2012年高考数学解析几何专题攻略
(完整版)解析几何考点和答题技巧归纳

解析几何考点和答题技巧归纳一、解析几何的难点从解题的两个基本环节看:1、翻译转化:将几何关系恰当转化(准确,简单),变成尽量简单的代数式子(等式 / 不等式),或反之…2、消元求值:对所列出的方程 / 不等式进行变形,化简,消元, 计算,最后求出所需的变量的值/范围 等等难点:上述两个环节中 ⎩⎪⎨⎪⎧变量、函数/方程/不等式的思想灵活性和技巧性分类讨论综合应用其他的代数几何知不小的计算量二、复习建议分两个阶段,两个层次复习: 1、基础知识复习:落实基本问题的解决,为后面的综合应用做好准备。
这个阶段主要突出各种曲线本身的特性,以及解决解析问题的一般性工作的落实,如: ① 直线和圆:突出平面几何知识的应用(d 和r 的关系!);抛物线:突出定义在距离转化上的作用,以及设点消元上与椭圆双曲线的不同之处。
② 圆锥曲线的定义、方程、基本量(a 、b 、c 、p )的几何意义和计算③ 直线和圆锥曲线的位置关系的判断(公共点的个数)④ 弦长、弦中点问题的基本解法⑤ 一般程序性工作的落实:设点、设直线(讨论?形式?)、联立消元、列韦达结论… 中的计算、讨论、验…2、综合复习:重点攻坚翻译转化和消元求值的能力① 引导学生在 “解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想② 积累常见的翻译转化, 建立常见问题的解决模式③ 一定量的训练, 提高运算的准确性、速度, 提高书写表达的规范性、严谨性● 具体说明1、引导学生在“解题路径规划”的过程中理解解析法:变量、等式(方程/函数)、不等式的思想建议在例题讲解时,总是在具体计算之前进行“解题路径规划”:① 条件和结论与哪几个变量相关?解决问题需要设哪些变量?② 能根据什么条件列出几个等式和不等式?它们之间独立吗?够用了吗?③ 这些等式/不等式分别含有什么变量?如何消元求解最方便?④ 根据这些等式和不等式,能变形、消元后得到什么形式的结论(能消掉哪些变量?得到两个变量的新等式/不等式?变量的范围?求出变量的值?)好处: ①选择合适的方法;②避免中途迷失[注] 关于消元常用的消元法: ⎩⎪⎨⎪⎧代入消元加减/乘除消元韦达定理整体代入消掉交点坐标 点差法 弦中点与弦斜率的等量关系 ……换元,消元的能力非常重要2、积累常见翻译转化,建立常见问题的解决模式(1)常见的翻译转化:① 点在曲线上 点的坐标满足曲线方程② 直线与二次曲线的交点⎣⎢⎡点坐标满足直线方程点坐标满足曲线方程x 1 + x 2 = …‚ x 1x 2= …y 1 + y 2 = …‚ y 1y 2 = … ③ 两直线AB 和CD 垂直 01AB CD AB CD k k ⎡⋅=⎢⋅=-⎣④ 点A 与B 关于直线l 对称⎩⎨⎧中: AB 的中点l 垂: AB ⊥l ⑤ 直线与曲线相切 ⎣⎡圆: d = r 一般二次曲线: 二次项系数 ≠ 0 且∆ = 0⑥ 点(x 0,y 0)在曲线的一侧/内部/外部 代入后 f (x 0,y 0) > 0或f (x 0,y 0) < 0⑦ ABC 为锐角 或 零角 BA → ∙ BC → > 0⑧ 以AB 为直径的圆过点C⎣⎢⎡CA → ∙ CB → = 0|CA |2 + |CB |2 = |AB |2 ⑨ AD 平分BAC → ⎣⎢⎢⎡AD ⊥x 轴或y 轴时:k BA = − k AC AD 上点到AB 、AC 的距离相等AD →∥(AB → + AC →)⑩ 等式恒成立系数为零或对应项系数成比例○11 A 、B 、C 共线 → ⎣⎢⎢⎡AB →∥BC→k AB = k BC C 满足直线AB 的方程……[注] 关于直线与圆锥曲线相交的列式与消元:① 如果几何关系与两个交点均有关系,尤其是该关系中,两个交点具有轮换对称性,那么可优先尝试利用韦达定理得到交点坐标的方程,然后整体消元如果几何关系仅与一个交点相关, 那么优先尝试“设点代入”(交点坐标代入直线方程和曲线方程);② 如果几何关系翻译为交点的坐标表示后, 与x 1 + x 2, y 1 + y 2相关 (如:弦的中点的问题),还可尝试用 “点差法”(“代点相减” 法) 来整体消元,但仍需保证∆ > 0(2)建立常见题型的“模式化”解决方法 (不能太过模式化,也不能没有模式化)如:① 求曲线方程: ⎩⎪⎨⎪⎧待定系数法直译法定义法相关点法参数法… 难度较大,上海常考的是待定系数法、定义法和相关点法。
2012高考数学怎样解答高考解析几何题

2012高考数学怎样解答高考解析几何题
平面解析几何研究的内容是曲线的方程和方程的曲线,其核心是通过坐标系将曲线和方程联系起来,实现二者的双向转化.作为高中知识的主干内容,它在高考中占有重要的位置.主要考查点为:求曲线的轨迹方程,求最值问题,求参数的取值范围,圆锥曲线的切线,定点、定值问题,存在性问题等
●解题策略
直线与圆锥曲线的综合问题一直是高考考查的热点,其解答的关键是坐标化,难在代数运算和代数推
理上,且字母多,难消元,其解答的策略是:
1. 没有图,不妨画个图形,便于直观思考
2. “建坐标系,设点坐标,列关系式,化简,验证”是求动点轨迹的通法
3. 消元转化为一元二次方程,判别式、根与系数关系、中点公式、弦长公式等是常常要考虑的
4. 多多感悟“设、列、解”.设什么?点坐标,曲线方程,角度,线段长;“列”的前提是找关系;“解”就是要转化,要化简,要变形,变形要有目标,要有方向性,有根据,更要简捷、准确
5. 紧扣题意和曲线的定义,联系图形、坐标与方程之间的关系,数形结合
●范例选讲
高考数学复习一定要做好基础知识梳理,比如解析几何知识: 圆锥曲线的定义;直线和圆的方程;转化标准方程,从标准方程中读出特征量;通过方程联想图形,通过图形联想方程.在大脑里形成自己的知识结构、知识网络,提炼一些解题方法、解题策略,从数学思想方法的高度去理解怎样学会解答解析几何题.“建立坐标系,设点坐标、设曲线方程,列关系,化简求解,反思验证”是常规的具体的解题通道,可以简化为“建,设,列,解,验”五字法,望读者能在自己的解题过程中,多加实践、总结、回味和体验。
2012届高考数学解题技巧--解答题的解题方法与技巧

解答题答题模板
第 3 讲 解答题答题模板
数学解答题是高考数学试卷中的一类重要题型,通 常是高考的把关题和压轴题,具有较好的区分层次和选 拔功能.目前的高考解答题已经由单纯的知识综合型转 化为知识、 方法和能力的综合型解答题. 在高考考场上, 能否做好解答题,是高考成败的关键,因此,在高考备 考中学会怎样解题,是一项重要内容.本节以著名数学 家波利亚的《怎样解题》为理论依据,结合具体的题目 类型,来谈一谈解答数学解答题的一般思维过程、解题 程序和答题格式,即所谓的“答题模板”.
∆ = 36k 4 − 4(3k 2 + 1)(3k 2 − 5) > 0, 6k 2 x1 + x2 = − 2 . 3k + 1 ① ②
x1+x2 1 3k2 1 由线段 AB 中点的横坐标是- ,得 =- 2 =- , 2 2 2 3k +1 3 解得 k=± ,适合①. 3 所以直线 AB 的方程为 x- 3y+1=0 或 x+ 3y+1=0.
