(整理)常微分方程总结
常微分方程小结

常微分方程小结常微分:常微分方程: 只含一个自变量的微分方程. 方程22()d y dybcy f t dt dt++= (1.11) 20dy dy t y dt dt ⎛⎫++= ⎪⎝⎭(1.12) 22sin 0d y gy dt l+= (1.13)是常微分方程的例子,y 是未知函数,仅含一个自变量t .微分方程的阶数:微分方程中出现的最高阶导数的阶数.例如,方程(1.12)、(1.13)是二阶的常微分方程,一般的n 阶微分方程具有形式(,,,,)0n n dy d yF x y dx dx = (1.14) 这里(,,,,)n n dy d y F x y dx dx 是x 、y 、dy dx 、…、n nd ydx 的已知函数,而且一定含有n nd ydx;y 是未知函数,x 是自变量. 第二章 初等积分法§1 变量分离方程与变量变换1、 变量分离方程1) 变量分离方程 形如()()dyf xg y dx= (2.1) 的一阶微分方程,称为变量分离方程,其中函数()f x 在区间(a,b )上连续,()g y 在区间(c,d )上连续且不等于0. 2) 求解方法如果()0g y ≠,方程(2.1)可化为,()()dyf x dxg y =这样变量就分离开了,两边积分,得到()()dyf x dx cg y =+⎰⎰ (2.2)把,()()dy f x dx g y ⎰⎰分别理解为1,()()f x y ϕ的某一个原函数. 容易验证由(2.2)所确定的隐函数(,)y x c ϕ=满足方程(2.1).因而(2.2)是(2.1)的通解.如果存在0y 使0()0g y =,可知0y y =也是(2.1)的解.可能它不包含在方程的通解(2.2)中,必须予以补上.3) 例题例1 求解方程dy x dx y=- 解 将变量分离,得到ydy xdx =- 两边积分,即得22222y x c=-+ 因而,通解为22x y c += 这里的c 是任意的正常数. 或解出显式形式y =例2 解方程2cos dyy x dx= 解 将变量分离,得到 2cos dyxdx y = 两边积分,即得1sin x c y-=+ 因而,通解为1sin y x c=-+这里的c 是任意的常数.此外,方程还有解0y =.注: 1.常数c 的选取保证(2.2)式有意义.2.方程的通解不一定是方程的全部解,有些通解包含了方程的所有解,有些通解不能包含方程的所有解.此时,还应求出不含在通解中的其它解, 即将遗漏的解要弥补上.3.微分方程的通解表示的是一族曲线,而特解表示的是满足特定条件00()y x y =的一个解,表示的是一条过点00(,)x y 的曲线.2、可化为变量分离方程的类型1).形如 dy y g dx x ⎛⎫= ⎪⎝⎭(2.5)的方程,称为齐次方程,这里的()g u 是u 的连续函数.另外,ⅰ)对于方程(,)(,)dy M x y dx N x y = 其中函数(,)M x y 和(,)N x y 都是x 和y 的m 次齐次函数,即对0t >有(,)(,)m M tx ty t M x y ≡ (,)(,)mN t x t y t N x y≡事实上,取1t x=,则方程可改写成形如(2.5)的方程. (1,)(1,)(1,)(1,)m m y yx M M dy x x y y dx x N N x x== ⅱ)对方程 (,)dyf x y dx= 其中右端函数(,)f x y 是x 和y 的零次齐次函数,即对0t >有(,)(,)f tx ty f x y =则方程也可改写成形如(2.5)的方程(1,)dy y f dx x= 对齐次方程(2.5)利用变量替换可化为变量分离方程再求解.令yu x=(2.6)即y ux =,于是dy du x u dx dx=+ (2.7)将(2.6)、(2.7)代入(2.5),则原方程变为 ()dux u g u dx+= 整理后,得到()du g u u dx x-= (2.8)方程(2.8)是一个可分离变量方程,按照变量分离法求解,然后将所求的解代回原变量,所得的解便是原方程(2.5)的解.例4 求解方程dy y y tg dx x x=+ 解 这是齐次方程,以,y dy duu x u x dx dx ==+代入,则原方程变为 dux u u tgu dx+=+ 即du tgu dx x= (2.9)分离变量,即有dxctgudu x= 两边积分,得到ln sin ln u x c =+ 这里的c是任意的常数,整理后,得到 sin u cx =(2.10)此外,方程(2.9)还有解0tgu =,即sin 0u =. 如果(2.10)中允许0c =,则sin 0u =就包含在(2.10)中,这就是说,方程(2.9)的通解为(2.10).代回原来的变量,得到原方程的通解为sin ycx x= 例如 求解方程13d y x y d x x y -+=+- (2.11) 解 解方程组 1030x y x y -+=⎧⎨+-=⎩ 得1, 2.x y ==令12x X y Y =+⎧⎨=+⎩代入方程(2.11),则有 dY X YdX X Y -=+ (2.12) 再令Yu X= 即 Y u X = 则(2.12)化为2112dX udu X u u+=-- 两边积分,得22ln ln 21X u u c=-+-+ 因此22(21)c X u u e +-=±记1,c e c ±=并代回原变量,就得2212Y XY X c +-= 221(2)2(1)(2)(1)y x y x c -+----= 此外,易验证2210u u +-= 即2220Y XY X +-= 也就是(2.12)的解.