10 气体动理论习题详解

合集下载

大学物理气体的动理论习题答案

大学物理气体的动理论习题答案

(4)从微观上看,气体的温度表示每个气体分子的冷热程度。
上述说法中正确的是
(A)(1)、(2)、(4);(B)(1)、(2)、(3);(C)(2)、(3)、(4);(D)(1)、(3)、(4)。
2. 两 容 积 不 等 的 容 器 内 分 别 盛 有 He 和 N2 , 若 它 们 的 压 强 和 温 度 相 同 , 则 两 气 体
9.速率分布函数 f(v)的物理意义为:
[B ]
(A)具有速率 v 的分子占总分子数的百分比。
(B)速率分布在 v 附近的单位速率间隔中的分子数占总分子数的百分比。
(C)具有速率 v 的分子数。
(D)速率分布在 v 附近的单位速率间隔中的分子数。
1
10.设 v 代表气体分子运动的平均速率,vP 代表气体分子运动的最可几速率,( v2 )2 代表
℃升高到 177℃,体积减小一半。试求:
(1)气体压强的变化;
(2)气体分子的平均平动动能的变化;
(3)分子的方均根速率为原来的倍数。
解:
(1)由
p1V1 T1
p2V2 T2
,
代入T1
=300K,T2
=450K,V2
=
1 2
V1可得
p2 =3p1
即压强由p1变化到了3 p1。
(2)分子的平均平动动能
(D) 6 p1 。
5. 一瓶氦气和一瓶氮气,两者密度相同,分子平均平动动能相等,而且都处于平衡状态, 则两者[ C ]
(A)温度相同,压强相等; (B)温度,压强都不相同; (C)温度相同,但氦气的压强大于氮气压强; (D)温度相同,但氦气的压强小于氮气压强。
6.1mol 刚性双原子分子理想气体,当温度为 T 时,其内能为

《大学物理》第十章气体动理论习题参考答案

《大学物理》第十章气体动理论习题参考答案

第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。

3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。

7、1:1;2:1;10:3。

8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。

已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。

质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。

华理工大学大学物理习题之气体动理论习题详解

华理工大学大学物理习题之气体动理论习题详解

华理工大学大学物理习题之气体动理论习题详解一、选择题1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ](A )0()Nf v dv ∞⎰; (B )201()2mv f v dv ∞⎰;(C )201()2mv Nf v dv ∞⎰;(D )01()2mvf v dv ∞⎰。

答案:B解:根据速率分布函数()f v 的统计意义即可得出。

()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。

2.下列对最概然速率p v 的表述中,不正确的是 [ ](A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。

答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。

3.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ](A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高;(C )两种气体的温度相同; (D )两种气体的压强相同。

答案:Arms v =222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。

4.如下图所示,若在某个过程中,一定量的理想气体的热力学能(内能)U 随压强p 的变化关系为一直线(其 延长线过U —p 图的原点),则该过程为[ ](A )等温过程; (B )等压过程; (C )等容过程; (D )绝热过程。

