阳离子沥青乳化剂研究进展

阳离子沥青乳化剂研究进展
阳离子沥青乳化剂研究进展

几种乳化沥青的配方

几种乳化沥青的配方 (一)冷再生乳化沥青生产配方 沥青含量: 65%-AH-70# 乳化剂含量: 1.6%- PC-55 甲基纤维素: 0.05% PH指数: 1.5 基质沥青温度: 145—140 皂液温度: 40 成品出口温度: 60-----70 (二)粘层乳化沥青生产配方 沥青含量: 51%- AH-70# 乳化剂含量: 0.6%--- DF42E 甲基纤维素: 0.05%(水→cacl2) PH指数: 1.6—1.8 基质沥青温度: 145—140 皂液温度: 40---45 成品出口温度: 60---70 (三)透层乳化沥青生产配方

沥青含量: 45%- AH-70# 煤油含量: 15% 乳化剂含量: 1.0%--- S101 PH指数: 1.6—1.8 基质沥青温度: 145—140 皂液温度: 40---45 成品出口温度: 60---70 (四)下封层乳化沥青生产配方 沥青含量: 56%- AH-70# 乳化剂含量: 1.2%--- SBT 甲基纤维素: 0.05%(水→cacl2)PH指数: 1.6—1.8 基质沥青温度: 145—140 皂液温度: 40---45 成品出口温度: 70---80 (五)改性粘层乳化沥青生产配方沥青含量: 51%- AH-70# 乳化剂含量: 0.6%--- DF42E

甲基纤维素: 0.05%(水→cacl2)1468 : 3.0% SBR (改性剂) PH指数: 1.6—1.8 基质沥青温度: 145—140 皂液温度: 40---45 成品出口温度: 60---70 (六)改性粘层乳化沥青生产配方 沥青含量: 51% SBS改性沥青 乳化剂含量: 0.6%--- DF42E 甲基纤维素: 0.05%(水→cacl2)PH指数: 1.6—1.8 基质沥青温度: 160—165 皂液温度: 40---45 成品出口温度: 80---70 (七)改性稀浆封层乳化沥青生产配方沥青含量: 60% AH-70# 乳化剂含量: 1.8%--- MQK--1K PH指数: 2.0--2.5

乳化沥青品种及适用范围

乳化沥青品种及适用范围 分类品种及代号适用范围 阳离子乳化沥青PC-1 表处、贯入式路面及下封层用 PC-2 透层油及基层养生用 PC-3 粘层油用 BC-1 稀浆封层或冷拌沥青混合料用 阴离子乳化沥青PA-1 表处、贯入式路面及下封层用 PA-2 透层油及基层养生用 PA-3 粘层油用 BA-1 稀浆封层或冷拌沥青混合料用非离子乳化沥青PN-2 透层油用 BN-1 与水泥稳定集料同时使用(基层路拌或再生) 我发现,两种乳化沥青适用范围时一样的,在技术要求上,两种乳化沥青的技术指标也相同,究竟在何种情况下选用什么样的乳化沥青,还请高手、专家给予指点。谢谢 乳化沥青与矿料结合的原理从表二中我们看出,适用作透层油施工的既有阳离子型乳化沥青,又有阴离子型乳化沥青,还有非离子型乳化沥青,我们如何按照实际的施工情况选择呢?要解决这个问题,我们首先要弄清楚各种乳化沥青与物料裹附的原理:一般情况下,在乳化沥青溶液里,因所使用乳化剂的不同,沥青微粒会带有(+ )(-)电荷。对于阴离子型乳化沥青而言,其沥青微粒带有(-)电荷,湿润矿料也带有(-)电荷,由于 同性电荷相斥的原因,二者之间在有水膜的情况下,难以相互结合,必须待乳液中的水分蒸发后,沥青微粒才能裹附到矿料表面。所以阴离子沥青乳液与矿料的裹附只是靠单纯的粘附作用,乳液与矿料的粘结力比较低,若在施工中遇上阴湿季节,乳液中的水分蒸发缓慢,沥青裹附矿料的时间延长,会延缓开放交通的时间。但是,碱性矿料表面与沥青微粒的粘附性很强,当乳液中的水分蒸发后,乳液的技术性能是由沥青决定的,所以阴离子沥青乳液与碱性矿料结合,路用性能会很好。而酸性矿料同阴离子沥青乳液接触时,由于乳液和矿料表面都带(-)电荷,因而其与酸性石料的粘附性会很差,直接影响沥青路面的使用性能。阴离子乳化沥青与矿料的粘附过程示意图如图一所示。 图一阴离子乳化沥青与矿料的粘附过程示意图。 对于阳离子型乳化沥青而言,其沥青微粒带有(+ )电荷,湿润矿料表面带有(-)电荷,由 于异性电荷相吸的原因,尽管二者之间有水膜,仍会使沥青微粒很快的吸附在矿料表面。即使在阴湿季节或低温季节(5C以上),阳离子沥青乳液仍可以照常施工。从化学反应角度看, 阳离子乳化沥青对于碱性矿料有着良好的粘附性。这是因为阳离子乳化沥青有一定的游离酸,PH 值小,游离酸与碱性石料起作用后,生成氯化钙和带负电荷的碳酸离子,恰好它与裹附在沥青周围的阳离子中和,所以沥青微粒能与矿料表面紧密相连,形成牢固的沥青膜, 同时将乳液中的水份很快地分离出来,分解破乳。而对于酸性矿料,由于其表面带有(电荷,与阳离子 -)乳化沥青自然就有着良好的粘附性。阳离子乳化沥青与矿料的粘附过程示意图如图二所示。