3
f(x)
极大值
1 f(- )>0, 2 1 1 当 x∈[-2,2]时,f(x)>0 等价于 f(1)>0, 2
5-a 8 >0, 即 5+a>0. 8
解不等式组得-5<a<5.因此 0<a≤2. 1 1 ②若 a>2,则 0<a<2.当 x 变化时,f′(x),f(x)的变化情况 如下表: 1 1 1 1 1 0 x (0,a) ( a, 2) (-2,0) a f′(x) f(x) + 0 极大值 - 0 极小值 +
模板 3 由数列的前 n 项和 Sn 与通项 an 的关系求通 项 an 例 3 已知数列{an}的各项均为正数,Sn 为其前 n 项和, 对于任意的 n∈N*,满足关系式 2Sn=3an-3. (1)求数列{an}的通项公式; 1 (2)设数列{bn}的通项公式是 bn= ,前 n log3an·log3an+1 项和为 Tn,求证:对于任意的正整数 n,总有 Tn<1. 思维启迪 (1)求出数列{an}的递推关系,由递推关系求
高中数学解析几何解题技巧

高中数学解析几何解题技巧解析几何是高中数学中的一大难点,也是考试中的重点内容之一。
掌握解析几何的解题技巧,不仅可以提高解题效率,还能够在考试中获得更好的成绩。
本文将从直线、圆和曲线三个方面介绍解析几何的解题技巧,并通过具体题目的分析来说明每个考点。
一、直线的解析几何解题技巧直线是解析几何中最基础的图形,其解题技巧主要包括确定直线的方程和求直线的性质。
在确定直线的方程时,常用的方法有点斜式和两点式。
例如,已知直线过点A(1,2)且斜率为3,求直线的方程。
根据点斜式的公式y-y₁ = k(x-x₁),代入已知条件,可以得到直线的方程为y-2=3(x-1)。
在求直线的性质时,常用的方法有平行和垂直关系的判断。
例如,已知直线l₁的方程为y=2x+1,直线l₂与l₁平行且过点(2,3),求l₂的方程。
根据平行关系的性质可知,l₂的斜率与l₁的斜率相等,因此l₂的方程为y=2x+b。
代入过点(2,3)的条件,可以解得b=-1,所以l₂的方程为y=2x-1。
二、圆的解析几何解题技巧圆是解析几何中的另一个重要图形,其解题技巧主要包括确定圆的方程和求圆的性质。
在确定圆的方程时,常用的方法有标准式和一般式。
例如,已知圆心为(2,-3)且经过点(1,2),求圆的方程。
根据标准式的公式(x-a)²+(y-b)²=r²,代入已知条件,可以得到圆的方程为(x-2)²+(y+3)²=18。
在求圆的性质时,常用的方法有判断点与圆的位置关系和求切线的斜率。
例如,已知圆的方程为(x-2)²+(y+3)²=18,点P(4,-1)在圆上,求点P处切线的斜率。
根据点与圆的位置关系的性质可知,点P处切线的斜率等于圆的斜率,即-(x-2)/(y+3)。
代入点P的坐标,可以求得点P处切线的斜率为-2/4=-1/2。
三、曲线的解析几何解题技巧曲线是解析几何中的较为复杂的图形,其解题技巧主要包括确定曲线的方程和求曲线的性质。
2012年高考数学全国卷Ⅱ解析几何解题分析与思考

. 2012年高考数学全国卷Ⅱ解析几何解题分析与思考问题提出题目:已知抛物线C:y=(x+1)2与圆M:(x-1)2+(y-½)2=r2(r>0)有一个公共点A,且在点A处两曲线的切线为同一直线L(1)求r(2)设m,n是异于L且与C及M都相切的两条直线,m,n的交点为D,求D到直线L的距离。
2.命题意图本题着重考查直线、抛物线与圆的方程,以及两个曲线的公共点处的切线的运用,并在此基础上求解点D到直线的距离等基础知识。
考查数学运算的求解能力、综合分析能力和选择判断解法的机智果敢的决策能力。
3.问题解答遇到的种种困难本题失分较多,很多同学答题不完整或解答过程繁琐,费时较多,反映出学生平时虽然做了大量的练习题,但缺少对基本方法分析比较,缺少对一题多解探究,缺少对题目解答思路不顺畅多问几个为什么的研究,致使在题设条件变化情况下,思路狭窄,解答出现“卡克”时,不能另辟途径,不能简洁而流畅地给出完整地解答。
3.1 解题途径的选择,陷入繁复运算中此题在审题后,绝大多数同学会采用联立抛物线与圆的方程,试图求出两曲线的交点A,然后分别求出抛物线与圆在该点处的切线,应该是同一切线,由此求出半径r。
这样做的结果,消去y后遇到4次方程,陷入困境,不了了之。
3.2 “设而后求”的技巧此题一开始设出两曲线的交点A 后,问题大为简化,其实这是解题的“切入点”,也是遇到第一个困难。
解法选择,迷失方向途径,一切化为乌有。