因此方程(2.11)的通解为22262y xy x y x c +---= 其中c 为任意的常数.注:1.对于齐次方程dy y g dx x ⎛⎫= ⎪⎝⎭的求解方法关键的一步是令y u x =后,解出y ux =,再对两边求关于x 的导数得dy du u x dx dx=+,再将其代入齐次方程使方程变为关于,u x 的可分离方程.2.齐次方程也可以通过变换xv y=而化为变量分离方程.这时x vy =,再对两边求关于y 的导数得dx dv v y dy dy =+,将其代入齐次方程dxx f dy y ⎛⎫= ⎪⎝⎭使方程变为,v y 的可分离方程小结:这一讲我们主要讲解了一阶微分方程的可分离变量法和齐次方程的dy y g dx x ⎛⎫= ⎪⎝⎭形状的解法.而这一齐次方程通过变量替换任然可化为可分离方程,因而,一定要熟练掌握可分离方程的解法.2)形如111222a xb yc dy dx a x b y c ++=++ (2.13) 的方程经变量变换化为变量分离方程,这里的121212,,,,,a a b b c c 均为常数.分三种情况来讨论 (1)120c c ==情形. 这时方程(2.11)属齐次方程,有1122a x b y dy y g dx a x b y x +⎛⎫== ⎪+⎝⎭此时,令yu x=,即可化为变量可分离方程. (2)11220a b a b =,即1122a ba b =的情形. 设1122a b k a b ==,则方程可写成22122222()()()k a x b y c dy f a x b y dx a x b y c ++==+++ 令22a x b y u +=,则方程化为 22()dua b f u dx=+ 这是一变量分离方程.(3)1112220,a b c c a b ≠及不全为零的情形.这时方程(2.11)右端的分子、分母都是,x y 的一次式,因此 1112220a x b y c a x b y c ++=⎧⎨++=⎩ (2.14)代表xy 平面上两条相交的直线,设交点为(,)αβ.显然,0α≠或0β≠,否则必有120c c ==,这正是情形(1)(只需进行坐标平移,将坐标原点(0,0)移至(,)αβ就行了,若令X x Y y αβ=-⎧⎨=-⎩ (2.15)则(2.14)化为11220a X b Y a X b y +=⎧⎨+=⎩从而(2.13)变为1122a X bY dY Y g dX a X b Y X +⎛⎫== ⎪+⎝⎭(2.16) 因此,得到这种情形求解的一般步骤如下:(1)解联立代数方程(2.16),设其解为,x y αβ==; (2)作变换(2.17)将方程化为齐次方程(2.18); (3)再经变换Yu X=将(2.18)化为变量分离方程; (4)求解上述变量分离方程,最后代回原变量可得原方程(2.15)的解. 上述解题的方法和步骤也适用于比方程(2.15)更一般的方程类型 111222a x b y c dy f dx a x b y c⎛⎫+== ⎪++⎝⎭此外,诸如()dyf ax by c dx++ ()()0y xy dx xg xy dy += 2()dyxf xy dx=2dy y xf dx x ⎛⎫= ⎪⎝⎭以及(,)()(,)()0M x y xdx ydy N x y xdy ydx ++-=(其中,M N 为,x y 的齐次函数,次数可以不相同)等一些方程类型,均可通过适当的变量变换化为变量分离方程.§2 恰当方程与积分因子1、恰当方程的定义 将一阶微分方程 (,)dyf x y dx= 写成微分的形式(,)0f x y dx dy -= 把,x y 平等看待,对称形式的一阶微分方程的一般式为(,)(,)0M x y dx N x y dy += (2.21) 假设(,),(,)M x y N x y 在某区域G 内是,x y 的连续函数,而且具有连续的一阶偏导数. 如果存在可微函数(,)u x y ,使得(,)(,)du M x y dx N x y dy =+ (2.22)即(,), (,)u u M x y N x y x y∂∂==∂∂ (2.23) 则称方程(2.43)为恰当方程,或称全微分方程.在上述情形,方程(2.43)可写成(,)0du x y ≡,于是 (,)u x y C ≡就是方程(2.21)的隐式通解,这里C 是任意常数(应使函数有意义).2、 恰当方程的判定准则定理1设(,),(,)M x y N x y 在某区域G 内连续可微,则方程(2.43)是恰当方程的充要条件是, (,)M Nx y G y x∂∂=∈∂∂ (2.24) 而且当(2.46)成立时,相应的原函数可取为0(,)(,)(,)xyx y u x y M s y ds N x t dt =+⎰⎰ (2.25)或者也可取为0(,)(,)(,)yxy x u x y N x t dt M s y ds =+⎰⎰ (2.26)其中00(,)x y G ∈是任意取定的一点.证明 先证必要性.