乳化沥青稀浆封层工艺

乳化沥青稀浆封层工艺 乳化沥青稀浆混合料是指用适当级配的石料或砂为骨科,以乳化沥青为结合料,必要时加入一定量的粉料(水泥、粉煤灰、矿粉)、添加剂后和水按一定比例拌和而成的,具有流动状态的沥青混合料。该混合料通过稀浆封层车连续、均匀地摊铺在路面上形成的沥青表面处理薄层,用来作为原路面的保护层或磨耗层。稀浆封层混合料在水分蒸发干燥硬化成型后,其外观与细料式沥青混凝土相似,均有耐磨、抗滑、防水、平整等技术性能,是一种沥青路面养护用新材料、新工艺、新结构。 一、稀浆封层特点: 用阳离子乳化沥青拌制稀浆混合料时,沥青乳液中的沥青微粒表面带有正电荷,湿矿料表面带有负电荷。由于异性电荷相吸的原因,沥青微粒可透过矿料水膜,牢固地吸附在矿料表面。若采用阴离子乳化沥青,在拌和稀浆混合料时,在矿料中若加入水泥或石灰粉。矿料表面附有钙、镁离子,带正电荷,沥青与矿料的粘结力同样得到提高。摊铺稀浆封层混合料时,只要原路面清扫湿润,稀浆中沥青微粒能与原路面上露出的矿料很好地粘结,稀浆能透到路面缝隙中去,加强与原路面的结合。在拌和稀浆混合料时,加入的水对沥青乳液起到了稀释的作用,降低了沥青乳液的粘度,使之有着更好的流动分散性,使沥青微粒完全地均匀裹覆在所有矿料的表面上,形成一定厚度的沥青薄膜,既有足够的结构沥青粘附矿料,又无过多的自由沥青降低混合料热稳定性和强度。

稀浆封层主要特点如下: (1)防水:稀浆混合料的骨料粒径较细,并且具有一定的级配,乳化沥青稀浆混合料成型后,它能与路面牢固地粘附在一起,形成一层密实的表层,防止雨水或雪水渗入基层。 (2)防滑:由于乳化沥青稀浆混合料摊铺层较薄,并且其级配中的粗料分布均匀,如果沥青用量合适,不会产生泛油现象,路面具有良好的粗糙度,磨擦系数明显增加,抗滑性能好。 (3)耐磨耗:由于阳离子乳化沥青对酸、碱性骨料都有具有良好的粘附性,因此稀浆混合料可选用坚硬耐磨的优质矿料,因而可得到很好的耐磨性,延长路面的使用寿命。 (4)填充作用:乳化沥青稀浆混合料中有较多的水份,拌合后呈稀浆状态,具有良好的流动性,这种稀浆有填充和调平作用。对路面的细小裂缝和路面松散脱落造成的路面不平,可用稀浆封层处治,改善路面的平整度。 (5)施工成本低:相对于热料摊铺方法而言,由于是常温施工,无需加热,而且施工速度快,节省人力、物力、财力,经济性好。 (6)不足:稀浆封层不能补救由于路基强度和稳定性不佳而引起的路面开裂和变形,也不能改善沥青路面因用油过多而起的泛油,稀浆封层还需要早期养护,对原材料的适配性要求较高,对于不能封闭交通的路段,不能提供原材料的情况,不宜采用稀浆封层施工。 二、稀浆封层结构分类及选择 在道路工程中常用的乳化沥青有阳离子型和阴离子型,而根据

SMC系列沥青改性剂

SMC系列沥青改性剂,常温改性沥青 现代交通路面材料的要求:在低温下应有弹性和塑形;在高温下要有足够的强度和稳定度;在加工和使用中增强抗老化能力;在多种矿物和结构表面有较强的粘附力;以及对构件变形的适应性和耐疲劳性。沥青材料本身难以满足这些性能要求,迫切需要对沥青进行改性。维持公司专业技术团队充分利用废旧塑料、旧橡胶轮胎提取物生产的第三代产品SMC沥青改性剂从根本上改变了沥青固有的缺陷,不但在以上几个方面取得突破性进展还大大提高道路使用其他性能,如减少燃油、燃煤、沥青消耗量。因此沥青路面工程使用S MC沥青改性剂是一件利国、利民、利于地球环境的三益事业。产品特点: 一,低碳、节能、环保:使用SMC改性沥青生产的沥青混凝土,常温拌合,不需要对干燥矿料加热,沥青不在需要高温熔融只需要电加热70~100℃,碳排放低(按照标准四车道的省、国道,减低的能耗标准煤230T/KM)。SMC改性沥青混凝土常温生产、不加高温,CO2、煤灰矿料粉尘、苯并芘、沥青烟等有害毒气体排放只有传统沥青的2-1 0%,其高分子聚合物弹性使它比热沥青降噪28% 二,即铺即通少修补:SMC改性沥青混凝土属于柔性熟料成型迅速、固化缓慢且具备自动修复性质,不可抗拒的创痕裂隙,经过车轮的再次碾压可自动修复 三,低造价:SMC改性沥青砼成本与同级别SBS改性沥青砼相比成本约低¥260元/m3,与低级别的基质重交沥青混凝土相比约低¥80元/m3。SMC沥青混合料可长时间储存,用不完的产品进行简单包装可储存1个月。 四,适应性强:SMC改性剂与矿量相适应性均佳,热拌热铺的沥青砼则不宜采用石灰石类高温变性矿料(2012年5月完工的内遂高速运行俩个月即全面翻工,就因为就地取材使用石灰石矿料造成的)。 五,延长使用寿命:SMC改性沥青砼常温生产,沥青不加高温,延缓沥青老化,延长固化时间(施工6年后硬化程度与SBS热拌沥青混凝土施工当天的数据接近),抗重载比其他沥青高2-3倍,无车辙、不推移涌包、不龟裂,延长路面2-3倍使用寿命。 六,施工方便:SMC改性沥青砼在生产、施工过程中不受气温、时效限制,气温低于零下20℃均可正常施工,可以机械摊铺也可以人工铺设。 SMC已列入交通部公路科学研究院指定合作推广产品,并由交通部指定相关《中国道路产品企业施工规范》

