AZ61M镁合金性能
应变速率对AZ61镁合金动态再结晶行为的影响

应变速率对AZ61镁合金动态再结晶行为的影响杨续跃;张之岭;张雷;吴新星;王军【摘要】The deformation and dynamic recrystallization behavior of magnesium alloy AZ61 were studied at 623 K and 3 × 10-5-3 × 10-1 s-1 by optical and SEM/EBSD metallographic observation. The results show that the flow stresses and the dynamic recrystallization behavior are dependent on strain rates. With the increase of the strain rate, the strain rate sensitivity becomes weaker for steady state stresses while the strain rate sensitivity for the peak stress decreases firstly then increases obviously. Increasing strain rate can accelerate the process of dynamic recrystallization and the development of coarse {1012} twins which are harmful to get a complete recrystallization structure leading to the decrease of fractional recrystallization. Bulging mechanism for dynamic recrystallization nucleation operates mainly at lower strain rate, whereas the dynamic recrystallization substructure developed at higher strain rate is characterized by twin intersections. The difference of deformation mode leads to the operation of different mechanisms of dynamic recrystallization nucleation.%采用光学显微镜、SEM/EBSD和组织定量分析技术研究AZ61镁合金在623 K、3×10-5~3×10-1S-1下单向压缩时变形和动态再结晶行为.结果表明:AZ61镁合金的流变应力和动态再结晶行为强烈地受到应变速率的影响;随着应变速率的提高,稳态流变应力对应变速率的敏感性逐渐减弱,而峰值应力对应变速率的敏感性却呈先减弱后又显著增强的趋势.提高应变速率可加快动态再结晶进程,但高速变形初期产生更多的粗大{10(1)2}孪晶,不利于完全再结晶而导致稳态时的再结晶体积分数反而较低;在中低应变速率下动态再结晶以晶界弓出形核为主,而在高应变速率下则主要通过孪晶分割来进行;由应变速率引起变形机制的变化是导致不同动态再结晶行为的原因.【期刊名称】《中国有色金属学报》【年(卷),期】2011(021)008【总页数】7页(P1801-1807)【关键词】AZ61镁合金;高温变形;应变速率;动态再结晶;孪晶【作者】杨续跃;张之岭;张雷;吴新星;王军【作者单位】中南大学材料科学与工程学院,长沙410083;中南大学有色金属材料科学与工程教育部重点实验室,长沙410083;中南大学材料科学与工程学院,长沙410083;中南大学材料科学与工程学院,长沙410083;中南大学材料科学与工程学院,长沙410083;中南大学材料科学与工程学院,长沙410083【正文语种】中文【中图分类】TG146.2HCP结构的镁合金滑移系较少,低温塑性差,其变形多在高温下进行。
变形镁合金形变热处理的研究