3.3 运算能力差,遇到两次较大的困难4、解题分析与教学反思4.1 重视通性通法的教学所谓通性通法是指具有某种规律性和普遍意义的常规解题模式和常用的数学解题方法。
解决任何一个数学问题都要运用一定的方法,方法正确、恰当、巧妙,就容易使问题得到圆满有效地解决;方法正确、失当或笨拙,就会影响解题的效果。
4.2 重视运算技能的训练我们在教学中常看到,有时学生做练习时,只满足于有解题思路,只列式不运算或者不想运算,错误的认为,思路清了,方法会了,题就做对了,把培养运算能力的训练看成是浪费时间,把运算中出现的错误归结为“粗心大意”。
2012年江苏高考数学考点分析与备考建议

江苏高考数学考点分析与后期全真模拟应对措施距离高考还有30多天的时间,可以说到了冲刺复习阶段。
面对越来越近的高考,如何充分利用剩余的每一天提高复习效率?下面就高考中常见题型进行简单分析,希望能对冲刺2012年高考的考生有所启示。
一、填空题填空题的14道题中,通常1-8题是基础题,9-12题是中等题,13、14题是难题,由于填空题的得分情况对高考成绩大有影响,所以答题时要给予足够的精力和时间,一般为45分钟。
填空题解题的基本原则是“小题不能大做”。
解题基本方法一般有:直接求解法、图像法、构造法和特殊化法(特殊值、特殊函数、特殊角、特殊数列、图形特殊位置、特殊点、特殊方程、特殊模型)。
在解题过程中要灵活运用各种方法进行求解,以求提高解题效率。
二、解答题第一:三角与向量,容易题主要考查:1、三角形问题:正余、弦定理,面积;2、三角函数的图象和性质;3、两角和与差的三角函数。
此类题目通常以平面向量为载体(向量平行,垂直,数量积),解题时须注意角的范围,选用公式是否恰当(如慎用同角间的三角函数关系式解方程组),不要混淆向量垂直与共线的充要条件,在求解三角函数中问题时不要忽略角的范围等。
第二:立体几何,容易题主要考查:1、平行问题;线线,线面,面面平行,重点仍是线面平行——两种方法(线线法,面面法);2、垂直问题:条件与结论中都有垂直,重点是线线垂直与线面垂直(或面面垂直)的转化。
复习时要重视证明、运算、推理的规范训练,要关注翻折问题,要偏重平行、垂直关系的探究与证明。
第三:应用题,中等题近几年江苏高考数学试题中,正在形成强调将数学应用于解决实际问题的趋势,比如,08年铺设排污管道最优化问题,09年买卖商品满意度问题,10年测量电视塔高度问题,11年纸盒的切割。
经常涉及的数学模型有:函数模型、不等式模型、三角模型等。
应用题主要分为文字阅读题和图形题,解题时要认真审题,抓住关键词,将实际问题抽象为数学问题,从各种关系中找出最关键的数量关系,将这些关系用有关的量及数字、符号表示出来,从而建立数学模型,运用所学的知识解决最优化问题。
解析几何解答题的答题策略和技巧

解析几何解答题的答题策略和技巧解析几何解答题答题策略和技巧解析几何题目的解答通常涉及到代数和几何原理相结合。
要有效解决这些问题,遵循以下策略和技巧至关重要:理解题意仔细阅读题目,并确保理解要求。
确定您需要找到的内容,例如点的坐标、线的方程或图形的性质。
选择适当的坐标系根据问题中的信息,选择合适的坐标系。
笛卡尔坐标系(直线坐标系)通常用于描述二维空间,而极坐标系则适用于某些涉及角度或极半径的问题。
建立方程或不等式使用代数和几何原理建立方程或不等式。
这可能包括使用点-斜率形式、斜截距形式、点-线距离公式或其他相关概念。
求解方程或不等式运用代数技巧求解方程或不等式。
这可能涉及因子分解、平方、化简或三角函数的使用。
验证解将找到的解代回原始方程或不等式中,以确保其满足问题条件。
几何直觉在求解过程中,运用几何直觉来了解图形的形状和位置。
这可以帮助您做出假设和做出明智的决策。
技巧和注意事项简化问题:如果可能,将复杂的问题分解成更简单的部分,以便更容易解答。
利用对称性:在某些情况下,图形或方程可能具有对称性。
利用这些对称性可以简化问题。
使用图形计算器:图形计算器可以用于可视化图形并检查解。
保持整洁和有条理:使用清晰的数学符号并以有条理的方式显示您的工作步骤。
复查解:在完成解决方案后,花时间复查您的工作,以确保准确性和一致性。
特定类型问题的技巧点和线:使用点-斜率形式、斜截距形式或点-线距离公式求解点的坐标或线的方程。
圆:使用标准圆方程或圆心和半径来确定圆的性质。
双曲线:使用双曲线的标准方程或渐近线来求解焦点、顶点和渐近线。
抛物线:使用抛物线的标准方程来确定顶点、焦点和准线。