大学物理第十章气体的动理论习题答案

大学物理第十章气体的动理论习题答案

5. 一瓶氦气和一瓶氮气,两者密度相同,分子平均平动动能相等,而且都处于平衡状态, 则两者[ C ] (A)温度相同,压强相等; (B)温度,压强都不相同; (C)温度相同,但氦气的压强大于氮气压强; (D)温度相同,但氦气的压强小于氮气压强。
6. 1mol 刚性双原子分子理想气体, 当温度为 T 时, 其内能为
[
C
]
(A)
3 RT 2
3 (B) kT 2
(C)
5 RT 2
5 (D) kT 2
7. 在一容积不变的封闭容器内, 理想气体分子的平均速率若提高为原来的 2 倍, 则[ D ] (A)温度和压强都提高为原来的 2 倍。 (B)温度为原来的 2 倍,压强为原来的 4 倍。
(C)温度为原来的 4 倍,压强为原来的 2 倍。 (D)温度和压强都为原来的 4 倍。 8. 已知氢气与氧气的温度相同, 请判断下列说法哪个正确? (A)氧分子的质量比氢分子大,所以氧气的压强一定大于氢气的压强。 (B)氧分子的质量比氢分子大,所以氧气的密度一定大于氢气的密度。 (C)氧分子的质量比氢分子大,所以氢分子的速率一定比氧分子的速率大。 (D) 氧分子的质量比氢分子大, 所以氢分子的方均根速率一定比氧分子的方均根速率大。 9.速率分布函数 f(v)的物理意义为: (A)具有速率 v 的分子占总分子数的百分比。 (B)速率分布在 v 附近的单位速率间隔中的分子数占总分子数的百分比。 (C)具有速率 v 的分子数。 (D)速率分布在 v 附近的单位速率间隔中的分子数。
一.单项选择题: 1.关于温度的意义,有下列几种说法: (1)气体的温度是分子平均平动动能的量度。 (2)气体的温度是大量气体分子热运动的集体表现,具有统计意义。 (3)温度的高低反映物质内部分子运动剧烈程度的不同。 (4)从微观上看,气体的温度表示每个气体分子的冷热程度。 上述说法中正确的是 (A) (1) 、 (2) 、 (4);(B) (1) 、 (2) 、 (3);(C) (2) 、 (3) 、 (4);(D) (1) 、 (3) 、 (4) 。 2. 两 容 积 不 等 的 容 器 内 分 别 盛 有 He 和 N2 , 若 它 们 的 压 强 和 温 度 相 同 , 则 两 气 体 [ A ] [ B ]

工科物理大作业10-气体动理论

工科物理大作业10-气体动理论

工科物理大作业10-气体动理论-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1010 气体动理论班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1. 两种摩尔质量不同的理想气体,它们的压强、温度相同,体积不同,则下列表述中正确的是:A. 单位体积内的分子数相同;B. 单位体积中气体的质量相同;C. 单位体积内气体的内能相同;D. 单位体积内气体分子的总平均平动动能相同。

(A 、D )[知识点] 理想气体状态方程nkT p =及内能公式RT iE 2=。

[分析与解答] 根据理想气体状态方程nkT p =,当气体的压强与温度相同时,单位体积内的分子数n 相同。

由理想气体状态方程RT M m pV =,得RTpMV m =,即当气体压强与温度相同,但摩尔质量不同时,单位体积中气体的质量不相同。

又由理想气体内能公式RT i M m E 2=,结合状态方程,得pV iE 2=,则有p iV E 2=,可见当压强相同的两种理想气体的自由度相同(即为同结构分子)时,单位体积内气体的内能才会相同。

理想气体分子的平均平动动能kT k 23=ε,则有p n E k k 23==ε,则当气体的压强相同时,单位体积内的气体分子的总平均平动动能相同。

2. 以a 代表气体分子的方均根速率,ρ 表示气体的质量体密度。

则由气体动理论可知,理想气体的压强p 为:A. 2a p ρ=; B. a p ρ31=; C. 231a p ρ=; (C )[知识点] RT MmpV =,M RT 32=v [分析与解答] 由方均根速率的定义和题意有 a MRT==32v (1) 由理想气体状态方程 RT MmpV = (2) 由题意 Vmρ=(3) 联立以上三式,则有 23ρa p =3. 对处于平衡状态下的一定量某种理想气体,在关于内能的下述表述中,正确的是:A. 内能是所有分子平均平动动能的总和;B. 气体处于一定状态,就相应有一定的内能;C. 当理想气体状态改变时,内能一定随着变化;D. 不同的理想气体,只要温度相同,其内能也相同。

气体动理论---习题及答案解析

气体动理论---习题及答案解析

气体动理论练习1一、选择题1. 在一密闭容器中,储有A、B、C三种理想气体,处于平衡状态。

A种气体的分子数密度为n1,它产生的压强为p1,B种气体的分子数密度为2n1,C种气体的分子数密度为3n1,则混合气体的压强p为( )A. 3p1;B. 4p1;C. 5p1;D. 6p1.2. 若理想气体的体积为V,压强为p,温度为T,一个分子的质量为m,k为玻尔兹曼常量,R为普适气体常量,则该理想气体的分子数为( )A. pVm⁄; B. pVkT⁄; C. pV RT⁄; D. pV mT⁄。