大连理工大学本科毕业设计(论文)变形镁合金形变热处理的研究The research of distortion magnesium alloy after heat deformationtreatment学院(系):材料科学与工程学院专业:金属材料工程学生姓名:学号:指导教师:评阅教师:完成日期:大连理工大学Dalian University of Technology摘要镁及镁合金是目前最轻的金属结构材料,具有密度低、比强度和比刚度高、阻尼减震性好、导热性好、电磁屏蔽效果佳、机加工性能优良、零件尺寸稳定、易回收等优点,在航空航天、汽车、计算机、电子、通讯和家电等行业有着广泛的应用前景。
镁合金具有较好的铸造性能,目前镁合金产品以压铸件居多,但与铸造镁合金相比,变形镁合金晶粒细小,成分偏析低,具有较好的强度和塑性,是性能优良的镁合金,因此,镁合金塑性成形工艺的研究已成为世界镁工业中重要的方向。
由于镁合金密排六方的晶体结构,常温下塑性变形能力较差,加工成品率低,限制了其应用。
随着温度升高,原子振动幅度增大,会激活潜在的滑移面和滑移方向,使变形镁合金塑性性能大大改善。
本文从提高镁合金性能入手,将AZ31和AZ61挤压变形镁合金进行不同条件的热处理,研究T4处理、T5处理和T6处理对挤压变形镁合金显微组织和硬度的影响,结果表明:AZ31镁合金在350℃固溶12h下得到了较优化的热处理工艺的组合,AZ31镁合金硬度值达到65.5 HB。
AZ61镁合金在200℃时效12h下得到了较优化的热处理工艺的组合,AZ61镁合金硬度值达到70.0HB。
关键词:AZ31镁合金;AZ61镁合金;热处理;显微组织;力学性能The research of distortion magnesium alloy after heat deformationtreatmentAbstractMagnesium and magnesium alloy are the lightest metallic structural material at present. They have been used widely in the aviation, automotive, computer, and electronics industries, due to their unique properties such as low density, high specific strength and rigidity, good damping capacity and heat conductivity, excellent electromagnetic shield effectiveness and machinability, good dimensional stability and recycle character, and so on.Because of the close grain, low composition segregation and high strength and plasticity, wrought Mg alloy has better properties than cast Mg alloy. But Mg alloy is the HCP crystal structure, therefore its plastic deformation is worse at room temperature, and processed yield is also lower, which could be limit its application. The plasticity of wrought Mg alloy will be greatly improved with higher temperature. The behavior of pyroplastic deformation of AZ31 alloy was systematically studied with optical microscope and SEM. Physics and numerical simulation technique such as Gleeble-1500 thermal analog computer and ANSYS software were also employed.To enhance the magnesium alloy performance, we put AZ31 and AZ61 extrusion distortion magnesium alloy in different heat treatment condition. we study the basic theory and craft experiment of T4 processing,T5 processing and T6 processing of AZ31 and AZ61.The result show that: The optimized heat treatment technic of is AZ31 magnesium alloy 420℃12h after solution treatment while hardness increases to 65.5 HB, and the grain size is small. The optimized heat treatment technic of is AZ61 magnesium alloy 200℃12h after ageing treatment while hardness increases to 70.0 HB, and the grain size is 15μm.Key Words:AZ31 magnesium alloys;AZ61 magnesium alloys;Heat treatment;Microstructure;Mechanical properties目录摘要 (II)Abstract (III)1绪论 (1)1.1 镁及镁合金的概述 (1)1.2 镁及镁合金的基本性质 (2)1.3 镁合金的应用及前景 (4)1.4 镁合金的成型技术 (5)1.4.1挤压铸造 (5)1.4.2压铸 (6)1.4.3半固态铸造 (6)1.4.4轧制成型 (7)1.4.5冲锻成型 (7)1.4.6热挤压成型 (8)1.5 镁合金的热处理 (8)1.5.1 镁合金的热处理种类 (8)1.5.2 不同镁合金系的合金化及热处理 (9)1.6 论文的研究目的及研究内容 (12)2AZ31、AZ61变形镁合金的电磁连铸 (14)2.1 引言 (14)2.2 电磁连铸基本原理 (14)2.3 镁合金电磁成型系统装置 (15)2.4 镁合金电磁连铸过程 (16)2.4.1AZ31、AZ61镁合金成分 (16)2.4.2 镁合金的熔炼 (17)2.4.3镁合金的防护 (17)2.4.4镁合金的电磁连铸工艺参数 (19)3变形镁合金的挤压成形 (20)3.1 引言 (20)3.2 挤压工艺参数的确定 (20)3.3 热处理前变形镁合金的显微组织 (21)4挤压变形镁合金的热处理 (22)4.1实验方法 (22)4.1.1试样制备 (22)4.1.2试验工艺参数 (22)4.2热处理后变形镁合金的显微组织和力学性能 (24)参考文献 (32)致谢 (34)1 绪论1.1镁及镁合金的概述进入21 世纪,传统金属矿产资源的紧缺已成为全球性问题。
真空吸铸AZ61A镁合金的亚快速凝固行为研究

基金项 目:国家 自然科学基金资助项 目 (0 0 00 5 04 1 ) 5 94 1 , 10 0 8 。收稿 日 :2 1- 7 1收到初稿 ,2 1 - 8 0 t 修订稿 。 期 0 10—3 0 1 0 — 9 ̄ l 作者简介 :滕海涛 (9 9 ) 17 - ,男 ,工程师 ,主要研究方 向为铝 、镁合金的铸造及其热处理工艺。E m i en t ao . m. - a :sat @yh o o e l h t n
L s r In a d Elcr nBe ms M iit fEd c t n Sc o l f a e ,o n e to a , ns r o u a i , h o t r l Sce c n y o o Ma e i s a in ea d
E gn e i , ainUn es yo e h oo y D l n1 2 , io i , i ) n i r g D l i ri f c n l , ai 1 0 4 L nn Chn e n a v t T g a 6 a g a
关 键词 :镁合 金 ;亚快 速凝 固;显微 组织 ;溶 质分配
中 图分 类 号 :T 4 .;T 2 9 文献 标识 码 :A 文章编 号 :10 — 9 7 (0 1— 0 5 0 G16 2 G4 0 14 7 2 1) 1 1 5 — 6 1
Su . pd Soiic t h vo f b Ra i l f a i Be a ir d i on o AZ61 Ma n su A g e im Al y Un e n io f c u Su ,o sig l d rCo dt n o o i Va u m (in Ca t t n
镁合金挤压及其力学性能研究

