高数-微分方程总结上课讲义
合集下载
高等数学-第七章-微分方程

工程应用
在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
在工程领域中,微分方程组被广泛应用于控制论、信号处理、流体力学等方面。通过求解微分方程组,可以优化工程 设计、提高系统性能等。
经济应用
在经济学中,微分方程组被用来描述经济系统的动态行为,如经济增长模型、金融市场模型等。通过求 解这些微分方程组,可以分析经济现象的发展趋势和内在机制。
05 微分方程的数值解法
常数变易法
对于某些特殊形式的高阶微分方程组,可以通过常 数变易的方法,将其转化为易于求解的方程或方程 组。
幂级数解法
对于某些高阶线性微分方程组,可以通过幂 级数展开的方法,将其转化为无穷级数进行 求解。
微分方程组的应用
物理应用
在物理学中,许多现象可以用微分方程组来描述,如力学中的运动方程、电磁学中的麦克斯韦方程等。通过求解这些 微分方程组,可以揭示物理现象的本质和规律。
非线性微分方程
不满足线性条件的微分方程,称为非线性微分方 程。
微分方程解的性质
唯一性定理 在一定条件下,微分方程的解是 唯一的。
边值问题 给定边界条件的微分方程求解问 题,称为边值问题。边值问题的 解可能不唯一,也可能不存在。
叠加原理
对于线性微分方程,若$y_1$和 $y_2$分别是方程的两个解,则 它们的线性组合 $c_1y_1+c_2y_2$(其中$c_1$ 和$c_2$是任意常数)也是方程 的解。
首次积分法
利用首次积分的方法,将一阶微 分方程组转化为可分离变量的方 程或可降阶的方程,然后求解得 到原方程组的解。
特征线法
对于一阶偏微分方程组,可以通 过引入特征线的概念,将偏微分 方程转化为常微分方程进行求解 。
高阶微分方程组法
变量代换法
通过适当的变量代换,将高阶微分方程组转 化为一阶微分方程组或可降阶的方程,然后 求解得到原方程组的解。
微分方程—微分方程的基本概念(高等数学课件)

2
2
把 2 、x的表达式代入方程后成为一个恒等式,
这说明: = 1 + 2 ,是微分方程的解,并且是通解.
课程小结
微分方程的定义
微分方程的阶
(常微分方程,偏
微分方程)
微分方程的解
(通解,特解,
定解条件)
= −0.2 2 + 20.
微分方程的阶,解
例1:验证函数 = 1 +
2
2 ,是微分方程 2
+ 2 = 0的解.
解:求出所给函数的导数
= −1 + 2 ,
2
2
2
=
−
−
2
1
其中 ,−1 ⋯ ,1 , (), 是关于的函数.
微分方程的阶,解
微分方程的阶:方程中所含有未知函数导数(或微分)的最高阶数.
一般的,n阶微分方程的形式:
, , ′ , ⋯ () = 0, 或 () = , , ′ , ⋯ (−1) .
等式,那么函数 = 是微分方程的解.
例:
通解:
2
= −0.4
2
= 3,
=
3 2
2
3
+ ,
3
2
特解: = 2 + 2 .
= −0.2 2 + 1 + 2 ,
= −0.2 2 + 20.
微分方程的阶,解
通解:微分方程的解中含有任意常数,且独立的任意的常数的个数
等于该方程的阶数.
特解:当通解中各任意常数都取定值时所得的解.
2
把 2 、x的表达式代入方程后成为一个恒等式,
这说明: = 1 + 2 ,是微分方程的解,并且是通解.
课程小结
微分方程的定义
微分方程的阶
(常微分方程,偏
微分方程)
微分方程的解
(通解,特解,
定解条件)
= −0.2 2 + 20.
微分方程的阶,解
例1:验证函数 = 1 +
2
2 ,是微分方程 2
+ 2 = 0的解.
解:求出所给函数的导数
= −1 + 2 ,
2
2
2
=
−
−
2
1
其中 ,−1 ⋯ ,1 , (), 是关于的函数.
微分方程的阶,解
微分方程的阶:方程中所含有未知函数导数(或微分)的最高阶数.
一般的,n阶微分方程的形式:
, , ′ , ⋯ () = 0, 或 () = , , ′ , ⋯ (−1) .
等式,那么函数 = 是微分方程的解.
例:
通解:
2
= −0.4
2
= 3,
=
3 2
2
3
+ ,
3
2
特解: = 2 + 2 .
= −0.2 2 + 1 + 2 ,
= −0.2 2 + 20.