因为(2.43)是恰当方程,则有可微函数(,)u x y 满足(2.23), 又知(,),(,)M x y N x y 是连续可微的,从而有22M u u Ny y x x y x∂∂∂∂===∂∂∂∂∂∂ 下面证明定理的充分性,即由条件(2.23),寻找函数(,)u x y ,使其适合方程(2.22).从(2.25)可知(,)uN x y y∂=∂ 000000(,)(,) =(,)(,) =(,)(,)(,)yy y x y yy y u M x y N x t dt x x M x y N x t dtM x y M x t dt M x y ∂∂=+∂∂++=⎰⎰⎰即(2.23)成立,同理也可从(2.25)推出(2.23).例1. 解方程21()02x xydx dy y++=(2.27)解 这里21, =()2x M xy N y=+,则y x M x N ==,所以(2.27)是恰当方程.因为N 于0y =处无意义,所以应分别在0y >和0y <区域上应用定理,可按任意一条途径去求相应的原函数(,)u x y .先选取00(,)(0,1)x y =,代入公式(2.25)有 22011()ln 22xyx x u xdx dy y y y =++=+⎰⎰再选取00(,)(0,1)x y =-,代入公式(2.47)有22011()()ln()22xyx x u x dx dy y y y -=-++=+-⎰⎰可见不论0y >和0y <,都有2ln ||2x u y y =+ 故方程的通解为2ln ||2x y y C +=. 3、积分因子的定义及判别对于微分形式的微分方程(,)(,)0M x y dx N x y dy +=(2.21)如果方程(2.21)不是恰当方程,而存在连续可微的函数(,)0x y μμ=≠,使得(,)(,)0M x y dx N x y dy μμ+= (2.31)为一恰当方程,即存在函数(,)v x y ,使(,)(,)M x y dx N x y dy dv μμ+≡则称(,)x y μ是方程(2.21)的积分因子.此时(,)v x y C =是(2.51)的通解,因而也就是(2.21)的通解.如果函数(,),(,)M x y N x y 和(,)x y μ都是连续可微的,则由恰当方程的判别准则知道,(,)x y μ为(2.21)积分因子的充要条件是M Ny xμμ∂∂=∂∂ 即 ()M NNM x y y xμμμ∂∂∂∂-=-∂∂∂∂ (2.32) 4、积分因子的求法方程(2.32)的非零解总是存在的,但这是一个以μ为未知函数的一阶线性偏微分方程,求解很困难,我们只求某些特殊情形的积分因子. 定理2 设(,),(,)M M x y N N x y ==和(,)x y ϕϕ=在某区域内都是连续可微的,则方程(2.32)有形如((,))x y μμϕ=的积分因子的充要条件是:函数(,)(,)(,)(,)(,)(,)y x x y M x y N x y N x y x y M x y x y ϕϕ-- (2.41)仅是(,)x y φ的函数,此外,如果(2.53)仅是(,)x y φ的函数((,))f f x y ϕ=,而()()G u f u du =⎰,则函数((,))G x y e ϕμ=(2.42)就是方程(2.21)的积分因子.例3. 解方程2()(1)0xy y dx xy y dy ++++=解 这里2,1M xy y N xy y =+=++方程不是恰当的.但是 1y xM N My -=-- 它有仅依赖于y 的积分因子 11dy y e yμ-⎰≡= 方程两边乘以积分因子1y μ=得到 1()(1)0x y dx x dy y++++= 从而可得到隐式通解 21ln ||2u x xy y y C ≡+++= 另外,还有特解0y =.它是用积分因子乘方程时丢失的解.§3隐式方程1、一阶隐方程一阶隐式微分方程的一般形式可表示为:(,,)0F x y y '=如果能解出(,)y f x y '=,则可化为显式形式,根据前面的知识求解.例如方程2()()0y x y y x y ''-++=,可化为y x '=或y y '=但难以从方程中解出y ',或即使解出y ',而其形式比较复杂,则宜采用引进参数的方法求解.一般隐式方程分为以下四种类型:1) (,)y f x y '= 2) (,)x f y y '= 3) (,)0F x y '= 4)(,)0F y y '=2、求解方法Ⅰ)可以解出y (或)x 的方程1) 讨论形如(,)y f x y '= (2.31) 的方程的解法,假设函数(,)f x y '有连续的偏导数,引进参数y p '=,则方程(2.57)变为(,)y f x p = (2.32) 将(2.32) 的两边对x 求导数,得到f f dp p x y dx∂∂=+∂∂ (2.33) 方程(2.33)是关于,x p 的一阶微分方程,而且属于显式形式.若求得(2.33)的通解形式为(,)p x c ϕ=,将其代入(2.32),于是得到(2.31)通解为(,(,))y f x x c ϕ=若求得(2.33)的通解形式为(,)x p c ψ=,于是得到(2.31)的参数形式的通解为(,)((,),)x p c y f p c p ψψ=⎧⎨=⎩其中p 为参数, c 是任意常数.若求得(2.33)的通解形式为(,,)0x p c Φ=,于是得到(2.57)的参数形式的通解为(,,)0(,)x p c y f x p Φ=⎧⎨=⎩ 其中p 为参数, c 是任意常数.