3. 一定量某理想气体按pV2=恒量的规律膨胀,则膨胀后理想气体的温度( )A. 将升高;B. 将降低;C. 不变;D. 升高还是降低,不能确定。

二、填空题1. 解释下列分子动理论与热力学名词:(1) 状态参量:;(2) 微观量:;(3) 宏观量:。

2. 在推导理想气体压强公式中,体现统计意义的两条假设是:(1) ;(2) 。

练习2一、选择题1. 一个容器内贮有1摩尔氢气和1摩尔氦气,若两种气体各自对器壁产生的压强分别为p1和p2,则两者的大小关系是( )A. p1>p2;B. p1<p2;C. p1=p2;D. 不能确定。

2. 两瓶不同种类的理想气体,它们的温度和压强都相同,但体积不同,则单位体积内的气体分子数为n,单位体积内的气体分子的总平动动能为E kV⁄,单位体积内的气体质量为ρ,分别有如下关系( )A. n不同,E kV⁄不同,ρ不同;B. n不同,E kV⁄不同,ρ相同;C. n相同,E kV⁄相同,ρ不同;D. n相同,E kV⁄相同,ρ相同。

3. 有容积不同的A、B两个容器,A中装有刚体单原子分子理想气体,B中装有刚体双原子分子理想气体,若两种气体的压强相同,那么,这两种气体的单位体积的内能E A和E B的关系( )A. E A<E B;B. E A>E B;C. E A=E B;D.不能确定。

气体动理论习题、答案及解法(2010.12.15)

气体动理论习题、答案及解法(2010.12.15)

气体动理论习题、答案及解法一、 选择题1. 一定量氢气(视为刚性分子的理想气体),若温度每升高1K ,其内能增加20.8J ,则该氢气的质量为 【 B 】 (A )1.0⨯10kg 3- (B)2.0⨯10kg 3-(C)3.0⨯10kg 3- (D)4.0⨯10kg 3-参考答案:T R i M E ∆⎪⎭⎫⎝⎛=∆2μ 5=i 刚性双原子的自由度为()kg 100.2131.851028.202233--⨯=⨯⨯⨯⨯⨯=∆⋅∆=T iR E M μ2. 有一瓶质量为m 的氢气(是作刚性双原子分子的理想气体),温度为T ,则氢分子的平均动能 【 B 】 (A )kT 23 (B )kT 25 (C ) RT 23 (D )RT 25参考答案:kT i2=ε 5=i 刚性双原子的自由度为 3. 有两瓶气体,一瓶是氦气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氢气的内能是氦气的 【 C 】 (A )21倍 (B )32倍 (C )35倍 (D )2倍参考答案:T R i M E ⎪⎭⎫⎝⎛=2μ RT M pV μ= 3522222==⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛=e e e H H H H H H i i T R i M T R i M E E μμ4. A 、B 、C3个容器中皆装有理想气体,它们的分子数密度之比为A n :Bn :C n =4:2:1,而分子的平均平动动能之比为4:2:1::=C B A εεε,则它们的压强之比C B A p p p :::为 【 A 】(A )1:1:1 (B)1:2;2 (C )1:2;3 (D )1:2;4参考答案:εn p 32=1:1:132:32:32:::==C C B B A A C B A n n n p p p εεε 5. 2g 氢气与2g 氦气分别装在两个容器相等的封闭容器内,温度也相同(氢气分子视为刚性双原子分子),氢气与氦气内能之比eH H E E 2为(A )31 (B )35 (C )310 (D)316 【 C 】参考答案:T R i M E ⎪⎭⎫⎝⎛=2μ31010231045223322222=⨯⨯⨯⨯==⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=--H H H H H H H H H H e e e e e i i T R i M T R i M E E μμμμ 6.1mol 的单原子分子理想气体,在1atm 的恒定压强下,从c 0︒加热到c 100︒,则气体的内能改变了 【 D 】(A )0.25J 103⨯ (B )J 105.03⨯ (C )J 100.13⨯ (D )J 1025.13⨯ 参考答案:T R i M E ∆⎪⎭⎫⎝⎛=∆2μ ()()J 1025.127337331.82323⨯=-⨯⨯=∆⎪⎭⎫ ⎝⎛=∆T R i M E μ7. 在容积为3210m -的容器中,装有质量g 100的气体,若气体分子的方均根速率为1200-⋅s m ,则气体的压强为 【B 】 (A )Pa 1067.05⨯ (B )Pa 1033.15⨯ (C )Pa 1066.25⨯ (D )Pa 1099.35⨯参考答案:μRTv 32=RT MpV μ= ()Pa 1033.131522⨯=⎪⎭⎫ ⎝⎛⨯=v V M p8. 如图1所示的两条()v ~v f 曲线分别表示氢气和氧气在同一温度下的麦克斯)(1-韦速率分布曲线。

