简易方程知识点梳理
简易方程知识点梳理复习进程

简易方程知识点梳理精品文档简易方程知识点梳理一、字母表示数1、在含有字母的式子里,字母中间的乘号可以记作“•”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、 a X a可以写作a a(或a2), a2读作a的平方,表示两个a相乘。
2a表示a + a3、数字和字母相乘,省略乘号时要把数字写在前面。
(如b X4写作4b )4、用字母表示运算律加法交换律:a+ b= b+ a 加法结合律:(a+ b) + c = a+(b+ c)乘法交换律:axb= b X a 乘法结合律:(axb)X c = a X(b X c)乘法分配律:(a+ b)X c = a X c + b X c5、用字母表示正方形、长方形的面积和周长对应练习1. 排球队共有队员a人,女队员有7人,男队员有()人。
2.1千克大米的价钱是1.50元,买x千克大米应付()元。
3. 省略乘号,写出下面的式子。
3 X a 9 X x a X4 y X5 a X3x4. ________________________________________________________________________________ 服装店的阿姨们加工了50件衣服,每件衣服用布bm当b=1.38时,用布的总数是_________________ 米5. a与b的和的5倍是()6 —辆9路公共汽车上原有22名乘客,在新华大街站下去a人,又上去b人。
现在车上有―名乘客,当a=8, b=12时,车上有_____ 名乘客。
7. 比m的3倍多9的数是______ ,比n除以5的商少7的数是________8. 当a=2,b=5 时,那么8a—2b=()。
精品文档9. 正方形的边长为x厘米,4x表示(),x2表示()。
10. 有x吨水泥,运走10车,每车a吨。
仓库还剩水泥()吨。
11、施工队修一条长4.5千米的路,平均每天修0.24千米。
修了y天后,还剩________ 米,当y=5时,还剩—千米。
简易方程知识点归纳

简易方程知识点归纳一、字母表示数字母既可以表示数,也可以表示运算定律和公式1、表示数时,注意规范书写①字母和字母相乘,乘号可以简写为“·”或省略不写。
如a×b=a.b 或a×b=ab。
相同字母相乘可以简写为平方;如:a×a=a²②数字和字母相乘,可以省略乘号不写,数字必须写在前边。
如3×m=3m③含有加减除法的代数式,如果要带单位名称,代数式必须加上小括号。
2、字母表示运算定律加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)减法的性质:a-b-c=a-(b+c) a-b-c=a-c-b乘法交换律:ab=ba乘法结合律:abc=a(cb)乘法分配律:a(b+c)=ab+ac除法的性质:a÷b÷c=a÷(bc) a÷b÷c=a÷c÷b3、字母表示公式:①长方形周长:C=2(a+b) 长方形面积:S=ab②正方形周长:C=4a 正方形面积:S=a²③行程问题路程=速度×时间:s=vt速度=路程÷时间:v=s÷t时间=路程÷速度:t=s÷v④工程问题工作总量=工作效率×工作时间c=at工作效率=工作总量÷工作时间a=c÷t工作时间=工作总量÷工作效率t=c÷a⑤总价单价和数量问题总价=单价×数量:c=ax单价=总价÷数量:a=c÷x数量=总价÷单价:x=c÷a二:解简易方程1、等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等。
2、等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
3、含有未知数的等式叫做方程。
4、使方程左右两边相等的未知数的值,叫做方程的解。
5、求方程的解的过程叫做解方程。
简易方程知识点梳理

简易方程知识点梳理一、字母表示数1简易方程知识点梳理作“·”,也可以省略不写。
简易方程知识点梳理2、a×a可以写作a·a (或2a) ,2a读作a的平方,表示两个a相乘。
2a表示a+a3、数字和字母相乘,省略乘号时要把数字写在前面。
(如b×4写作4b )4、用字母表示运算律加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=a×c+b×c5、用字母表示正方形、长方形的面积和周长对应练习1.排球队共有队员a人,女队员有7人,男队员有( )人。