例1 求方程3()20dy dy x y dx dx +-= 的解 解:令dy p dx=,于是有 32y p x p =+ (2.34) 两边对x 求导数,得到 2322dp dp p px p dx dx =++ 即 2320p dp xdp pdx ++=当0p ≠时,上式有积分因子p μ=,从而32320p dp xpdp p dx ++=由此可知4234p xp c += 得到42223344c p c x p p p -==- 将其代入(2.60),即得 43342()c p y p p -=+ 故参数形式的通解为22334 (0) 212c x p p p c y p p ⎧=-⎪⎪≠⎨⎪=-⎪⎩ 当0p =时,由(2.60)可知0y =也是方程的解.第三章 线性方程§1 存在性与唯一性1.存在性与唯一性定理:(1)显式一阶微分方程),(y x f dx dy = (3.1)这里),(y x f 是在矩形域:00:||,||R x x a y y b -≤-≤ (3.2)上连续。
大一常微分方程一知识点总结

大一常微分方程一知识点总结1.常微分方程的基本概念常微分方程是描述一个未知函数的导数或高阶导数与该函数本身之间的关系的方程。
2.函数的导数和微分的概念导数描述了函数在其中一点上的变化率,基本导数法则包括常数规则、幂规则、指数函数和对数函数的导数、三角函数的导数等;微分描述了函数在其中一点上的变化量。
3.一阶常微分方程一阶常微分方程是指导数的最高阶数为一的微分方程。
常见的一阶微分方程形式包括可分离变量的方程、线性方程、齐次方程、恰当方程和一阶常系数线性齐次方程等。
4.可分离变量的方程可分离变量的方程是指方程中变量可分离为两个集合的乘积形式。
通过将变量分离,再进行积分求解得到方程的解。
5.线性方程线性方程是指方程中的未知函数和其导数只出现线性的形式。
线性方程的解可以通过积分因子法或变量代换法来求解。
6.齐次方程齐次方程是指方程中未知函数和其导数出现在同一个项中,并且未知函数和其导数的次数相同的方程。
齐次方程可以通过变量代换法将其转化为可分离变量的方程来求解。
7.恰当方程恰当方程是指方程的左右两边可以写成一些函数的全微分形式。
通过判断方程是否恰当,并找到方程的积分因子,可以求解恰当方程。
8.一阶常系数线性齐次方程一阶常系数线性齐次方程是指方程中未知函数和其导数出现在同一个项中,并且未知函数和其导数的系数是常数的方程。
一阶常系数线性齐次方程的解可以通过特征方程和指数函数来求解。
9.二阶常微分方程二阶常微分方程是指导数的最高阶数为二的微分方程。
常见的二阶微分方程形式包括线性常系数齐次方程、线性常系数非齐次方程和欧拉方程等。
10.线性常系数齐次方程线性常系数齐次方程是指方程中未知函数及其导数的系数是常数的齐次方程。
线性常系数齐次方程的解可以通过特征方程和指数函数来求解。
11.线性常系数非齐次方程线性常系数非齐次方程是指方程中未知函数及其导数的系数是常数的非齐次方程。
通过求解对应的齐次方程的通解和非齐次方程的特解,可以得到线性常系数非齐次方程的通解。
常微分方程知识点整理

常微分方程知识点整理常微分方程是数学中的一个重要分支,研究描述自然界中各种变化规律的微分方程。
在物理、工程、经济学等领域具有广泛的应用。
本文将对常微分方程的基本概念、分类、求解方法等知识点进行整理。
一、常微分方程的基本概念常微分方程是指未知函数的导数及其自变量的关系式。
一般形式为dy/dx = f(x, y),其中y是未知函数,x是自变量,f是已知的函数。
常微分方程可以分为一阶常微分方程和高阶常微分方程。
1. 一阶常微分方程:一阶常微分方程是指方程中只涉及到一阶导数的微分方程。
常见形式为dy/dx = f(x, y)。
其中f(x, y)是已知的函数,也可以是常数。
2. 高阶常微分方程:高阶常微分方程是指方程中涉及到二阶及以上导数的微分方程。
常见形式为d^n y/dx^n = f(x, y, dy/dx, ..., d^(n-1)y/dx^(n-1)),其中n为方程的阶数,f是已知的函数。
二、常微分方程的分类根据方程的形式和性质,常微分方程可以分为线性常微分方程、非线性常微分方程、齐次线性常微分方程等多种类型。
1. 线性常微分方程:线性常微分方程是指方程中未知函数及其导数之间的关系是线性的微分方程。
常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = f(x),其中a_n(x)、a_(n-1)(x)、...、a_1(x)、a_0(x)是已知的函数。
2. 非线性常微分方程:非线性常微分方程是指方程中未知函数及其导数之间的关系是非线性的微分方程。
常见形式为dy/dx = f(x, y),其中f(x, y)是已知的非线性函数。
3. 齐次线性常微分方程:齐次线性常微分方程是指方程中没有常数项的线性常微分方程。
常见形式为a_n(x) d^n y/dx^n + a_(n-1)(x) d^(n-1)y/dx^(n-1) + ... + a_1(x) dy/dx + a_0(x) y = 0。
高中数学中的常微分方程知识点

高中数学中的常微分方程知识点一、引言常微分方程是数学中的一个重要分支,它在自然科学、社会科学和工程技术等领域有着广泛的应用。