10《学习指南 试题精解》 第十章 气体动理论

10《学习指南 试题精解》 第十章   气体动理论

119第10章 统计物理学基础10.1 要求1 了解气体分子热运动的图形,从而建立模型,进行统计平均的思想方法;2 了解麦克斯韦速率分布规律、分布函数和分布曲线的物理意义;3 理解分子运动论、平衡态、理想气体内能;4 从微观和宏观上理解压强、温度和内能的概念;5 通过理想气体的刚性模型,理解气体分子平均碰撞频率、平均自由程;6 掌握理想气体状态方程、压强公式、温度公式和能量按自由度均分原理、分子平均自由程和麦克斯韦速率分布率;6 熟练掌握气体分子运动速度的算术平均值、方均根速率和最概然速率。

10.2 气体动理论提要1 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态叫平衡态。

2 理想气体压强公式微观公式w n v nm P 32312== 压强单位换算 1mmHg=133.322帕,Pa cmHg atm 51001325.1761⨯==;3 温度的宏观统计意义(理想气体分子平均平动动能)KT w 23= 4 等温气压公式 RT ghe P P μ-=05 理想气体状态方程:描述在平衡态的理想气体的宏观量有下述关系: nkT P RT M PV ==,μ,式中k K J N R /1038,1230-⨯==为玻耳兹曼常数,R 为普适气体常数K mol J R ∙=/31.8,n 为分子密度,M 为气体质量,μ为摩尔质量。

6 能量均分定理:在平衡态下,分子热运动的每一个自由度的平均动能都相等,且等于KT 21;以i 表示分子热运动的总自由度,则一个分子的总 平均动能为 KT i t 2=ε ν个mol 理想气体的内能 RT i M RT i E 22μν==; 7 速率分布函数 NdvdN v f =)(麦克斯韦速率分布函数 KT mv e v KTm v f 2/22/32)2(4)(-=ππ 三种速率: 1) 平均速率 μRT v 60.1= 2) 方均根速率:μRT m KT v 332==≈μRT 73.1 3)、最概然(可几)速率 μμRT RT v p 41.12==。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题十一、选择题1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示的分子平动动能平均值为 [ ](A )0()Nf v dv ∞⎰; (B )201()2mv f v dv ∞⎰;(C )201()2mv Nf v dv ∞⎰;(D )01()2mvf v dv ∞⎰。

答案:B解:根据速率分布函数()f v 的统计意义即可得出。

()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,故本题答案为B 。

2.下列对最概然速率p v 的表述中,不正确的是 [ ](A )p v 是气体分子可能具有的最大速率;(B )就单位速率区间而言,分子速率取p v 的概率最大; (C )分子速率分布函数()f v 取极大值时所对应的速率就是p v ;(D )在相同速率间隔条件下分子处在p v 所在的那个间隔内的分子数最多。