微分方程的阶,解
通解:微分方程的解中含有任意常数,且独立的任意的常数的个数
等于该方程的阶数.
特解:当通解中各任意常数都取定值时所得的解.
高等数学微分方程的基本概念教学ppt讲解

三、主要问题——求方程的解
微分方程的解:
代入微分方程能使方程成为恒等式的函数.
微分方程的解的分类:
(1)通解: 微分方程的解中含有任意常数,且 独立的任意常数的个数与微分方程的阶数相同.
独立的任意常数的个数=微分方程的阶数 含有几个任意常数的表达式,如果它们不能合并而使 得任意常数的个数减少,则称这表达式中的几个任意 常数相互独立.
由题意知 t = 0 时,
s 0, v ds 0 dt
(8)
Nanjing College of Information and Technology
8
第六章 常微分方程
第一节 微分方程的基本概念
把(8)式分别代入(6),(7)式,得
C1 = 0 , C2 = 0. 故(7)式为
s 1 gt 2
是该微分方程的特解.
第一节 微分方程的基本概念
Nanjing College of Information and Technology
22
第六章 常微分方程
内容小结
第一节 微分方程的基本概念
本节基本概念: 微分方程; 微分方程的阶; 微分方程的解; 通解,初始条件; 特解; 初值问题; 积分曲线.
Nanjing College of Information and Technology
15
第六章 常微分方程
第一节 微分方程的基本概念
例如y = C1x + C2x + 1 与 y = Cx+1 (C1,C2,
C都是任意常数)所表示的函数族是相同的,
因此y = C1x + C2x + 1中的C1,C2是不独立的;
代入初始条件
高等数学同济件 微分方程总结PPT课件

2.求微分方程 y 4 y 3 y 0 的积分曲线方程, 使其在点(0,2)与直线x-y+2=0相切.
第14页/共21页
四、设f(x)是二阶可微函数,且 f ( x) f ( x) f ( x) 0
证明若f(x)在某不同两点处的函数值为0, 则f(x)在该两点之间恒为零。
设x1, x2使f ( x1 ) f ( x2 ) 0
第7页/共21页
y(n) p1( x) y(n1) pn1( x) y pn( x) y 0
(1)
y(n) p1( x) y(n1) pn1( x) y pn( x) y f ( x) (2)
定理3 设y*是非齐次线性方程(2)的特解, Y是齐次线性方程(1)的通解, 则 y=Y+y* 是非齐次线性方程(2)的通解。
第9页/共21页
定理2:若 y1( x)与 y2( x)是方程
y p( x) yq( x) y 0 (1)的两个线性无关
的特解, 则 y C1 y1 C2 y2就是方程(1)的通解. 五、二阶常系数线性微分方程的解法
第10页/共21页
一、填空题
综合练习
1.曲线族 y Cx2 所满足的一阶微分方程是_x_y__ 2 y
f ( x) f ( x) f ( x) 0 ( x1 x x2 )
r2 r 1 0
r1,2
1 (1 2
5)
第15页/共21页
故f ( x) C1er1x C2er2x f ( x1) f ( x2 ) 0 C1er1x1 C2er2x1 0
C1er1x2 C2er2x2 0 C1 C2 பைடு நூலகம் 故f(x)=0
第8页/共21页
y(n) p1( x) y(n1) pn1( x) y pn( x) y f1( x) (3) y(n) p1( x) y(n1) pn1( x) y pn( x) y f2( x) (4) 定理4 设 y1* , y2* 分别是方程(3)与(4)的特解, 则 y1* y2* 是方程 y(n) p1( x) y(n1) pn1( x) y pn( x) y f1( x) f2( x) 的特解。
高等数学之微分方程课件

8-4 二阶微分方程
精品课程
例8 求微分方程 的通解
解 特征方程为 共轭虚根为 原方程的通解 (共轭虚根时,由欧拉公式有 再根据该方程 的线性组合仍是解而消去i )
8-5 数学建模:微分方程应用(2)
精品课程
战争模型 用x(t)和y(t)表示甲乙交战双方在时刻t的兵力,可视为双方的士兵人数,一个简化模型是,假设一支军队参站人数减少(死亡或受伤)的比率(如 ) 是与另一支军队集中向其开火的次数成正比,而这开火的次数又与该方军队中参战人数成正比。 于是x、y服从微分方程: (1) 下面分析求解此微分方程组