[阳离子沥青乳化剂253] 阳离子沥青乳化剂

[阳离子沥青乳化剂253] 阳离子沥青乳化剂 阳离子乳化剂253 产品说明 本品为阳离子乳化剂,含有丁醇。不含卤化物,硫酸盐及磷酸基。适用于沥青乳化,也可作为酸性颜料或无机物的分散剂。 水油通用。 化学名称该产品为氢氧化四烃基铵盐。 数据外观: 密度@20 ° 活性物质 pH 值闪点溶剂离子特性: 用途本品极性较高,具有导电性,可降低电阻。其易溶于芳烃溶剂,如丁醇,本品还适用于醇溶的醇酸/氨基或丙烯酸该产品具有较高的表面活性,在静电喷涂条件下,有助于分散成微珠。用于双组分聚氨酯体系会影响施工时限。 该产品在水性体系中可作为抗静电剂。 该品虽然可用于分散,但作为导电剂,添加量作为乳化剂建议用量为%。作为导电助剂,添加量为导电性而定。因配方的差异,需要认真实验确定加入量。品承担任何责任。用户需要根据自己的需要评估该产品。 石油沥青乳化剂: CaCl2 盐酸 黄至棕色液体 g/cm378-81%、60-70°C20% 阳离子

/胺基涂料体系。 建议后添加并搅拌均匀。 %供应商不对用户的中端产58 3-5%。 约,视稀释剂的 水补足总计 乳化工艺参考: 制备乳化剂皂液:预先准备60-65℃热水。称取乳化剂,加入46g 热水,加入,搅拌均匀。用浓盐酸调节PH=待, 乳化剂完全溶解成清液,配成皂液。皂液保温在60-65℃范围内 熔融树脂:头置于烧杯中,左右。 乳化:将乳化剂皂液加入熔融树脂烧杯中,乳化机转速生沸腾、溢料现象,搅拌度后,称取分钟,滴加完毕,继续搅拌成品:将乳化好的乳液降温后,转移到储存容器中,做常温储存稳定性测试。稳定性通过后,黏附力似乎眼、湿轮磨耗实验、负荷车输试验等。 阳离子乳化剂在与稳定剂象,实属于正常。 注意事项本产品固含较高,防火。用水稀释后再使用较安全。 贮存时要注意远离明火或高温环境。 于500ml 的烧杯中,称取石油沥青开启乳化机,预热分散头,同时将树脂分散均匀。5-10分钟,至树脂完全分散均匀。当

改性沥青的研究进展

改性沥青的研究进展 黄 彬,马丽萍,许文娟 (昆明理工大学环境科学与工程学院,昆明650093) 摘要 为了得到性能更优良的改性沥青,越来越多的材料被用作改性沥青改性剂,同时新的评价标准和方法及其他领域的新化学分析方法也被用来更完整准确地评价改性沥青的性能。总结了国内外改性沥青的研究现状及进展,从改性机理、性能影响因素及评价方法等方面来介绍各种改性沥青的概况,并概述了改性沥青的发展方向。 关键词 改性沥青 改性剂 机理 发展Rsearch Development of Modif ied Asphalt HUAN G Bin ,MA Liping ,XU Wenjuan (Faculty of Environmental Science and Engineering ,Kunming University of Science and Technology ,Kunming 650093) Abstract More materials ,as modifier ,are used to improve the properties of modified asphalt.Besides ,the new evaluation standards and methods ,new chemical analysis methods are used to evaluate the properties more com 2pletely and accurately.The situation and development of modified asphalt research at home and abroad are summa 2rized.From the aspcts of modification mechanism ,influencing factors and evaluation methods ,various modified as 2phalts are introduced ,and the development trend of modified asphalt technology is illustrated in the paper. K ey w ords modified asphalt ,modifier ,mechanism ,development  黄彬:女,1986年生,硕士研究生,主要研究方向为固体废物资源化 E 2mail :binbin_huang @https://www.360docs.net/doc/02788589.html, 马丽萍:女,1966年生,教 授,主要研究方向为工业废气污染控制、固废综合开发利用 E 2mail :lipingma22@https://www.360docs.net/doc/02788589.html, 0 前言 普通道路沥青由于自身的组成和结构决定了其感温性能差,弹性和抗老化性能差,高温易流淌,低温易脆裂。而且在过去的10年中,车轴负荷增加、车流量增加、气候条件恶劣,难以满足高级公路的使用要求,必须对其改性以改善使用性能。在沥青或沥青混合料中加入天然或合成的有机或无机材料,熔融或分散在沥青中与沥青发生反应或裹覆在沥青集料表面,可以改善或提高沥青路面性能。 1 改性沥青的分类 在沥青的改性材料中,高分子聚合物是应用最广泛、研究最集中的一种。其他改性材料还有两大类:矿物质填料和添加剂。矿物质填料,如硅藻土、石灰、水泥、炭黑、硫磺、木质素、石棉和炭棉等,对沥青进行物理改性,可提高沥青抗磨耗性、内聚力和耐候性。添加剂,包括抗氧化剂和抗剥落剂,如有机酸皂、胺型或酚型抗氧化剂或阴、阳离子型或非离子型表面活性剂,可提高沥青粘附性、耐老化或抗氧化能力。聚合物改性沥青(PMA 、PMB ),按照改性剂的不同一般可分为3类:①热塑性橡胶类,即热塑性弹性体,主要是嵌段共聚物,如SBS 、SIS 、SE/BS ,是目前世界上最为普遍使用的道路沥青改性剂,并以SBS 最多;②橡胶类,如NR 、SBR 、CR 、BR 、IR 、EP 2DM 、IIR 、SIR 及SR 等,以胶乳形式使用,其中SBR 应用最为广泛;③树脂类,如EVA 、PE 、PVC 、PP 及PS 。 2 各种改性沥青及其发展现状 通过SCI 和EI 分别检索近15年来改性沥青在交通、建筑、材料、能源及环境等学科方面研究的文献情况,检索结果如图1、图2及表1、表2所示。根据表1、表2数据和图1、图2情况可以看出,近几年国内外对改性沥青的研究越来越多,尤其以SBS 和胶粉最为突出,出现了多种新型改性剂。下面 将分别介绍各种改性沥青及其发展现状。 图1 SCI 检索统计表 Fig.1 SCI search results 2.1 矿物质材料改性沥青 矿物质材料作改性剂的研究较少,主要为硅藻土、纳米 碳酸钙、矿渣粉、白炭黑等,可与基质沥青形成均匀、稳定的 共混体系以改善沥青性能[1] 。