高中数学中的常微分方程知识点主要包括一阶微分方程、二阶微分方程和常微分方程的解法等内容。
二、一阶微分方程1. 概念一阶微分方程是指形如dy/dx + P(x)y = Q(x)的方程,其中P(x)和Q(x)是关于自变量x的已知函数。
2. 解法(1)分离变量法:将方程中的y和x分离,化为y = f(x)的形式,然后对两边进行积分。
(2)积分因子法:找出一个函数μ(x),使得原方程两边乘以μ(x)后,可以化为dy/dx + μP(x)y = μQ(x)的形式,然后利用积分因子公式求解。
(3)变量替换法:选择一个合适的变量替换,将原方程化为简单的一阶微分方程,然后求解。
3. 例子求解方程dy/dx + 2y = e^x。
(1)分离变量法:dy/y = e^x dx∫ dy = ∫ e^x dxy = e^x + C其中C是积分常数。
(2)积分因子法:μ(x) = e^(-∫ 2dx) = e^(-2x)μ(dy/dx + 2y) = μQ(x)e^(-2x)dy/dx + 2e^(-2x)y = e(-2x)e x(-dy/dx + 2y)e^(2x) = 1-dy/dx + 2y = e^(-2x)利用积分因子公式求解,得到:y * e^(2x) = -∫ e^(-2x) dx + Cy = (-1/2)e^(-2x) + C/e^(2x)三、二阶微分方程1. 概念二阶微分方程是指形如d²y/dx² + P(x)dy/dx + Q(x)y = R(x)的方程,其中P(x)、Q(x)和R(x)是关于自变量x的已知函数。
2. 解法(1)常数变易法:假设y = e^(αx),代入原方程,得到关于α的二次方程,求解得到α的值,进而求出y的解。
(2)待定系数法:假设y = e^(αx)的系数为待定系数,代入原方程,得到关于待定系数的方程,求解得到待定系数的值,进而求出y的解。
常微分方程课程总结

常微分方程课程总结第一章 绪论§1.2微分方程的基本概念(1)常微分方程偏微分方程微分方程:凡含有未知函数的导数或微分的方程叫微分方程。
常微分方程:未知函数为一元函数的微分方程。
()(),dyaxy a dxdy p x y Q x dx=+=为常数 偏微分方程:未知函数为多元函数,从而出现偏导数的微分方程。
()22,22242u uf x y x y u u y x ∂∂+=∂∂∂∂=∂∂(2)线性与非线性一般n 阶线性微分方程具有形式:(等式左面全是一次有理整式)()(1)11()()()().n n n n y a x y a x y a x y f x --'++++=(3)解和隐式解微分方程的解:代入微分方程能使方程成为恒等式的函数. 隐式解:Φ(x,y )=0 (4)通解和特解通解:微分方程的解中含有任意常数,且任意常数的个数与微分方程的阶数同.) 特解: 确定了通解中任意常数以后的解. 初始条件:用来确定任意常数的条件.初值问题: 求微分方程满足初始条件的解的问题.(5)积分曲线:微分方程任一特解的图形都是一条曲线,称为微分方程的积曲线。
第二章 一阶微分方程的初等解法§2.1 变量分离方程与变量变换2.1.1、变量分离方程)()(y x f dxdyϕ= ⎰⎰+=c dx x f y dy )()(ϕ 2.1.2、可化为变量分离方程的类型1.形如)(x y g dx dy =,称为齐次微分方程,令u =xy ,即y =ux ,于是dx dy =x dx du +u ,代入原方程,变形为x dx du +u =g (u ),整理得dx du =xuu g -)(2.形如222111c x b x a c x b x a dx dy ++++= 的方程也可经变量变换化为变量分离方程(1)常数)(212121k c c b b a a ===,方程化为dxdy =k ,有通解c kx y += (2)≠==k b b a a 212121c c 情形,令u =y b x a 21+,这时有dx du =dx dy b a 22+=2122c u c ku b a +++是分离变量方程 (3)2121b b a a ≠情形,若21c c 、不全为零,方程右端分子、分母都是x 、y 的一次多项式,因此111c x b x a ++=0,222c y b x a ++=0,交点(),βα,令X =x -α,Y =y -β,化为011=+Y b X a , 022=+Y b X a 。
考研微分方程知识点浓缩

考研微分方程知识点浓缩微分方程是数学中的重要分支,广泛应用于物理学、经济学和工程学等领域。
在考研数学中,微分方程是必备的知识点之一。
本文将从常微分方程、偏微分方程和常见的解法等方面进行总结和浓缩。
一、常微分方程常微分方程(Ordinary Differential Equation,ODE)是只涉及一元函数的微分方程。
常微分方程的求解涉及到初值问题和边值问题两种情况。
1.1 一阶常微分方程常见的一阶常微分方程形式包括:可分离变量方程、齐次方程、线性方程、伯努利方程和一阶齐次线性方程等。
其求解方法如下:1)可分离变量方程:将变量分离后进行积分求解。
2)齐次方程:使用变量代换后,将方程转化为可分离变量方程求解。
3)线性方程:使用积分因子法求解线性方程。
4)伯努利方程:通过变量代换,将方程转化为线性方程求解。