《高等数学》 教学课件
旅游旅行攻略
汇报人姓名
CLICK TO ADD TITLE来自八章 微分方程精品课程
8-1 什么是微分方程
精品课程
引例1:曲线过点(1,2),且在该曲线上任意一点M (x , y) 处的切线的斜率为2x,求这曲线的方程? 解 设所求曲线y=f ( x ) ,根据导数的几何意义得 (1) 此外还应满足条件 把方程(1)两边积分,得 即 把条件 代入(2),得C=1 把 C=1代入(2)式,即得所求曲线方程
8-4 二阶微分方程
精品课程
解 解特征方程 得 于是微分方程的通解 (可以证明,二阶常系数线性齐次微分方程的两个特解 ,只要他们不成比例,则 为该方程的通解) 例7 求方程 的通解 解 特征方程 则通解为 重根时,得一个特解 ,再用待定法令 或 等等,求得另一个特解
3、如果把某个函数代入微分方程,能使方程恒等,这个方程称为微分方程的解;求微分方程的解的过程,叫做解微分方程
4、微分方程的解有不同的形式,常用的两种形式是:一种是解中含有任意常数并且独立的任意常数的个数与微分方程的阶数相同,这样的解称为微分方程的通解;另一种是解不含任意常数,称为特解
精品课程
例8 求微分方程 的通解
解 特征方程为 共轭虚根为 原方程的通解 (共轭虚根时,由欧拉公式有 再根据该方程 的线性组合仍是解而消去i )
8-5 数学建模:微分方程应用(2)
精品课程
战争模型 用x(t)和y(t)表示甲乙交战双方在时刻t的兵力,可视为双方的士兵人数,一个简化模型是,假设一支军队参站人数减少(死亡或受伤)的比率(如 ) 是与另一支军队集中向其开火的次数成正比,而这开火的次数又与该方军队中参战人数成正比。 于是x、y服从微分方程: (1) 下面分析求解此微分方程组
《高等数学》 教学课件
旅游旅行攻略
汇报人姓名
CLICK TO ADD TITLE来自八章 微分方程精品课程
8-1 什么是微分方程
精品课程
引例1:曲线过点(1,2),且在该曲线上任意一点M (x , y) 处的切线的斜率为2x,求这曲线的方程? 解 设所求曲线y=f ( x ) ,根据导数的几何意义得 (1) 此外还应满足条件 把方程(1)两边积分,得 即 把条件 代入(2),得C=1 把 C=1代入(2)式,即得所求曲线方程
8-4 二阶微分方程
精品课程
解 解特征方程 得 于是微分方程的通解 (可以证明,二阶常系数线性齐次微分方程的两个特解 ,只要他们不成比例,则 为该方程的通解) 例7 求方程 的通解 解 特征方程 则通解为 重根时,得一个特解 ,再用待定法令 或 等等,求得另一个特解
3、如果把某个函数代入微分方程,能使方程恒等,这个方程称为微分方程的解;求微分方程的解的过程,叫做解微分方程
4、微分方程的解有不同的形式,常用的两种形式是:一种是解中含有任意常数并且独立的任意常数的个数与微分方程的阶数相同,这样的解称为微分方程的通解;另一种是解不含任意常数,称为特解
高等数学微分方程总结ppt课件.pptx

y py qy 0,
y py qy f ( x)
代数法
求解二阶常系数线性方程
二阶常系数齐次线性微分方程求通解的一般步骤:
(1) 写出相应的特征方程 r 2 pr q 0;
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
高阶常系数线性微分方程
P338
y(n) p1 y(n1) pn1 y pn y 0
代数特征方程 r n p1r n1 pn1r pn 0
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程
关键: 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解
所以F(x) 满足的一阶线性非齐次微分方程:
F (x) 2F (x) 4e2x
(2) 由一阶线性微分方程解的公式得
F (x) e 2d x 4e2x e 2d x d x C
e2x 4e4x d x C
e2x Ce2x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
齐次通解
非齐特解
难点:如何求特解?
方法:待定系数法.
