?解:设x 0为f (x )在区间I 上的第一类间断点,则分两种情况讨论.(1)若x 0为可去间断点.反证法:若f (x )在区间I上有原函数F (x ),则在内由拉格朗日中值定理有,ξ在x 0和x 之间.而这与x 0为可去间断点是矛盾的,故F (x )不存在.(2)若x 0为跳跃间断点.反证法:若f(x )在区间I 上有原函数F (x ),则亦有成立.而这与x0为跳跃间断点矛盾,故原函数仍不存在.5.求下列不定积分:解:6.求下列不定积分:解:(1)当x≥0时,当x<0时,由于在上连续,故其原函数必在连续可微.因此即,因此所以(2)当时,由于在上连续,故其原函数必在上连续可微.因此,即,因此所以7.设,求f(x).解:令,则即8.举例说明含有第二类间断点的函数可能有原函数,也可能没有原函数.解:x=0是此函数的第二类间断点,但它有原函数另外,狄利克雷函数D(x),其定义域R上每一点都是第二类间断点,但D(x)无原函数.§2 换元积分法与分部积分法1.应用换元积分法求下列不定积分:。
数学分析第八章不定积分

数 , 则 k1 f + k2 g 在 I 上也存在原函数 , 且
∫ ∫ ∫ [ k1 f ( x ) + k2 g( x) ] d x = k1 f ( x) d x + k2 g( x ) d x .
( 5)
证 这是因为
∫ ∫ ∫ ∫ k1 f ( x )d x + k 2 g( x) d x ′= k1 f ( x )d x ′+ k 2 g( x) d x ′
知函数 .提出这个逆问题 , 首先是因为它出现在许多实际问题之中
.例如 : 已知速
度求路程 ; 已知加速度求速度 ; 已知曲线 上每一 点处 的切线 斜率 ( 或斜率 所满 足
的某一规律 ) , 求曲线方程等等 .本章与 其后两 章 ( 定 积分与 定积 分的 应用 ) 构 成
一元函数积分学 .一 原函数与不定积分源自(2 , 5) .3 . 验证
y=
x
2
sgn
x
是
| x| 在
∫ v( t) = ad t = at + C .
若已知 v( t0 ) = v0 , 代入上式后确定积分常数 C = v0 - at0 , 于是就有
v( t ) = a( t - t0 ) + v 0 . 又因 s′( t) = v( t ) , 所以又有
∫ s( t) = [ a( t - t 0 ) + v 0] d t
2 (-
1 cos 2x
都是 )′=
sin 2 x 在 ( - ∞ , + ∞ ) 上的原函数 ( - 1 cos 2 x + 1)′= sin 2 x .
, 因为
2
2
如果这些简单的例子都可从基本求导公式反推而得的话
第一节不定积分概念与基本积分公式(数学分析)(数学分析)

∫ adx=ax+C, ∫
xα dx =
其 中 a是 常 数
∫ dx
= x +C
1 x α +1 + C . α +1
其 中 α 是 常 数 , 且 α ≠ −1.
12
1 3、 ∫ dx = ln x + C. x 特别有: ∫ ex dx = ex + C.
1 x 4、 ∫ a dx = a + C, 其中a > 0, 且a ≠ 1. ln a
若 F ( x )已 知 , f ( x )未 知 , 由 F ( x ) → f ( x ), 则 称 (3)式 为 求 导 运 算 , ' 称 f ( x )为 F ( x )的 导 数 。 若 f ( x )已 知 , F ( x )未 知 , 由 f ( x ) → F ( x ), 则 称 (3)式 为 积 分 运 算 , 称 F ( x )为 ' f ( x )的 原 函 数 。
7
思考题: 1、 如果函数f ( x)的定义域是若干个分离的区间,那么它的原函数彼此之 间是否仅相差一个常数? x2 , 可考虑函数 f ( x) = x, x ∈ (−∞, − 1) U (0, + ∞), 则 : F ( x) = 2 x2 , x ∈ (−∞, − 1) , 都是f ( x) = x 在 (−∞, − 1) U (0, + ∞)的原 G ( x) = 22 x + 1 , x ∈ (0, + ∞) 2 函数,它们之间的关系如何? 2、 设F ( x)是连续函数f在R上的原函数,问: 1 )、如果f ( x)是以T为周期的周期函数,那么F ( x)是否为周期函数? 考虑: ( x) = cos x + 1. f 2)、 如果f ( x)是偶函数,那么F ( x)是否为奇函数? 考虑: ( x) = cos x + 1. f
数学分析8.1不定积分概念与基本积分公式

2、f在I上的任意两个原函数之间,只可能相差一个常数.
证:1、依题意F’=f,则当C为常量函数时,(F+C)’=F’=f,得证.
2、设F,G是f在I上的任意两个原函数,则有(F-G)’=F’-G’=f-f=0.
根据拉格朗日中值定理推得:F-G≡C, C为常量函数.
[∫f(x)dx]’=[F(x)+C]’=f(x);d∫f(x)dx=d[F(x)+C]=f(x)dx.
不定积分的几何意义:若F是f的一个原函数,则称y=F(x)的图象为f的一条积分曲线.所以f的不定积分在几何上表示f的某一积分曲线沿纵轴方向任意平移所得一切积分曲线组成的曲线族。显然,在每一条积分曲线上横坐标相同的点处作切线,则这些切线互相平行。
7、∫cosaxdx= sinax+C (a≠0);8、∫sinaxdx=- cosax+C (a≠0);
9、∫sec2xdx=tanx+C;10、∫csc2xdx=-cotx+C;11、∫secx·tanxdx=secx+C;
12、∫cscx·cotxdx=-cscx+C;13、∫ =arcsinx+C=-arccosx+C1;
(2)∫(x- )2dx=∫(x2- + )dx=∫x2dx-∫2x dx+∫ dx= - x +ln|x|+C.
(3)∫ = ∫x- dx= x +C= +C.
(4)∫(2x-3x)2dx=∫(22x-2·6x+32x)dx=∫4xdx-2∫6xdx +∫9xdx= -2· + +C.
(5)∫( +sinx)dx= ∫ dx+∫sinxdx= arcsinx-cosx+C.