2016年长沙市中考数学模拟试卷一含答案解析

合集下载

中考综合模拟测试《数学试卷》含答案解析

中考综合模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列四个实数中,是无理数的为( ) A.B.27C. D.32. 如图所示的几何体的左视图是( )A. B. C. D.3. 如图,直线AB ∥CD ,∠A =70°,∠E =30°,则∠C 等于( )A. 30°B. 40°C. 60°D. 70°4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1B. 1C. -1或1D. 1或05. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=-D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104B. 2.75×104C. 2.75×1012D. 27.5×10117. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A 2m ≤B. 2m <C. 2m ≥D. 2m >9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A. (3,2)B. (3,1)C. (2,2)D. (4,2)10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒二、填空题11. 1483的结果是_____. 12. 将一副直角三角板如图放置,点C 在FD 的延长上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =2,则CD 的长为______.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______.三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 16. 解分式方程:31133x x-=-- ______________. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min )进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图. 组别课前预习时间/t min频数(人数)频率1 010t ≤<2 21020t ≤<0.103 2030t ≤< 16 0.324 3040t ≤< 540t ≥3请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为 ,表中的a = ,b = ,c = ; (2)试计算第4组人数所对应扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min 的学生人数. 19. 某商场运动服装专柜,对,A B 两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.第一次 第二次 品牌运动服装数/件 20 30 品牌运动服装数/件 30 40 累计采购款/元1020014400(1)问,A B 两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+.21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F点,此时,他测得F点都塔顶A点的俯视角为30°,同时也测得F点到塔底C 点的俯视角为45°,已知塔底边心距OC=23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到01米)?(3≈1.73,2≈1.41).22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB的表达式;(2)△ABC和△ABD的面积分别为S1,S2,求S2-S1.23. 如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣2,0),点B(4,0),与y轴交于点C(0,8),连接BC,又已知位于y轴右侧且垂直于x轴的动直线l,沿x轴正方向从O运动到B(不含O 点和B点),且分别交抛物线、线段BC以及x轴于点P,D,E.(1)求抛物线的表达式;(2)连接AC,AP,当直线l运动时,求使得△PEA和△AOC相似的点P的坐标;(3)作PF⊥BC,垂足为F,当直线l运动时,求Rt△PFD面积最大值.24. 问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=42,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.答案与解析一、选择题1. 下列四个实数中,是无理数的为()A. B. 27C. D. 3【答案】D【解析】【分析】根据无理数的定义”也称为无限不循环小数,不能写作两整数之比”即可.【详解】由无理数的定义得:四个实数中,只有3是无理数故选:D.【点睛】本题考查了无理数的定义,熟记定义是解题关键.2. 如图所示的几何体的左视图是( )A. B. C. D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【详解】从左向右看,得到的几何体的左视图是.故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. 