y py qy f ( x)
(1) f ( x) ex Pm ( x), (可以是复数)
y* xkexQm ( x);
0 不是根 k 1 是单根,
2 是重根
(2) f ( x) ex[Pl ( x)cosx Pn ( x)sinx],
令y=ut
可分离变量方程求解
(4) y2 (x 3y ) dx (1 3 xy2 ) dy 0 变方程为 y2 x dx dy 3 y2 ( ydx xdy) 0
y py qy f ( x)
代数法
求解二阶常系数线性方程
二阶常系数齐次线性微分方程求通解的一般步骤:
(1) 写出相应的特征方程 r 2 pr q 0;
(2) 求出特征方程的两个根 r1 与 r2;
(3) 根据特征方程的两个根的不同情况,按照下列规 则写出微分方程的通解
高阶常系数线性微分方程
P338
y(n) p1 y(n1) pn1 y pn y 0
代数特征方程 r n p1r n1 pn1r pn 0
1. 一阶标准类型方程求解 四个标准类型: 可分离变量方程, 齐次方程, 线性方程, 全微分方程
关键: 辨别方程类型 , 掌握求解步骤 2. 一阶非标准类型方程求解
所以F(x) 满足的一阶线性非齐次微分方程:
F (x) 2F (x) 4e2x
(2) 由一阶线性微分方程解的公式得
F (x) e 2d x 4e2x e 2d x d x C
e2x 4e4x d x C
e2x Ce2x 将 F (0) f (0)g(0) 0 代入上式,得 C 1
齐次通解
非齐特解
难点:如何求特解?
方法:待定系数法.
y py qy f ( x)
(1) f ( x) ex Pm ( x), (可以是复数)
y* xkexQm ( x);
0 不是根 k 1 是单根,
2 是重根
(2) f ( x) ex[Pl ( x)cosx Pn ( x)sinx],
令y=ut
可分离变量方程求解
(4) y2 (x 3y ) dx (1 3 xy2 ) dy 0 变方程为 y2 x dx dy 3 y2 ( ydx xdy) 0
高等数学-第七章 微分方程ppt课件
练习: 求方程 dy ex y 的通解. dx
解法 1 分离变量 e ydy exdx
积分
ey ex C
即
(exC)ey1 0 ( C < 0 )
解法 2 令u x y, 则u 1 y
故有
u 1 eu
积分
1
d
u eu
x
C
(1 eu ) eu 1 eu
du
u ln (1 eu ) x C
解: 设所求曲线方程为 y = y(x) , 则有如下关系式:
dy 2x
①
dx
y x1 2
②
由 ① 得 y 2x dx x2 C (C为任意常数)
由 ② 得 C = 1, 因此所求曲线方程为 y x2 1.
引例2. 列车在平直路上以 20 m s 的速度行驶, 制动时
获得加速度 a 0.4 m s2 , 求制动后列车的运动规律.
解: 设列车在制动后 t 秒行驶了s 米 , 即求 s = s (t) .
已知
d2 dt
s
2
0.4 d
s
s t0 0 , d t
t
0 20
由前一式两次积分, 可得 s 0.2 t 2 C1 t C2
利用后两式可得
C1 20, C2 0
因此所求运动规律为 s 0.2 t 2 20 t
ln y x3 ln C
y Cex3
( C 为任意常数 )
( 此式含分离变量时丢失的解 y = 0 )
x ydx ( x2 1) dy 0
例2. 解初值问题 y(0) 1
解: 分离变量得
dy y
1
x x
2
dx
两边积分得 ln y ln 1 ln C x2 1
高数微分方程PPT
应用
描述了许多自然现象,如生态模型、化学反应等。
二阶常系数线性微分方程
定义
形如 $y'' + py' + qy = 0$ 的微分方程称为二阶常系数 线性微分方程。
解法
通过求解特征方程,得到通 解。
应用
在物理学、工程学等领域有 广泛应用,如弹簧振动、电 磁波等。
04
高阶微分方程
BIG DATA EMPOWERS TO CREATE A NEW
参数法
总结词
通过引入参数,将微分方程转化为更易于求 解的形式。
详细描述
参数法是通过引入参数,将微分方程转化为 更易于求解的形式。这种方法适用于具有特 定形式的高阶微分方程。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分 方程,简化求解过程。
详细描述
积分因子法是通过寻找积分因子,将微分方 程转化为积分方程,从而简化求解过程。这 种方法适用于具有特定形式的一阶线性微分
高阶微分方程
包含多个导数的微分方程。
微分方程的应用
物理问题
描述物理现象的变化规律,如 振动、波动、流体动力学等。
经济问题
描述经济现象的变化规律, 如供求关系、市场均衡等。
工程问题
在机械、航空、化工等领域中 ,微分方程被用来描述各种动 态过程。
生物问题
描述生物种群的增长规律、 生理变化等。
02
一阶微分方程
经济增长模型