椭圆:使用椭圆的标准方程来确定中心、半轴和焦距。
通过遵循这些策略和技巧,您可以大大提高解析几何问题的解答能力。
记住,熟能生巧,因此定期练习和学习相关概念至关重要。
2012高考数学科可能考六种解答题题型及解法的总结

2012高考数学科可能考六种解答题题型及解法的总结D2、解答概率统计题的关键是正确求六种事件的概率。
六种事件,书上有。
从以往的教学看,同学们理解不了题意,不知道出题者所说的背景,被背景迷惑。
其实不用理解背景的,能够判断是那一个事件就可以了。
高考时,考的事件多数是混合的,所说的实现,其他包括了所有的六种事件,只是分不同层面展示而矣。
笔者偏向2012考第五种题型。
球外接外切问题及以立体几何为背景的排列组合题要重点训练。
三、立体几何题1、可能考的题型(1)不给面面垂直,考证线面垂直,并求角。
姐妹题。
(2)给出面面垂直,已知二面角,待定系数求存在不存在。
2012年,齐梦龙先生预测,还是考第一种。
2、解题关键是运用转化思想(1)定理间的转化。
(2)将空间图型转化为平面图形。
将一个三棱锥转化为解三个三角形。
(3)将形数转化。
立几的定义用坐标表示。
特别是球面距离问题。
3、解立体几何题关键是总结与提炼。
掌握何时用向量法,用向量法要不要铺垫。
技巧上有,构造法:如正四面体的外接球问题,转化为正方体的外接球问题。
参数法:如定比分点的坐标用参数 k表示。
分类法:将一个问题分成几个小问题,各个击破。
反证法:向量法:将问题全转化为解方程。
四、解析几何题1、可能题型(8)种(1)求圆锥曲线方程+直线截椭圆的弦长+三角形面积问题(2)向量+方程+弦长+面积(3)方程+对称+范围(4)方程+弦长+最值(5)方程+弦长+存在不存在、定点、定值线等问题2、解答解析几何的关键是掌握坐标法。
“由形定式”和“由式论数”两大任务。
3、求曲线方程的方法形态明确,定义法形态不明确,五步法。
4、关于求解参数的取值范围问题。
核心思路是识别背景,选择合理快捷的途径建立不等式。
可能利用的不等式常见有七种:(1)圆锥曲线的a,b,c,e,p的特殊要求。
(2)圆锥曲线上的动点的范围限制。
(3)点在焦点的区域内外的条件(4)题设中已经给定的范围(定义域)(5)直线与圆锥曲线联立所产生的方程的根的分布。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年高考数学解析几何专题攻略一、10年高考真题精典回顾:1.(2010浙江理数)(本题满分15分)已知m >1,直线2:02m l x my --=,椭圆222:1x C y m+=,1,2F F 分别为椭圆C 的左、右焦点.(Ⅰ)当直线l 过右焦点2F 时,求直线l 的方程;(Ⅱ)设直线l 与椭圆C 交于,A B 两点,12AF F V ,12BF F V 的重心分别为,G H .若原点O 在以线段GH 为直径的圆内,求实数m 的取值范围.解析:本题主要考察椭圆的几何性质,直线与椭圆,点与圆的位置关系等基础知识,同时考察解析几何的基本思想方法和综合解题能力。
(Ⅰ)解:因为直线:l 202m x my --=经过20)F ,22m =,得22m =,又因为1m >,所以m 故直线l的方程为02x -=。
(Ⅱ)解:设1122(,),(,)A x y B x y 。
由222221m x my x y m ⎧=+⎪⎪⎨⎪+=⎪⎩,消去x 得222104m y my ++-=则由2228(1)804m m m ∆=--=-+>,知28m <,且有212121,282m m y y y y +=-=- 。
由于12(,0),(,0),F c F c -, 故O 为12F F 的中点,由2,2AG GO BH HO ==,可知1121(,),(,),3333x y x y G h 2221212()()99x x y y GH --=+设M 是GH 的中点,则1212(,)66x x y y M ++, 由题意可知2,MO GH <即222212121212()()4[()()]6699x x y y x x y y ++--+<+ 即12120x x y y +<而2212121212()()22m m x x y y my my y y +=+++ 221(1()82m m =+-) 所以21082m -< 即24m <又因为1m >且0∆> 所以12m <<。
所以m 的取值范围是(1,2)。