道路沥青用乳化剂

道路沥青用乳化剂 乳化剂是乳化沥青生产的关键原材料。乳化剂一般占乳液总量的0.3﹪~2.0﹪.虽然乳化剂量并不多,但它所起的作用却是十分重要的。众所周知,沥青与水是互不相溶的两种物质,是不能形成相对稳定的平衡体系的。如果没有乳化剂就不能生产乳化沥青产品来。 根据乳化剂溶解于水中乳化剂分子亲水基是否带有电荷,把乳化剂分为离子型和非离子型。离子型乳化剂由于在水中电离后亲水基所带电荷的不同,又分为阳离子型和阴离子型。此外还有两性离子型。这里仅对常用乳化剂做概括介绍。 阳离子乳化剂 阳离子乳化剂根据破乳速度的快慢分为快裂、中裂、慢裂三种。慢裂乳化剂根据混合料凝结时间的长短分为慢凝和快凝两种。 用中裂和快裂乳化剂生产的乳化沥青主要用于喷洒,铺筑表面处治路面和贯入式路面,其中以中裂型使用较多,快裂型使用很少,快裂型特别适合较低温度条件下喷洒使用。用慢裂乳化剂生产的乳化沥青主要用于稀浆封层,其中慢裂快凝型适合用于高等级公路的养护,慢裂慢凝型适合用于普通道路的养护。 1.快裂乳化剂 N—十六到十八烷基丙稀二胺是常用的快裂乳化剂,外观为白色固体。也称为N—十六到十八烷基丙撑二胺,或N—十六到十八烷基丙二胺。 2、中裂乳化剂

中裂乳化剂在国内有很多家生产,外观为黄色半固态,其中使用最多最普遍的是十八烷基双(氮)季铵盐,简称18331,标准名称为;N—(3—十八胺基—2—羟基)—丙基—三甲基氯化铵。这种乳化剂合成生产工艺技术成熟,质量稳定,乳化能力强,乳液稳定性好。 中裂乳化剂还有烷基季铵盐类好烷基双(氮)季铵盐类。烷基季铵盐类主要有;十六烷基三甲基溴化胺(1631),十八烷基三级基氯化胺(1831 OT,),十六到十九烷基三甲基氯化铵(NOT 1831). 3.慢裂乳化剂 我国最先使用的慢裂乳化剂是木素胺类,也被称之为木质素胺或木质胺。这类乳化剂的最大特点是价格低。用木素胺生产的乳化沥青用于稀浆封层是能达到拌合摊铺所需时间的要求。但他的缺点是凝结成型时间长,一般要一到几小时以上时间,属于慢裂慢凝型。外观为深棕色粘稠液态,有强烈氨味。木素胺类乳化剂有二胺、三铵和季胺盐等几种,最常用的为季铵盐,即木素三甲胺,标准命名为;3—木素(苯基丙烷结构单元)—2—羟基—1—三甲氯化胺。 另一类慢裂乳化剂是酰胺类。我国生产的这类乳化剂主要有烷基酰胺基多胺。如果使用得当,它也是慢裂快凝乳化剂。慢裂乳化剂还有阳离子咪唑啉类。同时它也是慢裂快凝乳化剂。 4. 慢裂快凝乳化剂 慢裂快凝型阳离子沥青乳化剂是适用于高等级公路稀浆封层和改性稀浆封层的优质乳化剂。由于用于高等级公路,对乳化剂本身的要求较高。要由乳化剂自身的作用即达到慢裂又达到快凝;对重交沥青

沥青乳化剂的发展现状及应用展望

沥青乳化剂的发展现状及应用展望 沥青乳化剂是表面活性剂的一种类型,它具有表面活性剂的基本特性。由于带有亲油基与亲水基,在这两个基团作用下,使它能够吸附在沥青和水的相互排斥的界面上,从而降低它们之间的界面张力。 所谓乳化沥青就是将沥青热熔,经过机械的作用,以细小的微滴状分散于含有乳化剂的水溶液中,形成水包油状的沥青乳液。使用这种沥青乳液修路时,不需加热,可以在常温状态进行喷洒,贯入或拌和摊铺,铺筑各种结构路面的面层及基层,也可用作透层油、粘层油以及用于各种稳定基层的养护。 在世界性的能源危机影响下,在筑路工程中要求节省能源、节省资源、减少污染的呼声越来越高,已引起人们的高度重视。在这种形势下,人们经过长期筑路实践,发展应用阳离子乳化沥青铺筑路面是达到上述要求的可取途径。 采用乳化沥青铺路,现场施工简化,不需将沥青加热到170~180℃高温后再去使用,砂石等矿料也不需烘干加热,可以节省大量的燃料与热能。由于沥青乳液具有良好的工作度,可以均匀地分布在骨料表面上,并与其产生较好的粘附性,因而可节省沥青用量,简化施工程序,改善施工条件,也减少对周围环境的污染。由于这些优点,乳化沥青不仅适用于铺筑路面,而且在填方路堤的边坡保护,建筑屋面及洞库防水,金属材料表面防腐,农业土壤改良及植物养生,铁路的整体道床,沙漠固沙等许多工程中得到广泛的应用。由于乳化沥青既能改善热沥青的施工技术,又使沥青的应用范围得到不断扩大,因此乳化沥青得到迅速的发展。 一、乳化沥青的发展历程

从本世纪初就进行乳化沥青的研究,自商品化的乳化沥青生产以来,至今已有60多年的历史。在前40年的发展中主要是阴离子乳化沥青,但这种阴离子乳化沥青的微粒带有阴离子电荷,当乳液与骨料表面接触时,由于湿润骨料表面也带有因离子电荷,同性相斥的原因,致使沥青微粒不能尽快地粘附到骨料表面上。若使沥青微粒裹覆到骨料表面必须待乳液中水分的蒸发。 随着近代界面与胶体化学的进展,近20年来,阳离子乳化沥青发展速度很快。这种沥青乳液是使沥青微粒带有阳离子电荷,当与骨料表面接触时,异性相吸的作用,使沥青微粒吸附在骨料表面上。 日本使用沥青乳化剂是在1925年东京大地震恢复时期。1930年开始有商品提供市场,战后有得到迅速恢复与发展。 1951年法国开始研制阳离子乳化剂。1957年美国把阳离子乳化剂应用在道路施工上,并于1959年开始商业化。 60年代苏联仅应用阴离子乳化剂,随着化学工业的发展开始试制某些类型的阳离子表面活性剂,并发现了它作为道路沥青乳化剂是可行的。于1972年试制阳离子乳化剂烷基三甲基氯化铵,利用它作为沥青乳化剂。 80年代以后,阳离子沥青乳化剂又有新应用,它可防止原子铀尾渣的放射性污染,采用阳离子沥青乳化剂和水泥砂浆混合物制成的密封剂,可减少99.9%氡放射物密封的长期稳定性试验正在进行中。 我国阳离子沥青乳化剂的研制和应用起步较晚,1977年研制成功,1978年由交通部组织完成了“阳离子乳化沥青及其路用性能研究”课题协作组。为发展我国阳离子乳化沥青做了大量工作。1981年列为交通部重点科研项目,1983年列为国家计委与经委的节能应用项目。1985年由交通部进行了技术鉴定。并决定“七五”期间