在经济学中,微分方程可以用来描述一个国家或地区的经济增长率 与人口、技术、资本等因素之间的关系。
生物问题中的应用
1 2 3
种群动态
微分方程可以用来描述种群数量的变化规律,如 Logistic增长模型、捕食者-猎物模型等。
《微分方程 》课件
总结词
需要选择合适的代换变量。
详细描述
在使用变量代换法时,需要选择合适的代换变量,使得微 分方程能够被转化为更简单的形式。这个过程需要一定的 技巧和经验。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分方程。
详细描述
积分因子法是通过寻找积分因子,将微分方程转化为积 分方程,从而简化求解过程。这种方法适用于具有特定 形式的一阶非线性微分方程。
总结词
通过引入新的变量代换,简化微分方程的形式。
详细描述
变量代换法是通过引入新的变量代换,将微分方程转化为 更简单的形式,从而简化求解过程。这种方法适用于具有 特定形式的高阶微分方程。
总结词
适用于高阶微分方程。
详细描述
变量代换法主要适用于高阶微分方程,通过引入新的变量 代换,可以将高阶微分方程转化为更简单的形式,从而简 化求解过程。
解法
通常需要使用迭代法、级数法或摄动法等非线性 求解方法。
3
特例
当 p(x,y,y') = 0, q(x,y,y') = a(常数)时,方程 简化为 y'' + ay = f(x),其解法与二阶线性微分 方程类似。
二阶常系数线性微分方程
定义
形如 y'' + ay' + by = f(x) 的微分方程称为二阶常系数线性 微分方程。
《微分方程》PPT课件
目 录
• 微分方程简介 • 一阶微分方程 • 二阶微分方程 • 高阶微分方程 • 微分方程的解法 • 微分方程的应用实例
01
微分方程简介
微分方程的定义
总结词
微分方程是描述数学模型中变量之间 动态关系的方程,通过微分来描述函 数的变化率。
需要选择合适的代换变量。
详细描述
在使用变量代换法时,需要选择合适的代换变量,使得微 分方程能够被转化为更简单的形式。这个过程需要一定的 技巧和经验。
积分因子法
总结词
通过寻找积分因子,将微分方程转化为积分方程。
详细描述
积分因子法是通过寻找积分因子,将微分方程转化为积 分方程,从而简化求解过程。这种方法适用于具有特定 形式的一阶非线性微分方程。
总结词
通过引入新的变量代换,简化微分方程的形式。
详细描述
变量代换法是通过引入新的变量代换,将微分方程转化为 更简单的形式,从而简化求解过程。这种方法适用于具有 特定形式的高阶微分方程。
总结词
适用于高阶微分方程。
详细描述
变量代换法主要适用于高阶微分方程,通过引入新的变量 代换,可以将高阶微分方程转化为更简单的形式,从而简 化求解过程。
解法
通常需要使用迭代法、级数法或摄动法等非线性 求解方法。
3
特例
当 p(x,y,y') = 0, q(x,y,y') = a(常数)时,方程 简化为 y'' + ay = f(x),其解法与二阶线性微分 方程类似。
二阶常系数线性微分方程
定义
形如 y'' + ay' + by = f(x) 的微分方程称为二阶常系数线性 微分方程。
《微分方程》PPT课件
目 录
• 微分方程简介 • 一阶微分方程 • 二阶微分方程 • 高阶微分方程 • 微分方程的解法 • 微分方程的应用实例
01
微分方程简介
微分方程的定义
总结词
微分方程是描述数学模型中变量之间 动态关系的方程,通过微分来描述函 数的变化率。
高数第十二章 微分方程
27
可分离 变量的 微分方程
内容小结
1.通解不一定是方程的全部解 例如, 方程
( x y) y 0 有解
y=–x 及 y=C
后者是通解 , 但不包含前一个解 . 2. 可分离变量方程的求解方法: 分离变量后积分; 根据定解条件(初始条件)定常数 .
28
3. 解微分方程应用题的方法和步骤
d2x 程 2 k 2 x 0的解. 当 k≠0 时,求满足初始条 dt dx 0的特解. 件 x t 0 A, dt t 0 dx 解 kC1 sin kt kC 2 cos kt , dt d2x 2 2 k C cos kt k C 2 sin kt , 1 2 dt d2x 将 2 和x的表达式代入原方程 , dt 13
y '' f ( x , y , y ') y | y , y ' | y ' x x 0 x x 0 0 0
几何意义:求过定点 ( x0 , y0 ) 且在定点的切线的斜 率为定值 y '0 的积分曲线.
12
例 3 验证:函数 x C1 cos kt C 2 sin kt 是微分方
(1) 找出事物的共性及可贯穿于全过程的规律列方程. 常用的方法: 1) 根据几何关系列方程 ( 如: P263,5(2) ) 2) 根据物理规律列方程 ( 如: 例 3)
3) 根据微量分析平衡关系列方程 ( 如: 例4 )
积分
y 2 xdx 即 y x 2 C ,
将 x 1时, y 2代入上式, 求得C 1,
故所求曲线方程为 y x 2 1 .