如图,直线AB∥CD,∠A=70°,∠E=30°,则∠C等于( )A. 30°B. 40°C. 60°D. 70°【答案】B 【解析】 【分析】根据平行线的性质得出∠A =∠EFD ,再根据三角形的外角性质求出∠C 即可. 【详解】解:∵AB ∥CD ,∠A =70°, ∴∠EFD =70°, ∵∠E =30°, ∴∠C =40°, 故选B .【点睛】本题考查了平行线的性质和三角形的外角性质,关键是求出∠EFD 的度数和求出∠EFD =∠A . 4. 如果分式||11x x -+的值为0,那么的值为( ) A. -1 B. 1C. -1或1D. 1或0【答案】B 【解析】 【分析】根据分式的值为零的条件可以求出x 的值. 【详解】根据题意,得 |x|-1=0且x+1≠0, 解得,x=1. 故选B .【点睛】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可. 5. 下列计算正确的是( ) A. 66122a a a += B. 25822232-÷⨯= C. ()721120a a a a ⋅-⋅=- D. ()32233122ab a b a b ⎛⎫-⋅-= ⎪⎝⎭【答案】C 【解析】 【分析】根据整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方逐项判断即可.【详解】A 、6662a a a +=,此项错误B 、25825825822222222-----+=⨯=÷⨯⨯=,此项错误C 、()7211271120a a a a a ++⋅-⋅=-=-,此项正确D 、()()322236751128422ab a b ab a b a b ⎛⎫⎛⎫-⋅--⋅-= ⎪ ⎪⎝⎭⎝⎭=,此项错误故选:C .【点睛】本题考查了整式的加减、有理数的乘方运算、同底数幂的乘法、积的乘方,熟记各运算法则是解题关键.6. 我国是世界上严重缺水的国家之一,目前我国每年可利用的淡水资源总量为27500亿米3,人均占有淡水量居全世界第110位,因此我们要节约用水,27500亿用科学记数法表示为( ) A. 275×104 B. 2.75×104 C. 2.75×1012 D. 27.5×1011 【答案】C 【解析】【详解】解:将27500亿用科学记数法表示为:2.75×1012. 故选C .【点睛】本题考查科学记数法—表示较大的数.7. 如图,△ABD 是以BD 为斜边的等腰直角三角形,△BCD 中,∠DBC =90°,∠BCD =60°,DC 中点为E ,AD 与BE 的延长线交于点F ,则∠AFB 的度数为( )A. 30°B. 15°C. 45°D. 25°【答案】B 【解析】 解:∵∠DBC =90°,E 为DC 中点,∴BE =CE =12CD ,∵∠BCD =60°,∴∠CBE =60°,∴∠DBF =30°,∵△ABD 是等腰直角三角形,∴∠ABD =45°,∴∠ABF =75°,∴∠AFB =180°﹣90°﹣75°=15°,故选B .8. 若不等式组11324x xx m+⎧<-⎪⎨⎪<⎩无解,则的取值范围为( )A. 2m ≤B. 2m <C. 2m ≥D. 2m >【答案】A 【解析】 【分析】求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m 的不等式,解之可得. 【详解】解不等式1132x x+<-,得:x >8, ∵不等式组无解, ∴4m≤8, 解得m≤2, 故选A .【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.9. 如图,在平面直角坐标中,正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13,点A ,B ,E 在x 轴上,若正方形BEFG 的边长为6,则C 点坐标为( )A (3,2) B. (3,1) C. (2,2) D. (4,2)【答案】A 【解析】【详解】∵正方形ABCD 与正方形BEFG 是以原点O 为位似中心的位似图形,且相似比为13, ∴AD BG =13, ∵BG =6, ∴AD =BC =2, ∵AD ∥BG , ∴△OAD ∽△OBG ,∴OA OB =13, ∴2OAOA +=13, 解得:OA =1,∴OB =3, ∴C 点坐标为:(3,2), 故选A .10. 如图,BC 是半圆的直径,,是BC 上两点,连接BD ,CE 并延长交于点,连接OD ,OE ,如果70A ∠︒=,那么DOE ∠的度数为( )A. 35︒B. 38︒C. 40︒D. 42︒【答案】C 【解析】 【分析】连接CD ,由圆周角定理得出∠BDC=90°,求出∠ACD=90°-∠A=20°,再由圆周角定理得出∠DOE=2∠ACD=40°即可, 【详解】连接CD ,如图所示:∵BC 是半圆O 的直径, ∴∠BDC=90°, ∴∠ADC=90°,∴∠ACD=90°-∠A=20°, ∴∠DOE=2∠ACD=40°, 故选C .【点睛】本题考查了圆周角定理、直角三角形的性质;熟练掌握圆周角定理是解题的关键.二、填空题11. 计算14893-的结果是_____.【答案】3【解析】【分析】先化简,再合并同类二次根式即可.【详解】解:14893-4333=-=3故答案为3.【点睛】此题考查二次根式的加减运算,注意先化简,再合并.12. 将一副直角三角板如图放置,点C在FD的延长上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,则CD的长为______.【答案】12﹣3【解析】【分析】如图(见解析),过点B作BG CF⊥于点G,先根据直角三角形的性质、平行线的性质得出45,60,2BCF EDF BC∠=︒∠=︒=,CG DG的长,然后根据线段的和差即可得.