2.1千克大米的价钱是1.50元,买x千克大米应付( )元。
3.省略乘号,写出下面的式子。
3×a 9×x a×4 y×5 a×3x4、服装店的阿姨们加工了50件衣服,每件衣服用布bm,当b=1.38时,用布的总数是______米⒌a与b的和的5倍是()6、一辆9路公共汽车上原有22名乘客,在新华大街站下去a人,又上去b人。
现在车上有____名乘客,当a=8,b=12时,车上有____名乘客。
7、比m的3倍多9的数是______,比n除以5的商少7的数是______⒏当a=2,b=5时,那么8a-2b=()。
⒐正方形的边长为x厘米,4x表示(),x2表示()。
10.有x吨水泥,运走10车,每车a吨。
仓库还剩水泥()吨。
11、施工队修一条长4.5千米的路,平均每天修0.24千米。
修了y天后,还剩____千米,当y=5时,还剩___千米。
二、方程的定义及解方程1、方程:含有未知数的等式称为方程。
2、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
3、解方程:求方程的解的过程叫做解方程。
简易方程知识点梳理

千里之行,始于足下。
简易方程知识点梳理
简易方程知识点梳理:
1. 方程的定义:方程是由等号连接的有字母、数字、运算符和括号组成的数学表达式。
2. 方程的解:方程的解是能够使方程成立的变量的值。
解可以是实数、复数或无解。
3. 一元一次方程:一元一次方程是指只有一个未知数,并且未知数的最高次数是1的方程。
一般形式为:ax + b = 0,其中a和b为已知数,x为未知数。
4. 二元一次方程:二元一次方程是指含有两个未知数,并且未知数的最高次数是1的方程。
一般形式为:ax + by = c,dx + ey = f,其中a、b、c、d、e和f为已知数,x和y为未知数。
5. 方程的解法:解方程的常见方法有:等式性质法、配方法、移项法、消元法、代入法、因式分解法、开方法、取对数法等。
6. 方程的应用:方程在各个领域有广泛的应用,如代数方程、几何方程、物理方程等。
方程可以用于求解问题、解释现象、描述规律等。
7. 方程与方程组:方程组是多个方程相互关联的一类方程。
方程组可以有一组解、无解或无穷多解。
第1页/共2页
锲而不舍,金石可镂。
8. 非线性方程:非线性方程是指未知数的次数超过1的方程,如二次方程、高次方程等。
非线性方程的解法一般比线性方程复杂。
简易方程的数学知识点总结

简易方程的数学知识点总结一、概念简易方程是指只含有一个未知数的一次方程,即未知数的最高次幂为一。
一般形式为ax+b=0。
其中,a和b为已知数,x为未知数。
二、解一元一次方程的方法1. 直接相减法当已知数和未知数在等式两边分布时,可用直接相减法解方程。
例如:2x+3=7解:先将3移到等号右边,得2x=7-3,再相减得2x=4,最后除以2,得x=2。
2. 相反数相加法当未知数的系数为1时,可应用相反数相加法。
例如:x-5=2解:将x移到等号右边,得x=2+5,最后得x=7。
3. 等式两边加减法用等式两边的数值的交换性和对等性来解方程。
例如:3x-4=11解:先将-4移到等号右边,得3x=11+4,再相加得3x=15,最后除以3,得x=5。
4. 辗转相减法用变形公式解一元一次方程,通过等号两边的数值进行运算,将运算结果分别代入方程得到解。
例如:2x+5=11解:首先将5移到等号右边,得2x=11-5,再相减得2x=6,最后除以2,得x=3。
将解代入原方程验证。
5. 等式两边乘除法通过等式两边的乘法或除法运算解方程。
例如:3x/2-4=5解:首先将4移到等号右边,得3x/2=5+4,再相加得3x/2=9,最后乘以2/3,得x=6。
将解代入原方程验证。
6. 试算法通过适当的试算及验证得出方程的解。
例如:4x+3=19解:设计一个未知数值,代入解方程得出的结果进行验证。
设x=4,代入得4*4+3=19,验证结果正确,得出x=4。
三、实际应用1. 量的问题通过方程式的列立和解法可以解决关于量的问题,如长方形的周长、面积等问题。
2. 轻松购物通过方程式解决购物问题,如打折、满减等问题。
3. 交通问题通过方程式解决交通问题,如两车相遇、相距多远等问题。
4. 职业生涯规划通过方程式解决职业规划问题,如薪水增长、晋升等问题。
5. 金融问题通过方程式解决金融问题,如利息计算、投资回报等问题。