3
例 2 列车在平直的线路上以 20 米/秒的速度行驶, 当制动时列车获得加速度 0.4米/秒 2,问开始制动 后多少时间列车才能停住?以及列车在这段时间内 行驶了多少路程?
可分离 变量的 微分方程
内容小结
1.通解不一定是方程的全部解 例如, 方程
( x y) y 0 有解
y=–x 及 y=C
后者是通解 , 但不包含前一个解 . 2. 可分离变量方程的求解方法: 分离变量后积分; 根据定解条件(初始条件)定常数 .
28
3. 解微分方程应用题的方法和步骤
d2x 程 2 k 2 x 0的解. 当 k≠0 时,求满足初始条 dt dx 0的特解. 件 x t 0 A, dt t 0 dx 解 kC1 sin kt kC 2 cos kt , dt d2x 2 2 k C cos kt k C 2 sin kt , 1 2 dt d2x 将 2 和x的表达式代入原方程 , dt 13
y '' f ( x , y , y ') y | y , y ' | y ' x x 0 x x 0 0 0
几何意义:求过定点 ( x0 , y0 ) 且在定点的切线的斜 率为定值 y '0 的积分曲线.
12
例 3 验证:函数 x C1 cos kt C 2 sin kt 是微分方
(1) 找出事物的共性及可贯穿于全过程的规律列方程. 常用的方法: 1) 根据几何关系列方程 ( 如: P263,5(2) ) 2) 根据物理规律列方程 ( 如: 例 3)
3) 根据微量分析平衡关系列方程 ( 如: 例4 )
积分
y 2 xdx 即 y x 2 C ,
将 x 1时, y 2代入上式, 求得C 1,
故所求曲线方程为 y x 2 1 .
3
例 2 列车在平直的线路上以 20 米/秒的速度行驶, 当制动时列车获得加速度 0.4米/秒 2,问开始制动 后多少时间列车才能停住?以及列车在这段时间内 行驶了多少路程?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y1 nz
e (1 n )P (x )d(xQ (x )1 ( n )e(1 n )P (x )dd x x C ).
(4) 全微分方程
形如 P ( x ,y ) d Q x ( x ,y ) d 0 y
其中 d ( x ,y u ) P ( x ,y ) d Q ( x x ,y ) dy
15
yp y q y 0
特征方程为 r2prq0
特征根的情况
通解的表达式
实根r1r2
yC1er1xC2er2x
实根r1r2
y(C1C2x)er2x
复根r1,2i yex(C1cosxC2sinx)
16
推广:n阶常系数齐次线性方程解法
y ( n ) P 1 y ( n 1 ) P n 1 y P n y 0 特征方程为 r n P 1 r n 1 P n 1 r P n 0
x x x2
所求通解为 xycosy C. x
23
4
例2 求通 x y解 2y3x3y3.
解 原式可化为 y2y3x2y43, 伯努利方程 x
即y4 3y2y1 33x2, x
令
1
z y 3,
原式变为 3z2z3x2,
x
即z 2zx2, 一阶线性非齐方程
3x
2
对应齐方通解为 z Cx3,
24
利用常数变易法
y [Q (x )e P (x )dd x x C ]e P (x )dx
(常数变易法) 伯努利(Bernoulli)方程
形如 d yP (x)yQ (x)yn (n0,1)
dx
当n0,1时,方程为线性微分方程. 当n0,1时,方程为非线性微分方程.
5
解法 需经过变量代换化为线性微分方程.
令zy1n,
高数-微分方程总结
微分方程解题思路
一阶方程
作降 变阶 换
高阶方程
分离变量法 全微分方程 常数变易法 特征方程法
待定系数法
作变换 非 非 变全 量微 可分 分方 离程
2
1、一阶微分方程的解法
(1) 可分离变量的微分方程
形g 如 (y )d y f(x )dx 分离变量法
解法 g(y)d yf(x)dx
(2) 齐次方程 形如dyf(y) dx x
解法 作变量代换 u y x
3
(3) 一阶线性微分方程
形如 d yP (x)yQ (x) dx
当 Q(x)0, 上方程称为齐次的.
当 Q(x)0,
上方程称为非齐次的.
解法 齐次方程的通解为 yCeP(x)dx.
(使用分离变量法)
4
非齐次微分方程的通解为
非齐次线性微分方程(2)的通解.