1.2 二阶常微分方程二阶常微分方程是一阶常微分方程的推广。
常见的二阶常微分方程形式包括:线性常系数齐次方程、线性常系数非齐次方程和二阶常系数非线性齐次方程等。
其求解方法如下:1)线性常系数齐次方程:设解的形式,代入方程后解得常数。
2)线性常系数非齐次方程:通过求齐次方程的通解和非齐次方程的特解,得到非齐次方程的通解。
3)二阶常系数非线性齐次方程:一般采用变量代换的方法将方程转化为线性方程求解。
二、偏微分方程偏微分方程(Partial Differential Equation,PDE)是涉及多元函数的微分方程。
常见的偏微分方程包括:一维波动方程、一维热传导方程和二维拉普拉斯方程等。
2.1 一维波动方程一维波动方程是描述波的传播规律的方程。
其一般形式为:∂²u/∂t² = c²∂²u/∂x²,其中u(x, t)表示波函数,c为波速。
2.2 一维热传导方程一维热传导方程是描述热量传导规律的方程。
其一般形式为:∂u/∂t = α²∂²u/∂x²,其中u(x, t)表示温度分布,α为热扩散系数。
【总结】常微分方程知识总结

(1) 概念微分方程:一般,凡表示未知函数、未知函数的导数与自变量的之间关系的方程。
微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数。
如: 一阶:2dyx dx= 二阶:220.4d sdt=-三阶:32243x y x y xy x ''''''+-=四阶:()4410125sin 2y y y y y x ''''''-+-+=一般n 阶微分方程的形式:()(),,,,0n F x y y y'= 。
这里的()ny 是必须出现。
(2)微分方程的解设函数()y x ϕ=在区间上有阶连续导数,如果在区间上,()()()(),,0n F x x x x ϕϕϕ⎡⎤'≡⎢⎥⎣⎦则()y x ϕ=称为微分方程()(),,,,0n F x y y y '= 的解。
注:一个函数有阶连续导数→该函数的阶导函数也是连续的。
函数连续→函数的图像时连在一起的,中间没有断开(即没有间断点)。
导数→导函数简称导数,导数表示原函数在该点的斜率大小。
导函数连续→原函数的斜率时连续变化的,而并没有在某点发生突变。
函数连续定义:设函数()y f x =在点的某一邻域内有定义,如果()()00lim x x f x f x →=则称函数()f x 在点连续。
左连续:()()()000lim x x f x f x f x --→==左极限存在且等于该点的函数值。
右连续:()()()000lim x x f x f x f x ++→==右极限存在且等于该点的函数值。
在区间上每一个点都连续的函数,叫做函数在该区间上连续。
如果是闭区间,包括端点,是指函数在右端点左连续,在左端点右连续。
函数在点连续()()()()00lim lim lim x x x x x x f x f x f x f x -+→→→=== 1、()f x 在点有定义 2、()0lim x x f x →极限存在3、()()00lim x x f x f x →=(3)微分方程的通解如果微分方程中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫微注:任意常数是相互独立的:它们不能合并使得任意常数的个数减少。
常微分方程基本公式

常微分方程基本公式一、一阶常微分方程。
1. 可分离变量方程。
- 形式:(dy)/(dx)=f(x)g(y)- 解法:将方程变形为(dy)/(g(y)) = f(x)dx,然后两边分别积分∫(dy)/(g(y))=∫f(x)dx + C,其中C为任意常数。
2. 齐次方程。
- 形式:(dy)/(dx)=F((y)/(x))- 解法:令u = (y)/(x),即y = ux,则(dy)/(dx)=u + x(du)/(dx)。
原方程化为u + x(du)/(dx)=F(u),这是一个可分离变量方程,可按照可分离变量方程的方法求解。
3. 一阶线性微分方程。
- 形式:(dy)/(dx)+P(x)y = Q(x)- 通解公式:y = e^-∫ P(x)dx(∫ Q(x)e^∫ P(x)dxdx + C)二、二阶常系数线性微分方程。
1. 齐次方程。
- 方程形式:y''+py'+qy = 0(其中p,q为常数)- 特征方程:r^2+pr + q=0- 当特征方程有两个不同实根r_1,r_2时,通解为y = C_1e^r_1x+C_2e^r_2x;- 当特征方程有重根r时,通解为y=(C_1+C_2x)e^rx;- 当特征方程有一对共轭复根r_1,2=α±β i时,通解为y = e^α x(C_1cosβ x + C_2sinβ x)。
2. 非齐次方程。
- 方程形式:y''+py'+qy = f(x)- 通解结构:y = y_h+y_p,其中y_h是对应的齐次方程的通解,y_p是一个特解。
- 当f(x)=P_m(x)e^λ x(P_m(x)是m次多项式)时,特解y_p的形式:- 若λ不是特征方程的根,则y_p=Q_m(x)e^λ x(Q_m(x)是m次待定多项式);- 若λ是特征方程的单根,则y_p=xQ_m(x)e^λ x;- 若λ是特征方程的重根,则y_p=x^2Q_m(x)e^λ x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 概念微分方程:一般,凡表示未知函数、未知函数的导数与自变量的之间关系的方程。