随温度降低而降低。如有一B含量大于B。的合
room temperature,they have moderate exlnldability when heated to 230"Cor higher.Under the
condition of these experiment parameters,the extrBded rods end bars have good surface,and
20030305
沈阳工业大学硕士学位论文
摘要
本文研究了AZ91、AZ61及几种含锆镁合金的挤压性能,结果表明尽管镁合金具有 密排六方结构,室温下滑移系较少,塑性较差,但在加热到230℃以上时仍表现出良好 的可挤压性。在本实验参数下,挤压出的杆材和板材表面良好,尺寸符合设计要求。
本文对挤压态镁合金杆材和板材进行了热处理,然后做了显微组织分析和力学性能 测试。结果表明挤压后的镁合金综合力学性能明显高于铸态,抗拉强度较铸态提高 50MPa以上,屈服强度提高30MPa以上。延伸率提高5%以上:挤压后的镁合金显微组织 均匀细小,平均晶粒度在15 p m以下,而挤压前的铸态组织晶粒度在80 u m以上:热处 理对挤压态镁合金力学性能的影响因合金牌号不同而不同,对于AZ91板材而言,T4、 T6处理均降低其力学性能,挤压后F态性能最佳,而其它几种含锆合金T6态要好于F 态:断口分析表明AZ61板材的横向拉伸断口与纵向断口形貌有很大不同,横向断口韧 窝呈细条状,而纵向断口呈大小和深浅不一的圆形韧窝,这种断口形貌的差异证明材料 在挤压过程中晶粒有择优取向。其它几种镁合金挤压态断口皆表现为韧性断裂的特征, 室温断口与高温断口特征基本相同,分析表明由于挤压态镁合金室温塑性已经很好,所 以尽管高温下镁合金塑性进一步提高,但断口特征较室温下并无明显变化。
镁合金材料牌号标准

镁合金分类依据镁合金是以镁为基础加入其他元素组成的合金。
其特点是:密度小(1.8g/cm3镁合金左右),比强度高,比弹性模量大,散热好,消震性好,承受冲击载荷能力比铝合金大,耐有机物和碱的腐蚀性能好。
主要合金元素有铝、锌、锰、铈、钍以及少量锆或镉等。
在实用金属中是最轻的金属,镁的比重大约是铝的2/3,是铁的1/4。
它是实用金属中的最轻的金属,高强度、高刚性。
一般来说,镁合金的分类依据主要有三种,分别为合金化学成分、成型工艺和是否含锆。
工业用镁的纯度可达到99.99%以上,但是纯镁不能用作结构材料。
在纯镁中加入铝、锌、锂、锰、锆和稀土等合金元素可以达到强化纯镁的目的,形成的镁合金具有较高的强度,可以作为结构材料而得到广泛的应用。
常见的镁合金体系一般都含有不止一种合金元素。
但在实际中,为了分析方便,简化和突出合金中主合金元素的作用,可以把镁合金分为Mg-Mn、Mg-Al、Mg-RE、Mg-Th、Mg-Li 和Mg-Ag 等合金系列。
镁的合金元素最常见的合金元素为铝(Al)、锌(Zn)、锰(Mn)。
合金的基本原理如下:铝(Al)添加3-10%时其硬度与强度随添加比例增加。
镁铸件含5~10%Al时对热处理有较佳之响应。
铝元素在镁中的极限固溶度为12.7%,并且随着温度的降低显著减少,室温下的固溶度为2.0%左右,利用其固溶度的明显变化可以对其进行热处理。
铝元素的含量对合金性能影响极大,随着铝元素含量的增加,合金的结晶温度范围变小、流动性变好、晶粒变细、热裂及缩松倾向明显得到改善。
而且随着铝含量的增加,抗拉强度和疲劳强度得到提高。
锰(Mn)添加少量可改善腐蚀抗,对机械性质效应极少。
在镁合金中添加锰可以提高屈服强度,锰通过除去镁合金液中的铁及其他重金属元素,避免产生有害的金属间化合物来提高Mg-Al合金和Mg-Al-Zn合金的抗海水腐蚀能力,在熔炼过程中部分有害的金属间化合物会分离出来。
锌(Zn)最多达3%,可改善强度与盐水腐蚀。
镁合金压铸材料化学成份和力学性能