定理 4 设非齐次方程(2)的右端 f (x)是几个函 数之和, 如y P(x) y Q(x) y f1(x) f2(x) 而y1*与y2* 分别是方程,
y P(x) y Q(x) y f1(x) y P(x) y Q(x) y f2(x) 的特解, 那么y1* y2*就是原方程的特解.
14
5、二阶常系数齐次线性方程解法 形 y ( n ) P 1 y ( n 1 如 ) P n 1 y P n y f ( x )
n阶常系数线性微分方程
y p y q y 0 二阶常系数齐次线性方程 y p y q y f( x )二阶常系数非齐次线性方程
解法 由常系数齐次线性方程的特征方程的根确 定其通解的方法称为特征方程法.
xx x
22
令 u y, y u ,y x u x u .代入原方程得 x
uxuu(co u susiu n ), 分离变量 usiu n co us
usiu ncousdu dx ,
2ucous
x
两边积分
ln u c( u o ) lsx n 2 lC n , ucosu
C ,
x2
y yC cos ,
代入原方程, 得
F(y,P,Pdp)0. dy
4、线性微分方程解的结构
(1) 二阶齐次方程解的结构:
形 y P ( x ) 如 y Q ( x ) y 0( 1 )
12
定理1 如果函数y1(x)与y2(x)是方程(1)的两个
解,那末yC1y1C2y2也是(1)的解.( C1,C2是常 数)
解法 待定系数法.
(1 ) f(x ) e xP m (x )型
0 设 y x k e x Q m (x ), k 1
2
不、典型例题
例1 求通解
y(xcoy sysiyn )d xx(ysiynxcoy)sd.y
xx
xx
解 原方程可化为
dy dx
xy(cyossixny y xycsoinsxyy),
6
注意: 全微分 方 P 程 Q y x
解法
x
y
u (x ,y ) x 0P (x ,y )d x y 0 Q (x 0 ,y )d
y
x
y 0Q (x ,y)d yx 0P (x ,y 0)d x ,
通解为 u(x,y)C.
用直接凑全微分的方法.
7
3、可降阶的高阶微分方程的解法 (1) y(n)f(x)型
2
设zC(x)x3,
特征方程的根 通解中的对应项
若是 k重根 r
( C 0 C 1 x C k 1 x k 1 ) e rx
若是k重共轭
复根 i
[C (0C 1x C k1xk1)coxs (D 0D 1x D k1xk1)sin x]ex
17
6、二阶常系数非齐次线性微分方程解法
y p y q y f(x ) 二阶常系数非齐次线性方程
定 理2: 如 果 y1(x)与 y2(x)是 方 程 (1)的 两 个 线 性
无 关 的 特 解 , 那 么 yC1y1C2y2就 是 方 程 (1)的 通 解 .
(2)二阶非齐次线性方程的解的结构:
形 y P ( x ) y 如 Q ( x ) y f ( x ) ( 2 )
13
定理3 设y*是(2)的一个特解,Y 是与(2)对应 的齐次方程(1)的通解, 那么yYy*是二阶
解法 接连积分n次,得通解. (2 ) F (x ,y(n 1 ),y(n ))0型 特点 不显含未知函数y. 解法 令yP(x), yP, 代入原方程, 得 F (x ,P (x )P ,(x ) )0 .
11
(3 ) F (y ,y ,y ) 0型
特点 不显含自变量x.
解法 令yP(x), y P dp , dy
e (1 n )P (x )d(xQ (x )1 ( n )e(1 n )P (x )dd x x C ).
(4) 全微分方程
形如 P ( x ,y ) d Q x ( x ,y ) d 0 y
其中 d ( x ,y u ) P ( x ,y ) d Q ( x x ,y ) dy
15
yp y q y 0
特征方程为 r2prq0
特征根的情况
通解的表达式
实根r1r2
yC1er1xC2er2x
实根r1r2
y(C1C2x)er2x
复根r1,2i yex(C1cosxC2sinx)
16
推广:n阶常系数齐次线性方程解法
y ( n ) P 1 y ( n 1 ) P n 1 y P n y 0 特征方程为 r n P 1 r n 1 P n 1 r P n 0
x x x2
所求通解为 xycosy C. x
23
4
例2 求通 x y解 2y3x3y3.
解 原式可化为 y2y3x2y43, 伯努利方程 x
即y4 3y2y1 33x2, x
令
1
z y 3,
原式变为 3z2z3x2,
x
即z 2zx2, 一阶线性非齐方程
3x
2
对应齐方通解为 z Cx3,
24
利用常数变易法
y [Q (x )e P (x )dd x x C ]e P (x )dx
(常数变易法) 伯努利(Bernoulli)方程
形如 d yP (x)yQ (x)yn (n0,1)
dx
当n0,1时,方程为线性微分方程. 当n0,1时,方程为非线性微分方程.