微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数。
如: 一阶:2dyx dx= 二阶:220.4d sdt=-三阶:32243x y x y xy x ''''''+-= 四阶:()4410125sin 2yy y y y x ''''''-+-+=一般n 阶微分方程的形式:()(),,,,0n F x y y y '=。
这里的()ny 是必须出现。
(2)微分方程的解设函数()y x ϕ=在区间I 上有n 阶连续导数,如果在区间I 上,()()()(),,0n F x x x x ϕϕϕ⎡⎤'≡⎢⎥⎣⎦则()y x ϕ=称为微分方程()(),,,,0n F x y y y '=的解。
注:一个函数有n 阶连续导数→该函数的n 阶导函数也是连续的。
函数连续→函数的图像时连在一起的,中间没有断开(即没有间断点)。
导数→导函数简称导数,导数表示原函数在该点的斜率大小。
导函数连续→原函数的斜率时连续变化的,而并没有在某点发生突变。
函数连续定义:设函数()y f x =在点0x 的某一邻域内有定义,如果()()00lim x x f x f x →=则称函数()f x 在点0x 连续。
左连续:()()()000lim x x f x f x f x --→== 左极限存在且等于该点的函数值。
右连续:()()()000lim x x f x f x f x ++→== 右极限存在且等于该点的函数值。
在区间上每一个点都连续的函数,叫做函数在该区间上连续。
如果是闭区间,包括端点,是指函数在右端点左连续,在左端点右连续。
函数在0x 点连续⇔()()()()00lim lim lim x x x x x x f x f x f x f x -+→→→=== 1、()f x 在点0x 有定义 2、()0lim x x f x →极限存在3、()()00lim x x f x f x →=(3)微分方程的通解如果微分方程中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫微分注:任意常数是相互独立的:它们不能合并使得任意常数的个数减少。
补充:设()()()12,,n y x y x y x 是定义在区间I 上的n 个函数,若存在n 个不全为零的常数(强调存在性,找到一组常数即可)12,,,n k k k ,使得当对∀x I ∈时有恒等式:()11223()()0n k y x k y x k y x +++≡成立。
则称这n 个函数在区间I仅当12,,,n k k k 全等于零该等式才恒成立。
则这n 个函数在区间I例:函数221,sin ,cos x x 在整个数轴上线性相关。
221sin cos 0x x --≡恒成立。
函数21,,x x 在任何区间(),a b →线性无关21230k k x k x ++≡要使恒成立,则1230k k k === 否则:若123,,k k k 不同时等于零,则21230k k x k x ++≡最多只有两个x 的值能是该式恒成立。
对x 不具有普遍性。
对两个函数()()12,y x y x 而言:()()12(y x c y x =常数)→线性相关()()()12(y x x y x ϕ=函数)→线性无关:微分方程的通解中含有任意常数,实际情况→提出确定这些常数的条件。
通解→特解一阶微分方程定解条件一般为:00x x y y == 二阶微分方程定解条件一般为:000,x x x x y y y y ==''== 其中000,,x y y '都是给定的值。
微分方程的解→()y x ϕ=求微分方程(,y f x y '=)满足初始条件00x x yy ==00(,x x y f x y y y ='=⎧⎪⎨=⎪⎩)()00,x y 的那条积分曲线。
()0000,,,x x x x y f x y y y y y y =='''⎧=⎪⎨''==⎪⎩()00,x y 且在该点斜率为0y '的那条积分曲线。
(4)几种常见的微分方程 1、可分离变量的微分方程一般形式形式:(,y f x y '=)对称形式:()(),,0p x y dx q x y dy +=(,x y 都可以看做函数,另一个为自变量)即:()()(),(,0),p x y dy q x y dx q x y =-≠或()()(),(,0),q x y dxp x y dy p x y =-≠可分离变量:如果一阶微分方程能写成()()g y dy f x dx =的形式。
特点:一端只含y 的函数和dy ,另一端只含x 的函数和dx 。
这样微分方程称为可分离变量的微分方程。
例:求解2dyxy dx=的通解。
解:12dy xdx y=→12dy xdx y =⎰⎰→21ln y x c =+→通解:221x c x y e ce +=±=2、齐次微分方程一阶微分方程可以化成dy y f dx x ⎛⎫= ⎪⎝⎭的形式。