答案:A解:根据()f v 的统计意义和p v 的定义知,后面三个选项的说法都是对的,而只有A 不正确,气体分子可能具有的最大速率不是p v ,而可能是趋于无穷大,所以答案A 正确。

3.有两个容器,一个盛氢气,另一个盛氧气,如果两种气体分子的方均根速率相等,那么由此可以得出下列结论,正确的是 [ ](A )氧气的温度比氢气的高; (B )氢气的温度比氧气的高;(C )两种气体的温度相同; (D )两种气体的压强相同。

答案:Arms v =222222221,16H O H H H O O O T T T M M M T M ===,所以答案A 正确。

4.如下图所示,若在某个过程中,一定量的理想气体的热力学能(内能)U 随压强p 的变化关系为一直线(其 延长线过U —p 图的原点),则该过程为[ ](A )等温过程; (B )等压过程; (C )等容过程; (D )绝热过程。

答案:C解:由图知内能U kp =,k 为曲线斜率,而022m i iU RT pV M ==,因此,V 为常数,所以本题答案为C 。

5.有A 、B 两种容积不同的容器,A 中装有单原子理想气体,B 中装有双原子理想气体,若两种气体的压强相同,则这两种气体的单位体积的热力学能(内能)A U V ⎛⎫ ⎪⎝⎭和BU V ⎛⎫⎪⎝⎭的关系为 [ ](A )A B U U V V ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭;(B )A B U U V V ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭;(C )A BU U V V ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(D )无法判断。

答案:A解:理想气体状态方程PV RT ν=,内能2iU RT ν=(0m Mν=)。

由两式得2U i P V =,A 、B 两种容积两种气体的压强相同,A 中,3i =;B 中,5i =,所以答案A 正确。

二、填空题1.用分子质量m ,总分子数N ,分子速率v 和速率分布函数()f v 表示下列各量:1)速率大于100m/s 的分子数 ;2)分子平动动能的平均值 ;3)多次观察某一分子速率,发现其速率大于100m/s 的概率 ;答案: 100()f v Ndv ∞⎰;201()2mv f v dv ∞⎰; 100()f v dv ∞⎰。

解:根据速率分布函数()f v 的统计意义,()f v 表示速率以v 为中心的单位速率区间内的气体分子数占总分子数的比例,而dv v Nf )(表示速率以v 为中心的dv 速率区间内的气体分子数,12()v v f v Ndv ⎰表示速率在1v 到2v 之间的分子数,21()v v f v NdvN⎰表示速率在1v 到2v 之间的分子数占总分子数的比例,也即某一分子速率在1v 到2v 的概率。

2.氢气在不同温度下的速率分布曲线如图所示, 则其中曲线1所示温度1T 与曲线2所示温度2T 的高低 有1T 2T (填 “大于”、“小于” 或“等于”答案:小于。

解:根据最概然速率p v =曲线1和曲线2都表示氢气的速率分布曲线,而曲线2所示的最概然速率大于曲线1所示的最概然速率,因此曲线2所示的温度高于曲线1所示的温度。

3.温度为T 的热平衡态下,物质分子的每个自由度都具有的平均动能为 ;温度为T 的热平衡态下,每个分子的平均总能量 ;温度为T 的热平衡态下,νmol(0/m M ν=为摩尔数)分子的平均总能量 ;温度为T 的热平衡态下,每个分子的平均平动动能 。

答案:12kT ;2i kT ;2i RT ν;kT 23。

4.质量为50.0g 、温度为18.0o C 的氦气装在容积为10.0升的封闭容器内,容器以200v =m/s 的速率做匀速直线运动。

若容器突然停止,定向运动的动能全部转化为分子热运动的动能,则平衡后氦气的温度将增加 K ;压强将增加 Pa 。

答案:6.42K ;50.6710Pa ⨯。

解:气体定向运动的动能全部转化为气体分子的热运动动能(此处即为热力学能),即200122m i m v U R T M =∆=∆(m 0为气体总质量,M 为摩尔质量。