2.(2010辽宁理数)(本小题满分12分)设椭圆C :22221(0)x y a b a b +=>>的左焦点为F ,过点F 的直线与椭圆C 相交于A ,B两点,直线l 的倾斜角为60o,2AF FB =.(I) 求椭圆C 的离心率; (II) 如果|AB|=154,求椭圆C 的方程. 解:设1122(,),(,)A x y B x y ,由题意知1y <0,2y >0.(Ⅰ)直线l 的方程为()y x c -,其中c =联立2222),1y x c x y ab ⎧=-⎪⎨+=⎪⎩得22224(3)30a b y cy b ++-=解得12y y ==因为2AF FB =,所以122y y -=.即2=得离心率 23c e a ==. ……6分(Ⅱ)因为21AB y =-154=.由23c a =得3b =.所以51544a =,得a=3,b =椭圆C 的方程为22195x y +=. ……12分 3.(2010江西理数)(本小题满分12分)设椭圆22122:1(0)x y C a b a b +=>>,抛物线222:C x by b +=。
(1) 若2C 经过1C 的两个焦点,求1C 的离心率;(2) 设A (0,b ),54Q ⎛⎫ ⎪⎝⎭,,又M 、N 为1C 与2C 不在y 轴上的两个交点,若△AMN的垂心为34B b ⎛⎫ ⎪⎝⎭0,,且△QMN 的重心在2C 上,求椭圆1C 和抛物线2C 的方程。
【解析】考查椭圆和抛物线的定义、基本量,通过交点三角形来确认方程。
(1)由已知椭圆焦点(c,0)在抛物线上,可得:22c b =,由22222212,2c a b c c e a =+==⇒=有。
(2)由题设可知M 、N 关于y 轴对称,设11111(,),(,)(0)M x y N x y x ->,由AMN ∆的垂心为B ,有211130()()04BM AN x y b y b ⋅=⇒-+--= 。
由点11(,)N x y 在抛物线上,2211x by b +=,解得:11()4by y b =-=或舍去故1,(,),,)44b bx M N =--,得QMN ∆重心坐标)4b .由重心在抛物线上得:223,=24b b b +=所以,11(),)22M N --,又因为M 、N 在椭圆上得:2163a =,椭圆方程为2216314x y +=,抛物线方程为224x y +=。
4.(2010北京理数)(本小题共14分)在平面直角坐标系xOy 中,点B 与点A (-1,1)关于原点O 对称,P 是动点,且直线AP 与BP 的斜率之积等于13-. (Ⅰ)求动点P 的轨迹方程;(Ⅱ)设直线AP 和BP 分别与直线x=3交于点M,N ,问:是否存在点P 使得△PAB 与△PMN 的面积相等?若存在,求出点P 的坐标;若不存在,说明理由。
(I )解:因为点B 与A (1,1)-关于原点O 对称,所以点B 得坐标为(1,1)-. 设点P 的坐标为(,)x y 由题意得111113y y x x -+=-+- 化简得 2234(1)x y x +=≠±.故动点P 的轨迹方程为2234(1)x y x +=≠±(II )解法一:设点P 的坐标为00(,)x y ,点M ,N 得坐标分别为(3,)M y ,(3,)N y .则直线AP 的方程为0011(1)1y y x x --=++,直线BP 的方程为0011(1)1y y x x ++=--令3x =得000431M y x y x +-=+,000231N y x y x -+=-.于是PMN 得面积2000020||(3)1||(3)2|1|P M N M N x y x S y y x x +-=--=- 又直线AB 的方程为0x y +=,||AB = 点P 到直线AB的距离d =.于是PAB 的面积 001||||2PAB S AB d x y ==+ 当PABPMN S S = 时,得20000020||(3)|||1|x y x x y x +-+=- 又00||0x y +≠,所以20(3)x -=20|1|x -,解得05|3x =。