求解:dy y f dx x ⎛⎫= ⎪⎝⎭y u x=→y ux =, dy du x u dx dx =+→()dux u f u dx+=→()11du dx f u u x =-(可分离变量)→通解 例:解方程22dy dyy xxy dx dx+=22dy dy y x xy dx dx +=→2y dy y dyx dx x dx⎛⎫+=⎪⎝⎭→2du du u x u u x u dx dx ⎛⎫++=+ ⎪⎝⎭ →()1du x u u dx -=→111du dx u x ⎛⎫-= ⎪⎝⎭→111du dx u x ⎛⎫-= ⎪⎝⎭⎰⎰1ln ln u u x c →-=+→122ln ,ln yuxy ux u c ux c e y ux y c e y c x=-→=→==→=+ 3、一阶线性微分方程若()0dyp x y dx +=,称为一阶齐次线性微分方程。
若()()dy p x y q x dx+=(()0q x ≠),称为一阶非齐次线性微分方程。
解()0dyp x y dx+=的通解如下:可分离变量的一阶微分方程 ()()()110ln dy p x y dy p x dx y p x dx c dx y+=→=-→=-+⎰()2p x dx y c e -⎰→= ()p x dxy ce -⎰→=(齐次方程通解)采用积分因子法求()()dyp x y q x dx+=()()()()()()()()()p x dx p x dx p x dx p x dx dy dy p x y q x e p x y q x e e y q x e dx dx '⎡⎤⎡⎤⎰⎰⎰⎰+=→+=→=⎢⎥⎢⎥⎣⎦⎣⎦()()()p x dxp x dxe y q x e dx c ⎰⎰=+⎰()()()p x dx p x dx y e q x e dx c -⎡⎤⎰⎰→=+⎢⎥⎣⎦⎰例:求解()52211dy yx dx x -=++的通解齐次通解:()()52122110ln 2ln 111212dy y dy y dy dx x y x c dx x dx x y x -=+→-=→=→=+++++ ()1ln 22ln 12y x c →=++()()222ln 2ln 1ln 2ln 2ln 21y x c y c x →=++→=+ ()21y c x →=+非齐次特解:()()()2222555111122221111dx dx dx dx x x x x dy y x e y e x e y e x dx dx x ----++++'⎡⎤⎰⎰⎰⎰-=+→=+→=+⎢⎥+⎣⎦⎰ ()()()()()5122ln 12ln 122111x x ey ex dx x y x dx --+-+→=+→+=+⎰⎰→()()12211x y x dx -+=+→⎰()()32212113y x x c ⎡⎤=+++⎢⎥⎣⎦通解:()()3222113y x x c⎡⎤=+++⎢⎥⎣⎦4、伯努利方程形如:()()n dyp x y q x y dx+= 当0n =时,()()dyp x y q x dx += 一阶线性微分方程(公式法)当1n =时,()()dy p x y q x y dx +=()()dyq x p x y dx→=-⎡⎤⎣⎦ 可分离变量微分方程 求通解过程:()()()()1n n n dy dy p x y q x y y p x y q x dx dx--+=→+=()()()()1111n n y n p x y n q x --'⎡⎤→+-=-⎣⎦ ()()()()111n dzn p x y n q x dx-→+-=-(积分因子公式法)例:求解()2ln dy y a x y dx x +=5二阶线性微分方程形如:()()()22d y dyp x q x y f x dx dx++= 若()0f x ≡时,()()220d y dyp x q x y dx dx ++=称为:二阶线性齐次微分方程。
若()0f x ≠时,()()()22d y dyp x q x y f x dx dx++=称为:二阶非齐次微分方程。
推广:n 阶线性微分方程()()()()()()111n n n n ya x y a x y a x y f x --'++++=线性微分方程解的结构:对()()220d y dyp x q x y dx dx++=证明:()()()()11221122+y c y x c y x c y x c y x ''''''''=+=⎡⎤⎣⎦()1y x 是原方程的解,则:()()()()()1110y x p x y x q x y x '''++= ()()()()()1111110c y x p x c y x q x c y x '''∴++=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦ 同理()()()()()2222220c y x p x c y x q x c y x '''++=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()()()()()()1122112211220c y x c y x p x c y x c y x q x c y x c y x '''+++++=⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦、得证:()()1122y c y x c y x =+是()()220d y dyp xq x y dx dx++=的解。