抗拉强度<B> MPa 283
230 220
220
220 185
225 215 320 262
屈服强度(拉 MPa 212
伸)<B><E>
屈服强度(压
MPa
---
缩)<H>
160 150
130
120 105
165 ---
130
--- ---
140 140 160 185 --- 140 --- 186
凝固范围
0C 470-595 540-615 540-595 555-615 --- --- ---
腐蚀失重
Mg/cm/d 0.02
0.05
0.1
(3 天 5% NaCl)
--- --- --- 0.5
三、镁合金机械性能及物理性能
镁合金机械性能
机械性能 单位 AG40A AZ91D AZ81 AM60B AM50A AM20 AE42 AS41B A380 A356(T6)
比热
KJ/Kg℃
0.8 1.05 1.0 1.02 1.0
1.0 1.01
热膨胀系数 Μm/m℃ 27.4 25.0 25.0 25.6 26.0 26.0 26.1 16.1 22
热传导系数 W/m℃ 113 72<C> 51<B> 62<B> 62<B> 60<B> 68<B> 68<B> 96
159 0.33 0.28 14
膨胀系数 μm/m0k 26
25.6
22
21.5 34.5 76.5 12
减振性能 %@35MPa 29
初生相Mg17Al12在AZ61镁合金半连续铸锭

National Engineering Research Center for M agnesium Alloys, M aterials Science & Engineering College, Chongqing University, Chongqing 400030,China
关键词
初生相,冷却速率,固相反扩散,微观偏析
中图法分类号
TG113.12
文献标识码1(200×)×—××—×
The distribution characterization of primary compound Mg 17Al12 in semi-continuously cast AZ61
表 1 铸锭的化学成分 Table 1 the chemical analyses of the cast alloy s Alloy AZ61 Analyzed composition (wt %) Al 6.38 Zn 1.06 Mn 0.34 Mg Bal. Fe 0.0031 Cu 0.0084 Ni 0.0008 Si 0.065
1
实验材料及方法
实验原料采用商业 AZ61 镁合金半连续浇铸铸锭。合金实际成分采用 XRF-1800 型 X 射线荧光光谱分析仪 (XRF)分析,所测合金化学成分见表 1。铸锭尺寸为 Φ130×200mm ,从边部和心部分别选取试样统计初 生相的定量特性, 试样尺寸为 10×10×10mm。 合金铸态显微组织经粗磨、 精磨、 抛光、 腐蚀使用 Olympus BHM 金相显微镜(OM)进行观察,腐蚀剂采用苦味酸 1.5g+乙醇 25ml+乙酸 5ml+蒸馏水 10ml。为了更细微的 观察相的形貌和鉴别相的类别采用 ESCAN VEGA II LMU 钨灯丝扫描电子显微镜上 BSE 探头进行观察, 工作电压 20KV,试样合金相成分和类别采用能谱(EDS)分析,试样前期处理为粗磨、精磨、抛光。统 计第二相在边部和心部所占的面积百分比采用 Image Pro Plus 软件, 统 计 用的图像采用扫描电镜的 BSE 探 头拍摄的试样抛光截面(不经过腐蚀) ,这样可以减少由于表面不平所造成的统计误差。统计的截面为边 部和心部区域内的随机截面。
常用的稀土镁合金种类

常用的稀土镁合金种类
稀土镁合金是一种高性能的轻质合金,由稀土元素和镁元素组成。
它具有优异的力学性能、耐腐蚀性能和耐高温性能,广泛应用于航空、汽车、电子、医疗等领域。
下面介绍几种常用的稀土镁合金种类。
1. AZ91D合金
AZ91D合金是一种常用的稀土镁合金,由9%铝和1%锌组成,加入稀土元素后,可以提高合金的强度和耐腐蚀性能。
该合金具有优异的机械性能和加工性能,广泛应用于汽车、航空、电子等领域。
2. AM50A合金
AM50A合金是一种含铝的稀土镁合金,由5%铝和0.5%锰组成,加入稀土元素后,可以提高合金的强度和耐腐蚀性能。
该合金具有优异的机械性能和加工性能,广泛应用于汽车、航空、电子等领域。
3. WE43合金
WE43合金是一种高强度的稀土镁合金,由4%铝、3%锆和0.5%稀土元素组成,具有优异的机械性能和耐腐蚀性能。
该合金广泛应用于航空、航天、国防等领域,是一种重要的结构材料。
4. ZK60A合金
ZK60A合金是一种含锆的稀土镁合金,由5.5%锌、0.45%锆和0.8%稀土元素组成,具有优异的机械性能和耐腐蚀性能。
该合金广泛应用于航空、汽车、电子等领域,是一种重要的结构材料。
稀土镁合金是一种重要的轻质合金,具有优异的机械性能、耐腐蚀性能和耐高温性能,广泛应用于航空、汽车、电子、医疗等领域。
不同种类的稀土镁合金具有不同的组成和性能,可以根据具体的应用需求选择合适的合金。