因为220034x y +=,所以09y =±故存在点P 使得PAB 与PMN 的面积相等,此时点P的坐标为5(,39±. 解法二:若存在点P 使得PAB 与PMN 的面积相等,设点P 的坐标为00(,)x y则11||||sin ||||sin 22PA PB APB PM PN MPN ∠=∠ . 因为sin sin APB MPN ∠=∠,所以||||||||PA PN PM PB =所以000|1||3||3||1|x x x x +-=--即 2200(3)|1|x x -=-,解得0x 53=因为220034x y +=,所以09y =±故存在点P S 使得PAB 与PMN 的面积相等,此时点P 的坐标为5(,)3. 5.(2010天津理数)(本小题满分12分)已知椭圆22221(0x y a b a b +=>>)的离心率2e =连接椭圆的四个顶点得到的菱形的面积为4。
(1) 求椭圆的方程;(2) 设直线l 与椭圆相交于不同的两点,A B ,已知点A 的坐标为(,0a -),点0(0,)Q y 在线段AB 的垂直平分线上,且4QA QB = ,求0y 的值【解析】本小题主要考察椭圆的标准方程和几何性质,直线的方程,平面向量等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的思想,考查运算和推理能力,满分12分 (1)解:由e 2c a ==,得2234a c =,再由222c a b =-,得2a b = 由题意可知,1224,22a b ab ⨯⨯==即 解方程组22a bab =⎧⎨=⎩ 得 a=2,b=1所以椭圆的方程为2214x y += (2)解:由(1)可知A (-2,0)。
设B 点的坐标为(x 1,,y 1),直线l 的斜率为k ,则直线l 的方程为y=k(x+2),于是A,B 两点的坐标满足方程组22(2)14y k x x y =+⎧⎪⎨+=⎪⎩ 由方程组消去Y 并整理,得2222(14)16(164)0k x k x k +++-=由2121642,14k x k --=+得21122284,,1414k k x y k k -==++从而 设线段AB 是中点为M ,则M 的坐标为22282(,)1414k kk k-++ 以下分两种情况:(1)当k=0时,点B 的坐标为(2,0)。
线段AB 的垂直平分线为y 轴,于是000(2,y ),(2,=QA QB y QA QB y →→→→=--=-± )由4,得=(2)当K 0≠时,线段AB 的垂直平分线方程为222218()1414k k Y x k k k-=+++ 令x=0,解得02614ky k =+由0110(2,y ),(,QA QB x y y →→=--=-)2101022222(28)6462(()14141414k k k k QA QB x y y y k k k k→→--=---++++++ )= 42224(16151)4(14)k k k +-=+=整理得2072,=75k k y ==±±故综上00==5y y ±±6.(2010福建文数)(本小题满分12分)已知抛物线C :22(0)y px p =>过点A (1 , -2)。
(I )求抛物线C 的方程,并求其准线方程;(II )是否存在平行于OA (O 为坐标原点)的直线L ,使得直线L 与抛物线C 有公共点,且直线OA 与L L 的方程;若不存在,说明理由。
7.(2010全国卷1理数) (本小题满分12分)已知抛物线2:4C y x =的焦点为F ,过点(1,0)K -的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D.(Ⅰ)证明:点F 在直线BD 上;(Ⅱ)设89FA FB = ,求BDK ∆的内切圆M 的方程 .8.(2010山东理数)(21)(本小题满分12分)如图,已知椭圆22221(0)x y a b a b +=>>的离心率为2,以该椭圆上的点和椭圆的左、右焦点12,F F 为顶点的三角形的周长为1).一等轴双曲线的顶点是该椭圆的焦点,设P 为该双曲线上异于顶点的任一点,直线1PF 和2PF 与椭圆的交点分别为B A 、和C D 、.(Ⅰ)求椭圆和双曲线的标准方程;(Ⅱ)设直线1PF 、2PF 的斜率分别为1k 、2k ,证明12·1k k =;(Ⅲ)是否存在常数λ,使得·AB CD AB CD λ+=恒成立?若存在,求λ的值;若不存在,请说明理由.【解析】(Ⅰ)由题意知,椭圆离心率为c a =2,得a =,又22a c +=1),所以可解得a =2c =,所以2224b a c =-=,所以椭圆的标准方程为22184x y +=;所以椭圆的焦点坐标为(2±,0),因为双曲线为等轴双曲线,且顶点是该椭圆的焦点,所以该双曲线的标准方程为22144x y -=。