沥青路面及乳化沥青施工方法

1、下封层 沥青下封层采用单层沥青砂封层。 1.1、材料 1.1.1、沥青采用乳化沥青。 1.1.2、每批运到工地的沥青都附有生产厂的沥青质量检验单。 1.1.3、砂要求粒粗角锐,质量坚硬,不易压碎,干净均匀,不含有杂质。其技术指标满足规范要求。 1.2、试验路段 在正式开工之前,在监理工程师批准的路段上选定长度不小于50m的路段作为试验路段,进行试验段施工,通过试验路段确定机械行驶速度、单层沥青的洒布均匀度和洒(撒)布量。当第一次试验后经计算单位沥青用量与规范不符时,进行第二次调整试验,直至满足规范要求,以指导大面积的施工生产。 1.3、沥青下封层施工 1.3.1、用于下封层的单层沥青材料和集料的标号、规格、用量满足规范及要求。 1.3.2、下封层在透层充分渗透、表面干燥、洁净并刮除多余油膜部分后洒布。沥青洒布车和集料撒布机联合作业。沥青洒布速度与集料撒布速度相协调,并洒布(撒布)均匀,局部用人工扫匀集料和嵌缝料。 1.3.3、洒布下封层沥青前,选择一段基层作为试验路段,以确定沥青和砂的撒布量。

1.3.4、洒布前对基层表面清扫至无尘埃,对构筑物加以保护以防污染。 1.3.5、沥青洒布在正常温度下进行,若气温较低或稠度较大时,适当加热沥青。洒布均匀不滑移、流淌,保证洒布连续性。 1.3.6、以集料撒布机撒布砂,砂均匀撒布,不堆积,无松散、露黑。集料撒布一段,使用6-8t轻型钢轮压路机碾压,从两侧向中间进行,碾压速度不超过2km/小时。 1.3.7、如有泛油现象,由人工补撒集料,用轻型压路机碾压两遍。 1.3.8、下封层施工完,若有损坏现象,及时修补。 1.4、质量控制 1.4.1、沥青的质量按规范规定的方法进行检验。 1.4.2、沥青喷洒后,如发现边缘有空白或花白处,及时采用人工补洒。 1.4.3、沥青材料洒布均匀,每车沥青开始洒布时和纵、横搭接处,采取措施,避免沥青洒布不匀或洒布过量的现象。洒布汽车无法作业的路段或部位,以及漏洒的部位,均用手提式喷洒器进行人工喷洒或补洒。 2、透层、粘层 2.1、材料 2.1.1、本标段透层采用慢裂性乳化石油沥青,沥青用量1.0Kg/m2。粘层采用快裂性乳化沥青,沥青用量0.5Kg/m2。 2.1.2、每批运到工地的沥青都附有生产厂的沥青质量检验单。

乳化沥青

防水方面多用阴离子乳化沥青.特点: 乳化沥青与矿料结合的原理 从表二中我们看出,适用作透层油施工的既有阳离子型乳化沥青,又有阴离子型乳化沥青,还有非离子型乳化沥青,我们如何按照实际的施工情况选择呢?要解决这个问题,我们首先要弄清楚各种乳化沥青与物料裹附的原理: 一般情况下,在乳化沥青溶液里,因所使用乳化剂的不同,沥青微粒会带有(+)(-)电荷。对于阴离子型乳化沥青而言,其沥青微粒带有(-)电荷,湿润矿料也带有(-)电荷,由于同性电荷相斥的原因,二者之间在有水膜的情况下,难以相互结合,必须待乳液中的水分蒸发后,沥青微粒才能裹附到矿料表面。所以阴离子沥青乳液与矿料的裹附只是靠单纯的粘附作用,乳液与矿料的粘结力比较低,若在施工中遇上阴湿季节,乳液中的水分蒸发缓慢,沥青裹附矿料的时间延长,会延缓开放交通的时间。但是,碱性矿料表面与沥青微粒的粘附性很强,当乳液中的水分蒸发后,乳液的技术性能是由沥青决定的,所以阴离子沥青乳液与碱性矿料结合,路用性能会很好。而酸性矿料同阴离子沥青乳液接触时,由于乳液和矿料表面都带(-)电荷,因而其与酸性石料的粘附性会很差,直接影响沥青路面的使用性能。阴离子乳化沥青与矿料的粘附过程示意图如图一所示。 图一阴离子乳化沥青与矿料的粘附过程示意图。 对于阳离子型乳化沥青而言,其沥青微粒带有(+)电荷,湿润矿料表面带有(-)电荷,由于异性电荷相吸的原因,尽管二者之间有水膜,仍会使沥青微粒很快的吸附在矿料表面。即使在阴湿季节或低温季节(5℃以上),阳离子沥青乳液仍可以照常施工。从化学反应角度看,阳离子乳化沥青对于碱性矿料有着良好的粘附性。这是因为阳离子乳化沥青有一定的游离酸,PH值小,游离酸与碱性石料起作用后,生成氯化钙和带负电荷的碳酸离子,恰好它与裹附在沥青周围的阳离子中和,所以沥青微粒能与矿料表面紧密相连,形成牢固的沥青膜,同时将乳液中的水份很快地分离出来,分解破乳。而对于酸性矿料,由于其表面带有(-)电荷,与阳离子乳化沥青自然就有着良好的粘附性。阳离子乳化沥青与矿料的粘附过程示意图如图二所示。 图二阳离子乳化沥青与矿料的粘附过程示意图 对于两性离子型乳化沥青而言,其所带电荷极性是随溶液的PH值变化而变化的,所以这类沥青乳液兼具阴、阳离子型乳化沥青的特点。此类型乳化沥青成本较高,国内目前仅是研究试验阶段。 对于非离子型乳化沥青而言,其乳液中的乳化剂在水中不电离,但有亲水基,也有亲油基。这类表面活性剂在无水状态时是锯齿形的长链分子,但溶于水后则成为曲折形,亲水性的氧原子被水分子拉出来处于链的外侧,亲油性的―CH2―基处于里面(如图3所示),因而链周围就变得容易与水结合,从总体看,就像是亲水性基团,显示出相当大的亲水性。正是由于这样的原因,非离子型乳化沥青较离子型乳化沥青有更强的乳化能力。非离子型乳化沥青中的沥青微粒不是离子状态,所以稳定性高,不易受强电解质无机盐类的影响,也不易受酸、碱的影响,因而可以延缓沥青乳业与石料混合的破乳速度。同时也由于溶液中没有电离现象,沥青微粒在一般固体表面上不发生强烈吸附,故而易和性大大提高。 图三 2.4.乳化沥青的选择原则 弄清了各类离子型乳化沥青与矿料的裹附原理,我们可以得出乳化沥青选择的原则:在沥青路面的透层油施工中,阳离子型乳化沥青能够增强与矿料表面的粘结能力,提高路面的早期强度,故阳离子型乳化沥青为首选品种。当然,,阴离子型乳化沥青也有其价格便宜、与碱性材料有着良好的粘附性的特点,而沥青路面的基层多为碱性材料,为了降低施工成本,也可使用阴离子型乳化沥青。非离子型乳化沥青,因其乳化力强,价格较低,正在被越来越多的乳化沥青厂家采用。在用于透层油施工时,其长处是价格低,渗透深度较大,缺点是贮存稳定相较差,粘附性能亦较差。 有时,在高速公路的透层油施工中,业主会对透层油的高温性能提出要求,比如透层油残留物的软化点要