5
解法 需经过变量代换化为线性微分方程.
令zy1n,
高数-微分方程总结
微分方程解题思路
一阶方程
作降 变阶 换
高阶方程
分离变量法 全微分方程 常数变易法 特征方程法
待定系数法
作变换 非 非 变全 量微 可分 分方 离程
2
1、一阶微分方程的解法
(1) 可分离变量的微分方程
形g 如 (y )d y f(x )dx 分离变量法
解法 g(y)d yf(x)dx
(2) 齐次方程 形如dyf(y) dx x
解法 作变量代换 u y x
3
(3) 一阶线性微分方程
形如 d yP (x)yQ (x) dx
当 Q(x)0, 上方程称为齐次的.
当 Q(x)0,
上方程称为非齐次的.
解法 齐次方程的通解为 yCeP(x)dx.
(使用分离变量法)
4
非齐次微分方程的通解为
非齐次线性微分方程(2)的通解.
定理 4 设非齐次方程(2)的右端 f (x)是几个函 数之和, 如y P(x) y Q(x) y f1(x) f2(x) 而y1*与y2* 分别是方程,
y P(x) y Q(x) y f1(x) y P(x) y Q(x) y f2(x) 的特解, 那么y1* y2*就是原方程的特解.
14
5、二阶常系数齐次线性方程解法 形 y ( n ) P 1 y ( n 1 如 ) P n 1 y P n y f ( x )
n阶常系数线性微分方程
y p y q y 0 二阶常系数齐次线性方程 y p y q y f( x )二阶常系数非齐次线性方程
解法 由常系数齐次线性方程的特征方程的根确 定其通解的方法称为特征方程法.
xx x
22
令 u y, y u ,y x u x u .代入原方程得 x
uxuu(co u susiu n ), 分离变量 usiu n co us
usiu ncousdu dx ,
2ucous
x
两边积分
ln u c( u o ) lsx n 2 lC n , ucosu
C ,
x2
y yC cos ,
代入原方程, 得
F(y,P,Pdp)0. dy
4、线性微分方程解的结构
(1) 二阶齐次方程解的结构:
形 y P ( x ) 如 y Q ( x ) y 0( 1 )
12
定理1 如果函数y1(x)与y2(x)是方程(1)的两个
解,那末yC1y1C2y2也是(1)的解.( C1,C2是常 数)
解法 待定系数法.
(1 ) f(x ) e xP m (x )型
0 设 y x k e x Q m (x ), k 1
2
不、典型例题
例1 求通解
y(xcoy sysiyn )d xx(ysiynxcoy)sd.y
xx
xx
解 原方程可化为
dy dx
xy(cyossixny y xycsoinsxyy),
6
注意: 全微分 方 P 程 Q y x
解法
x
y
u (x ,y ) x 0P (x ,y )d x y 0 Q (x 0 ,y )d
y
x
y 0Q (x ,y)d yx 0P (x ,y 0)d x ,
通解为 u(x,y)C.
用直接凑全微分的方法.
7
3、可降阶的高阶微分方程的解法 (1) y(n)f(x)型
2
设zC(x)x3,
特征方程的根 通解中的对应项
若是 k重根 r
( C 0 C 1 x C k 1 x k 1 ) e rx
若是k重共轭
复根 i
[C (0C 1x C k1xk1)coxs (D 0D 1x D k1xk1)sin x]ex
17
6、二阶常系数非齐次线性微分方程解法
y p y q y f(x ) 二阶常系数非齐次线性方程
定 理2: 如 果 y1(x)与 y2(x)是 方 程 (1)的 两 个 线 性
无 关 的 特 解 , 那 么 yC1y1C2y2就 是 方 程 (1)的 通 解 .
(2)二阶非齐次线性方程的解的结构:
形 y P ( x ) y 如 Q ( x ) y f ( x ) ( 2 )
13
定理3 设y*是(2)的一个特解,Y 是与(2)对应 的齐次方程(1)的通解, 那么yYy*是二阶
解法 接连积分n次,得通解. (2 ) F (x ,y(n 1 ),y(n ))0型 特点 不显含未知函数y. 解法 令yP(x), yP, 代入原方程, 得 F (x ,P (x )P ,(x ) )0 .
11
(3 ) F (y ,y ,y ) 0型
特点 不显含自变量x.
解法 令yP(x), y P dp , dy