总结:简易方程是数学中的基本概念之一,是一种重要的计算工具。
简易方程所有的知识点总结

简易方程所有的知识点总结1. 方程的定义方程是含有未知数的数学关系,它可以表示为两个表达式之间的相等关系。
方程通常用字母表示未知数,通过代数方法可以求解出未知数的取值。
2. 未知数在方程中,未知数通常用字母表示,表示未知的数量或者大小。
在求解方程时,我们通过代数运算来确定未知数的值。
3. 方程的解解方程就是要找出使方程成立的未知数值,使得方程左边的表达式等于右边的表达式。
解方程的过程就是求出这些未知数的取值。
二、一元一次方程1. 一元一次方程的定义一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。
2. 一元一次方程的一般形式一元一次方程的一般形式可以表示为ax+b=0,其中a和b为已知常数,x为未知数。
3. 解一元一次方程的方法解一元一次方程的方法包括加减消去法、配方法、代入法等。
在解方程的过程中,我们通常通过变换方程的形式来求得未知数的值。
4. 一元一次方程的应用一元一次方程的应用十分广泛,可以用来解决各种实际问题,如物品的购买和销售、工程问题、金融问题等。
三、一元二次方程1. 一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的最高次数为二的方程。
2. 一元二次方程的一般形式一元二次方程的一般形式可以表示为ax^2+bx+c=0,其中a、b和c为已知常数,x为未知数。
3. 一元二次方程的求解方法解一元二次方程可以通过配方法、公式法、因式分解法等多种方法。
其中,一元二次方程的解法与因子分解和二次函数有着密切的联系。
4. 一元二次方程的应用一元二次方程在生活中也有很多应用,如物体自由落体运动、抛物线运动、建筑中的拱形结构设计等都可以用一元二次方程进行建模和解决。
四、一元三次方程1. 一元三次方程的定义一元三次方程是指只含有一个未知数,并且未知数的最高次数为三的方程。
2. 一元三次方程的一般形式一元三次方程的一般形式可以表示为ax^3+bx^2+cx+d=0,其中a、b、c和d为已知常数,x为未知数。
简易方程知识点

简易方程知识点-CAL-FENGHAI-(2020YEAR-YICAI)」INGBIAN简易方程知识点1、用字母表运算定律。
加法交换律:a+b=b+a加法结合律:a+b+c=a+(b+c)乘法交换律:axb=bxa乘法结合律:axbxc=ax(bxc)乘法分配律:(a±b)xc=axc±bxc2、用字母表示计算公式。
长方形的周长公式:c=(a+b)x2长方形的面积公式:s=ab 正方形的周长公式:c=4a正方形的面积公式:s=axa3、读作:x的平方,表示:两个x相乘。
2x表示:两个x相加,或者是2乘X。
4、①含有未知数的等式称为方程。
②使方程左右两边相等的未知数的值叫做方程的解。
③求方程的解的过程叫做解方程。
5、把下面的数量关系补充完整。
路程=(速度)x(时间)速度=(路程片(时间)时间=(路程片(速度)总价=(单价)x(数量)单价=(总价片(数量)数量=(总价片(单价)总产量=(单产量)x(数量)单产量=(总产量片(数量)数量=(总产量)三(单价)工作总量=(工作效率卜(工作时间)工作效率=(工作总量片(工作时间)工作时间=(工作总量片(工作效率)大数-小数=相差数大数-相差数=小数小数+相差数=大数一倍量X倍数=几倍量几倍量三倍数二一倍量几倍量三一倍量=倍数被减数二减数+差减数二被减数-差加数=和-另一个加数被除数二除数X商除数=被除数三商因数=积三另一个因数《简易方程》同步试一、填空1.用含有字母的式子填空并求值。
(1)一双筷子有2根,肚双筷子有()根。
(2)如图:车上现在有()人;当4=42时,车上现在有()人;当占二()时,车上现在有33人。
(3)王明今年a岁,比李军小$岁,今年王明和李军共()岁。
(4)如图:糖糊冰冰糖糖的体重是()千克;当® 时,糖糖的体重是()千克。
考査目的:考查用字母表示数和求含有字母的式子的值。
答案:(1)2”;(2) 4_6; 36; 39:(3)a+a+b或2a+3;(4)2^+1.5.。
简易方程必考知识点总结

简易方程必考知识点总结一、一元一次方程一元一次方程是最简单的方程之一,它是形如 ax+b=0 的方程,其中 a 和 b 是已知的常数,x 是未知数。
一元一次方程的解就是能够使等式成立的未知数的值。