乳化沥青稀浆混合料贯入式沥青路面施工工艺

龙源期刊网 https://www.360docs.net/doc/02788589.html, 乳化沥青稀浆混合料贯入式沥青路面施工工艺 作者:王壹帆王海有常伟琴薛秋香 来源:《中华建设科技》2017年第01期 【摘要】本文介绍了一种新型沥青路面及其施工工艺——乳化沥青稀浆混合料贯入式沥青路面及其施工工艺,并阐述了它的特点、有益效果以及用途。 【关键词】乳化沥青稀浆混合料;贯入式;沥青路面;施工工艺 Construction Technology of Emulsified Asphalt Slurry Mixture Penetrating Asphalt Pavement Wang Yi-fan1,Wang Hai-you2,Chang Wei-qin3,Xue Qiu-xiang4 (1. Central Laboratory of Pingdingshan Highway Administration BureauPingdingshanHenan467036; 2. Pingdingshan Highway Administration BureauPingdingshanHenan467036; 3. Highway Administration Bureau of Luohe City, Henan ProvinceLuoheHenan462001; 4.Pingdingshan City smooth Road Industry CoPingdingshanHenan467000) 【Abstract】This paper introduces a new type of asphalt pavement and its construction technology - emulsified asphalt slurry mixture penetrating asphalt pavement and its construction technology, and expounds its characteristics, beneficial effects and use. 【Key words】Emulsified asphalt slurry mixture;Penetration type;Asphalt pavement;Construction technology 1. 前言 我国已建成的公路及城市道路绝大部分是沥青路面。由于车辆严重超载超限、大交通量、渠化行车以及高温天气等因素的影响,导致车辙已成为沥青路面早期最主要的病害,比如高速公路爬坡路段、BRT(公交快速运输)专用道和导向道等是车辙最易发生且最严重之处,资料显示80%的沥青路面出现不同程度的车辙,它是道路病害中的顽疾,一直得不到解决。 2 乳化沥青稀浆混合料贯入式沥青路面

沥青乳化剂乳化原理

沥青乳化剂乳化原理 武城县博斯特筑路机械有限公司 沥青乳化剂定义:沥青乳化剂是表面活性剂的一种类型。它是能吸附在沥青颗粒与水界面,从而显著降低沥青与水界面的自由能,使其构成均匀而稳定的乳浊液的一种表面活性剂。 在水中加入沥青乳化剂以后,乳化剂的亲水基与水分子之间有很强的吸引力,乳化剂分子在液体表面上基本是无一定方向的,多处于平躺状态。由于溶液中乳化剂的浓度由小变大,亲油基的烃基部分,因憎水性排斥于水体系之外,产生疏水效应。这样就使乳化剂产生了一个方向性,水面上溶解的是亲水基,水面最远方向为亲油基,形成了乳化剂定向排列于界面上,使自由能趋于最小,保持了最稳定位置。这样乳化剂与空气界面上形成了一层单分子膜。这种有规则的分子排列现象称作分子定向排列或配位。这种单分子定向排列现象称为单分子吸附膜。 沥青乳化剂分子在水溶液中定向排列的吸附现象,不仅在空气和水相之间,也可发生在空气以外的沥青相中。这种吸附现象有物理吸附和化学吸附,以化学吸附为主,随着亲油基碳链长度增加吸附速度加快,分子定向排列的吸附速度加快,最后水的表面形成单分子层,使水的表面张力下降。 在乳化剂水溶液中加入过量的乳化剂,不仅可以形成单分子定向的吸附膜,而且能形成复杂的多层吸附膜和乳化剂分子集束,以尽量保持最小的自由能。如果沥青液经高速剪切成细小微粒(0.01mm-0.001mm)而均匀的分散在水中,溶入水中的乳化液分子会立即在沥青微粒界面被吸附,从而产生新的吸附排列,亲油基一段吸附于沥青内部,亲水基一端吸附于水中,以钳形固定于界面上,从而降低了沥