) 由上式,得 322410(200) 6.42K 38.31Mv T iR -⨯⨯∆===⨯ 333505010 6.420.6710Pa 4108.311010m R T p MV ---∆⨯⨯∆==⨯⨯⨯=⨯⨯5.一定量的理想气体,在温度不变的情况下,当压强降低时,分子的平均碰撞次数Z 的变化情况是z (填“减小”、“增大”或“不变”),平均自由程λ的变化情况是λ (填“减小”、“增大”或“不变”)。

答案:减小;增大。

解:分子的平均碰撞次数2z d nv ,平均自由程λ=,式中v =根据题意,理想气体温度不变,因此v 不变。

根据p nkT =,根据题意,理想气体压强降低,n 减小,所以分子的平均碰撞次数Z 减小,平均自由程λ增大。

三、计算题1.设想每秒有2310个氧分子(质量为32原子质量单位)以-1500m s ⋅的速度沿着与器壁法线成45o 角的方向撞在面积为43210m -⨯的器壁上,求这群分子作用在器壁上的压强。

答案:41.8810Pa p =⨯解:如图所示,Fp S=所有分子对器壁的冲量为: 2c o s F t N m v θ∆=⋅ 式中2310N =。

取1s t ∆= 则2cos F N mv θ=⋅42cos 45 1.8810Pa oF N mv P S S⋅===⨯2.设氢气的温度为300℃。

求速度大小在3000m/s 到3010m/s 之间的分子数N 1与速度大小在p v 到10+p v m/s 之间的分子数N 2之比。

答案:120.78N N =。

解:23222()4()e 2mv kT m f v v kTππ-=,2182 m/s pv== 11()N Nf v v =∆,22()p N Nf v v =∆2222()2221122222()()e e 0.78()()e p p mv M v v kT RTmv p p p p kT pN f v v f v v vN f v v f v v v ----∆=====∆3.导体中自由电子的运动可以看成类似于气体分子的运动,所以常常称导体中的电子为电子气,设导体中共有N 个自由电子,电子气中电子的最大速率为f v (称做费米速率),电子的速率分布函数为:24,0()0,ff Av v v f v v v π⎧≤≤⎪=⎨>⎪⎩式中A 为常量,求:(1)用N 和f v 确定常数A ;(2)电子气中一个自由电子的平均动能。

答案:(1)334f A v π=;(2)2310k e f m v ε=。

解:(1)由速率分布函数的归一化条件0()1f v dv ∞=⎰,有2401ffv v Av dv dv π∞+=⎰⎰,得3413fAv π=,所以常数 334fA v π=; (2)电子气中一个自由电子的平均动能为222521233()4225105ffv v e k e e f e ff m m v f v dv v Av dv Am v m v εππε==⋅===⎰⎰其中312f e f m v ε=,称做费米能级。

4.将1mol 温度为T 的水蒸气分解为同温度的氢气和氧气,试求氢气和氧气的热力学能(内能)之和比水蒸气的热力学能增加了多少?(所有气体分子均视为刚性分子)。

答案:34U RT ∆=。

解:1mol 理想气体的内能为2iU RT =,分解前水蒸气的内能为 16322i U RT RT RT ===1mol 的水蒸气可以分解为1mol 的氢气和0.5mol 的氧气,因为温度没有改变,所以分解后,氢气和氧气所具有的内能分别为2522i U RT RT == 和 31552224i U R T R T RT ν==⨯= 所以分解前后内能的增量为231553()()3244U U U U RT RT RT RT ∆=+-=+-=5.在半径为R 的球形容器里贮有分子有效直径为d 的气体,试求该容器中最多可以容纳多少个分子,才能使气体分子间不至于相碰?答案:220.47R N d==。

解:为使气体分子不相碰,则必须使得分子的平均自由程不小于容器的直径,即满足2R λ≥由分子的平均自由程λ=, 可得n =≤上式表明,为了使分子之间不相碰,容器中可容许的最大分子数密度为max n =因此在容积343V R π=的容器中,最多可容纳的分子数N 为23max 240.473R N n V R d π=⋅===。

相关文档
最新文档