解一元一次方程的方法有直接解法、移项解法、等价变形法等。
另外,一元一次方程还可以表示成一元一次不等式,解决实际问题时也会用到一元一次方程,比如搭公交车费用问题,搭出租车问题等。
1、一元一次方程的应用一元一次方程的应用非常广泛,我们可以用它来解决很多实际问题,比如:(1)时间、速度、距离问题(2)人物老问题(3)货币问题(4)工程问题等等2、一元一次方程的解法解一元一次方程的方法有直接解法、移项解法、等价变形法等。
当然,我们也可以根据实际问题的特点选择不同的解法。
二、二元一次方程二元一次方程是形如 ax+by=c 和 dx+ey=f 的方程,其中 a、b、c、d、e、f 都是已知的常数,x 和 y 是未知数。
解二元一次方程就是找出能同时满足两个方程的 x 和 y 的值。
解二元一次方程的方法有直接消元法、替换法、等价变形法等。
1、二元一次方程的应用二元一次方程在实际生活中也有很多应用,其中最常见的是利用两个方程求解两个未知数的问题,比如:(1)生产销售问题(2)进货销售问题(3)五角星和六角星问题(4)计算股票投资问题等等2、二元一次方程的解法解二元一次方程的方法有直接消元法、替换法、等价变形法等。
我们可以根据实际问题中方程的特点选择不同的解法。
三、多元一次方程多元一次方程是形如 a1x1+a2x2+...+anxn=b 的方程,其中 a1、a2、...、an、b 都是已知的常数,x1、x2、...、xn 是未知数。
解多元一次方程就是找出能够使方程成立的未知数的值。
1、多元一次方程的应用多元一次方程在实际问题中也有很多应用,比如:(1)线性规划问题(2)最小二乘法问题(3)半数值计算问题(4)矩阵方程问题等等2、多元一次方程的解法解多元一次方程的方法可以通过矩阵法、直接消元法等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
简易方程知识点梳理
一、字母表示数
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a(或2a) ,2a读作a的平方,表示两个a相乘。
2a表示a+a
3、数字和字母相乘,省略乘号时要把数字写在前面。
(如b×4写作4b )
4、用字母表示运算律
加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c)
乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
5、用字母表示正方形、长方形的面积和周长
对应练习
1.排球队共有队员a人,女队员有7人,男队员有( )人。
2.1千克大米的价钱是1.50元,买x千克大米应付( )元。
3.省略乘号,写出下面的式子。
3×a 9×x a×4 y×5 a×3x
4、服装店的阿姨们加工了50件衣服,每件衣服用布bm,当b=1.38时,用布的总数是______米
⒌a与b的和的5倍是()
6、一辆9路公共汽车上原有22名乘客,在新华大街站下去a人,又上去b人。
现在车上有____名乘客,当a=8,b=12时,车上有____名乘客。
7、比m的3倍多9的数是______,比n除以5的商少7的数是______
⒏当a=2,b=5时,那么8a-2b=( )。
⒐正方形的边长为x厘米,4x表示( ),x2表示()。
10.有x吨水泥,运走10车,每车a吨。
仓库还剩水泥( )吨。
11、施工队修一条长4.5千米的路,平均每天修0.24千米。
修了y天后,还剩____千米,当y=5时,还剩___千米。
二、方程的定义及解方程
1、方程:含有未知数的等式称为方程。
2、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
3、解方程:求方程的解的过程叫做解方程。
4、解方程原理:等式的性质
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
(1)一定要写‘解’字(2)等号要对齐(3)两边乘除相同数的时候,这个数不要为0
7、方程和等式的关系:
含有未知数的等式叫做方程,所有的方程都是等式,但等式不一定都是方程。
8、方程的检验过程:方程左边=……=方程右边
所以,X =…是方程的解。
9、方程的解是一个数; 解方程是一个计算过程。
对应练习
1.等式与方程:下列各式中是等式的打上“√”,是方程的打上“△”。