青与水的界面张力。当吸附的乳化剂分子达到饱和状态时,在沥青微粒表面形成一层被乳化剂分子包封的有一定机械强度的坚固的分子薄膜,使沥青微粒具有亲水性,而均匀稳定地分散在水中,形成乳化沥青。 沥青乳液是一个多相分相体系,沥青是以微粒形式均匀分散于水中的稳定乳状液,其稳定度因乳化剂大大加强。其中沥青为分散相,为不连续相或称内相;水为分散介质,为连续相或称外相,为水包油(O/W)型乳化沥青。也就是我们平时使用的乳化沥青。 阴离子乳化剂 阴离子乳化剂在水中溶解后,其活性部分倾向离解成负电离子的表面活性物质,其特征表现为具有一个大的有机阴离子,能与碱作用生成盐。根据带负电离子部分的结构不同,可分为羧酸盐型、磺酸盐型及硫酸盐型三大类。 阴离子乳化剂的缺点是抗硬水能力较差;优点是来源广、种类多、价格便宜。可用于碱性矿物集料。 一、羧酸盐型乳化剂,它是由大分子链的羧酸与碱作用而生成的阴离子沥青乳化剂。常用的有脂肪酸盐和环烷酸盐。其化学结构为:RCOOM R为憎水烃基,为长烃脂肪烃或环烷烃基,碳原子个数为9-21. M为金属离子,包括K+Na+ 在羧酸盐型沥青乳化剂中应用最多的为油酸钠、松香酸钠、月桂酸钠、环烷酸钠等。脂肪酸的碳链越长,亲油性越强,凝固点越高,制成的脂肪酸皂越硬,在水中的溶解性越差。脂肪酸的碳链越短在水中的溶解性越好,亲油性越差,对沥青的乳化效果越差。选择脂肪酸盐乳化剂一般选择碳数为12-20之间,其中应用最多的碳原子为12-18. 环烷酸存在于很多沥青中,可以从沥青中提取。用作沥青乳化剂的环烷酸的酸值应在75-175之间,沥青酸值在0.75KOH/g左右或更高的环烷酸沥青,可简单的用碱性乳化剂所乳化,可获得较满意的环烷皂乳化沥青。 (一)油酸皂 油酸皂是用天然油脂与氢氧化钠进行化学反应而生成的一种阴离子型乳化剂,学名为顺-9-十八碳烯酸盐,是含一个双键的不饱和脂肪皂。其化学式为:CH3(CH2)7-CH=CH-(CH2)7COONa 油酸是橄榄油、牛脂的主要成分,碳数均为18,由于分子中含有双键,增加了亲水性,在水中溶解性增强,具有极强的表面活性,是乳化沥青中常用的沥青乳化剂。但在硬水中与铝、镁等离子形成不溶性的铝皂、镁皂,影响乳化效果。 (二)硬脂酸钠 硬脂酸钠是由硬脂酸和碱作用而生成的硬脂酸皂。其化学式为CH3(CH2)16Na 硬脂酸钠多数是含有十八碳的饱和脂肪酸皂。其碳链越长,憎水性越强,亲水性羧酸基仅为一个,亲水性不足,顾在冷水中溶解性较差,易溶于热水。

一种阳离子乳化沥青堵剂实验研究

第43卷第11期 当 代 化 工 Vol. 43,No.11 2014年11月 Contemporary Chemical Industry November,2014 基金项目:中海油技术发展项目“海上油田乳化稠油堵剂体系研究与应用”,项目号:C/KJF JDCJF 007–2010。 收稿日期:2014-05-09 作者简介:黄波(1974-),男,湖北麻城人,高级工程师,1997年毕业于原江汉石油学院采油工程专业,主要从事三次采油及增产措施技术的研 究应用和管理工作。E-mail:huangbo@https://www.360docs.net/doc/02788589.html,。 通讯联系人:孟科全(1983-),男,工程师,硕士,主要从事调剖堵水及井间示踪监测技术研究及应用工作。E-mail:mengkq@https://www.360docs.net/doc/02788589.html,。 一种阳离子乳化沥青堵剂实验研究 黄 波,陈维余,史 斌,易 飞,彭齐国 (中海油能源发展股份有限公司工程技术分公司,天津 300457) 摘 要:探索了用一种特殊的阳离子乳化沥青替代稠油研发的新型油田堵水剂,在中高温、无稠油资源的条件下应用于油井堵水作业的可能。实验研究结果表明,在阳离子乳化沥青浓度20%~40%、90 ℃条件下,岩心封堵率大于98%,封堵强度大于2 MPa/m,同时能够优先进入高含水层,满足油藏选择性堵水的技术需求。 关 键 词:阳离子乳化沥青;选择性堵剂;流动性;封堵性 中图分类号:TE 357 文献标识码: A 文章编号: 1671-0460(2014)11-2219-03 Experimental Study of Cation Emulsified Asphalt Plugging Agent HUANG Bo ,CHEN Wei-yu ,SHI Bin ,YI Fei ,PENG Qi-guo (CNOOC Energy Technology & Services-Engineering Technology Company, Tianjin 300457, China ) Abstract : The probability to use a new kind of cation emulsified asphalt plugging agent to carry out oil well water shutoff in the condition of medium-high temperature and lack of heavy oil was discussed. The results indicate that the plugging rate is more than 98% and the plugging strength is 2 MPa/m or higher in the condition of 90 ℃ and the cation emulsified asphalt concentration between 20% and 40%. The plugging agent can enter into the layers with high water-cut and reach the technical demand of selective water plugging. Key words : Cation emulsified asphalt; Selective plugging agent; Flow ability; Plugging capacity 水分散乳化稠油堵剂适合具备稠油资源(稠油粘度为300~3 000 mPa ?s )、中等温度的油藏,对于其他不具备稠油资源或稀油油田(原油粘度低于300 mPa ?s )、高温油藏,乳化稠油堵剂不适应,主要体现在以下几点: ①高温问题,乳化稠油堵剂是通过乳化剂把原油乳化形成粘度更高的W/O 乳状液,而对出水层位进行封堵。但体系是以稠油为主体,其体系热敏性强,高温下体系粘度大幅下降,尤其油藏温度超过90 ℃,体系强度很难满足堵水的要求 [1~3] 。 ②油源选择问题,在稠油性质不合格或不具备稠油资源的情况下,乳化稠油堵剂就难以应用。因此如何得到可替代稠油的资源是关键,本文探索一种阳历子乳化沥青,在针对中高温、无稠油资源的条件下作为一种堵剂的可能。 1 阳离子乳化沥青堵剂的制备 阳离子乳化沥青堵剂就是将改性石油沥青、水、特种阳离子乳化剂、乳液稳定剂等按一定的比例,在适宜的温度、一定机械搅拌等作用下,使改 性沥青以细小的微粒(0.1~10.0μm)均匀地分散成相对稳定的悬浮液。 2 阳离子乳化沥青堵剂堵水机理 阳离子乳化沥青中的改性石油沥青被阳离子 乳化剂吸附包裹分散于水相中,表现出较低的表观粘度,能够选择性进入含水饱和度高的地层;在地层条件下,体系中受温度和阳离子乳化剂物理化学吸附的影响,加入破乳剂或受地层负电荷影响,分散体系稳定性破坏,沥青质颗粒析出相互聚并形成高粘体系,从而封堵高含水地层,达到堵水目的。 其增稠示意图见图1、图2所示。 图1 阳离子乳化沥青破乳前 Fig.1 Cation emulsified asphalt before the demulsification

改性沥青的研究现状分析

-144-科学技术创新2019.13 改性沥青的研究现状分析 戚春华赵玉芳高明星 (内蒙古农业大学,内蒙古呼和浩特010()10) 摘要:为了适应交通量的迅猛发展、车辆重载以及复杂的气候变化,对路面材料的性能提出更高的要求,普通沥青已无法满足,必须对沥青进行改性,研发出具有良好路用性能的改性沥青,满足现代道路发展的需要。对改性沥青的起源与发展进行总结分析,归纳现有研究存在的不足以及改性沥青的发展应解决的问题结果表明:多聚磷酸、SBS、环氧树脂、硅藻土、纳米材料等将是今后制备复合改性沥青的重要材料;对改性沥青改性机理认识不足、改性材料与沥青的相容性问题以及改性沥青的存储稳定性问题是制约改性沥青推广应用的重要原因。 关键词:改性沥青;改性材料;制备工艺;发展 中图分类号:U414文献标识码:A文章编号:2096-4390(2019)13-0144-02 近年来,随着交通量的迅猛发展,车辆重载以及复杂的气候变化.对公路路面材料的性能提出了更高的要求。普通沥青路面表面平整无接缝,行车振动小,噪声低,开放交通快,养护简便等优点,但也存在感温性能差,弹性和耐老化性能差,高温易流淌和低温易脆裂等缺点。基于普通沥青路面存在的缺点难以满足现代道路的使用要求,必须对其进行改性研究,使其满足现代道路建设的要求。目前有些改性沥青的制备工艺已经相当成熟,对各种新型材料的使用也进行了大量研究.然而对改性沥青的改性机理的研究还缺少深刻的认识。 本文通过对改性沥青的起源与发展进行分析总结,归纳现有研究存在的不足以及改性沥青的发展应解决的关键问题。 1改性沥青的组成成分研究 研究发现每种改性剂都有各自的优缺点,比如橡胶改性沥青制备工艺简单,稳定性差,不易贮存,多聚磷酸价格低廉,对沥青高温和老化性能的改善效果较为明显,低温性能较差,SBR改性沥青制备工艺简单,价格低廉,但高温稳定性差,多用于高寒高海拔地区,SBS改性沥青的弹性、低温性能、耐老化等性能均有所提高,对于高寒地区来说,低温性能稍显不足,多用于炎热地区,环氧树脂改性沥青能提高沥青材料的粘附力、拉伸强度以及断裂延伸率,有很高的强度,优良的温度稳定性,且高温条件下抗变形能力较好,制备工艺复杂,施工较难。近年来国内外学者开始研究如何将两种或者多种改性剂对沥青进行复合改性,综合其优点.进一步提高改性效果。 张忠明叭黄成武回等人以橡胶粉和SBS为改性剂,通过不同的室内制备工艺制备复合改性沥青,并对制备出的复合改性沥青的性能进行比较研究,为室内制备复合改性沥青(转下页) 接,当检测车在对道路进行检测的时候,将采集到的数据上传到云端与之前对该条道路检测所采集到的数据进行比对,可以分析出该道路路面在最近几年的破损变化速率。将该速率与当地的气候水文条件以及车流量进行分析。 4.2智能检测设备数据共享化 对于路面管理系统本身而言,目前各个地区已经建立的路面管理系统之间彼此是孤立的,没有任何联系,成为“信息孤岛”。 在数据进行共享之前,要将各个地区的评价指标进行标准化处理,由于各个地区路面所处的环境条件是不一样的,交通量和路面结构类型也是不同。评价指标的标准化是相当困难的。 一旦完成智能检测设备数据的共享化,我相信我国的路面力学理论、路面设计施工方法都会有飞跃式的进步。 5结论 随着智能检测设备的发展,尽管我们已经取得了许多方面的成就,比如图像分析处理技术,高精度的图像采集技术以及地理信息技术,但仍然有着广阔的发展空间等待着我们去探索。集成化的智能检测设备,标准化的检测指标,完备的云端数据库以及一些交通运输附属产业都等待着我们进一步的研究。我相信今后中国的交通事业会在新“互联网+”时代蓬勃发展。 参考文献 [1]邢荣军.高速公路路面破损自动识别与智能评价[D].重庆:重庆交通大学,2011,4. [2]喻翔.高速公路路面养护管理系统决策优化研究[D].成都:西南交通大学,2005,5. ⑶庞明宝,魏连雨.系统工程与交通[M].天津:天津人民出版社. 2003. [4]徐东云,张雷,兰荣娟.城市交通拥堵的背景变换分析[J].城市问题,2009⑶. [5|龚建江.公路设计与管理中的工程数据库研究[J].绿色交通. 2018,2,20⑷. 作者简介:朱瑞峰(1995,10,31-),男,汉族,四川省,学历:在读研究生,研究方向:道路规划与线形设计理论与方法。

相关文档
最新文档