(1)12+x=13 (2)2.5-0.5=2 (3)5x>3
(4)14.6-7x=0.6 (5)x=0 (6)9=3x
(7)3+5X(9)1+2.7=3.7 (10)15<1十X
2.解方程
第一类、解简易方程
X+ 3 2 = 7 6 X- 20 = 0 7X = 49 X ÷6= 12
第二类、解较复杂方程1(含乘加、或乘减的方程)
解这类方程的时候,先仔细想一想把什么先看作一个整体。
3X + 6 = 1816 + 8X= 40 5x-8= 12.5
4X - 4×5= 065X-5×6=100
第三类、解较复杂方程2(含小括号的方程)
(X - 1)= 24
第四类、解较复杂方程3(方程左边的算式均含有未知数)
当方程左边的算式均含有未知数时,首先要运用乘法的分配律来进行计算,再解方程。
42X + 28X = 140 19X + X =40 2X + 8X -X= 27.9
第五类、解较复杂方程4(当除数或减数含有未知数)
当除数或减数含有未知数时,首先要交换位置,再解方程。
20-x=9 18.9÷x=2.13.25-x=1.2 6÷x=3
80÷5X =100 25-5X= 15 7.5-2.5x=2.5 2 ÷X=0.5
三、列方程解决问题(设未知数,找等量关系,列方程,解方程)
类型一(简单的一步方程)
1、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六一班收集了60个,六二班比六一班
多收集15个,六二班收集了几个?
2、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班比六一班
3、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
六二班收集了60个,六二班收集的是
六一班的2倍,六一班收集了几个?
4、学校开展绿色校园活动,六年级各班之间比赛收集易拉罐。
其中六二班收集了60个,六二班共有4个小组,平均每个小组收集多少个?(用除法)
类型二(几倍多多少/少多少):
1、食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少千克?
2、吉阳村有粮食作物84公顷,比经济作物的4倍多2公顷,经济作物有多少公顷?
3、农场一共收获了1200棵大白菜,每22棵装一筐,装完后还剩12棵,共装了几筐?
类型三(求每份数):
1、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?
2、四年级共有学生200人,课外活动时,80名女生都去跳绳。
男生分成5组去踢足球,平均每组几人?
3、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。
平均每行梨树有多少棵?
类型四(买东西和卖东西):
1、小明有面值2角和5角的共9元,其中2角的有10张,5角的有多少张?
2、我买了两套丛书,单价分别是:<<科学家>>2.5元/本,<<发明家>>3元/本,两套丛共花了
28元。
其中《科学家》这本书买了4本,《发明家》买了多少本?
3、王奶奶拿了孙子们帮她收集的易拉罐和饮料瓶去废品收购站卖,共得到7元,易拉罐和饮料瓶每
个都是0.15元,已知易拉罐有20个,那么饮料瓶有几个?
类型五(和倍问题/ 差倍问题):
1、粮店运来大米和面粉480包,大米的包数是面粉的3倍,运来大米和面粉各多少包?
2、小强妈妈的年龄是小强的4倍,小强比妈妈小27岁,他们两人的年龄各是多少?
3、甲车每小时比乙车多行驶10千米,甲车的速度是乙车的1.2倍,求乙车的速度是多少?
类型六(相遇问题、追及问题、鸡兔同笼)
1、甲乙两辆车同时从A、B两地相向而行,甲车每小时走5km,乙车每小时走6km,已知A、B两地
相距110千米,问甲车和乙车几小时后相遇?
2、小明和小东比赛骑自行车,他们约好同时从学校出发,看谁先到达终点的邮局,谁就赢。
4分钟后,
小明到达终点,取得了胜利,这时小东落后了他400米。
经过计算发现,小明每分钟骑300m,那么小东每分钟骑多少米?
3、笼子里关了一些鸡和兔子,已知它们的腿加起来共有48条,并且鸡的只数和兔子的只数相同,那么鸡和兔子各有多少只?
类型七(和差问题):
1、甲乙两人年龄的和为29岁,已知甲比乙小3岁,甲、乙两人各多少岁?
3、两个连续自然数的和是153,这两个数分别是多少?。