【详解】如图,过点B作BG CF⊥于点G90,45ACB A∠=︒∠=︒9045ABC A∴∠=︒-∠=︒,即45ABC A∠=∠=︒122BC AC∴==//AB CF45ABCBCF∴==∠∠︒Rt BCG为等腰直角三角形2122CG BG BC ∴=== 又90,30F E ∠=︒∠=︒9060EDF E ∴=︒-∠=∠︒在Rt BDG 中,tan BG BDG DG ∠=,即12tan 60DG︒= 解得121243tan 603DG ===︒1243CD CG DG ∴=-=-故答案:1243-.【点睛】本题考查了直角三角形的性质、平行线的性质、解直角三角形等知识点,通过作辅助线,构造直角三角形,进而运用到解直角三角形的方法是解题关键.13. 在光明中学组织的全校师生迎”五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数是_______.【答案】96分 【解析】 【分析】先根据图得出这25名同学的得分,再根据中位数的定义即可得.【详解】由图可知,得分为94分的有5人,得分为96分的有8人,得分为98分的有9人,得分为100分的有3人则将这25名同学的得分按从小到大的顺序进行排序,排在第13位的得分为96分 由中位数的定义得:这些成绩的中位数是96分 故答案为:96分.【点睛】本题考查了中位数的定义,读懂图形,掌握中位数的定义是解题关键.14. 在阳光中学举行的春季运动会上,小亮和大刚报名参加100米比赛,预赛分,,,A B C D 四组进行,运动员通过抽签来确定要参加的预赛小组,小亮和大刚恰好抽到同一个组的概率是_______. 【答案】14【解析】 【分析】根据题意可以画出相应的树状图,从而可以求得甲、乙两人恰好分在同一组的概率. 【详解】如下图所示,小亮和大刚两人恰好分在同一组的情况有4种,共有16种等可能的结果, ∴小亮和大刚两人恰好分在同一组的概率是41164=, 故答案为14. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答三、解答题15. 计算:2216313969a a a a a +⎛⎫-+÷ ⎪+--+⎝⎭. 【答案】63a + 【解析】 【分析】根据分式的混合运算法则计算即可. 【详解】原式223319(3)a a a a ++=-÷--23(3)1(3)(3)3a a a a a +-=-⋅+-+313a a -=-+ 3(3)3a a a +--=+ 63a =+. 【点睛】本题考查的是分式的混合运算,掌握分式的混合运算法则、分式的通分、约分法则是解题的关键. 16. 解分式方程:31133x x-=-- ______________. 【答案】x =7 【解析】 【分析】方程两边都乘以最简公分母,注意不要漏乘没有分母的项;去括号,移项合并同类项,即可求得方程的解. 【详解】解:方程两边都乘以(x-3),得:3-(x-3)=-1 去括号,移项,得:-x=-1-6 合并同类项,得:x=7 经检验,x=7是原方程的根 故答案为:x=7【点睛】本题考查了解分式方程,注意在去分母时,不要漏乘没有分母的项,解分式方程必须验根. 17. 已知如图,△ABC 中,AB =AC ,用尺规在BC 边上求作一点P ,使△BP A ∽△BAC (保留作图痕迹,不写作法).【答案】详见解析 【解析】 【分析】作出AB 的垂直平分线,可得BP =AP ,则∠PBA =∠BAP ,进而得出△BPA ∽△BAC . 【详解】解:如图所示:点P 即为所求, 此时△BPA ∽△BAC .【点睛】此题主要考查了相似变换以及复杂作图,正确把握相似三角形的判定方法是解题关键.18. 学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、顿率分布表和频数分布扇形图.组别课前预习时间/t min频数(人数) 频率t≤< 21 010t≤<0.102 1020t≤<16 0.323 2030t≤<4 3040t≥ 35 40请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为,表中的a=,b=,c=;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min的学生人数.【答案】(1)50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数为172.8;(3)九年级每天课前预习时间不少于20min的学生约有860人.【解析】【分析】(1)根据3组的频数和百分数,即可得到本次调查的样本容量,根据2组的百分比即可得到a的值,进而得到2组的人数,由本次调查的样本容量-其他小组的人数即可得到b,用b÷本次调查的样本容量得到c;(2)根据4组的人数占总人数的百分比乘上360°,即可得到扇形统计图中”4”区对应的圆心角度数;(3)根据每天课前预习时间不少于20min的学生人数所占的比例乘上该校九年级总人数,即可得到结果.【详解】(1)16÷0.32=50,a=50×0.1=5,b=50-2-5-16-3=24,c=24÷50=0.48;故答案为50,5,24,0.48;(2)第4组人数所对应的扇形圆心角的度数=360°×0.48=172.8°;(3)每天课前预习时间不少于20min的学生人数的频率=1-250-0.10=0.86,∴1000×0.86=860,答:这些学生中每天课前预习时间不少于20min的学生人数是860人.【点睛】本题主要考查了扇形统计图的应用,解题时注意:通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系,用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.19. 某商场的运动服装专柜,对,A B两种品牌的远动服分两次采购试销后,效益可观,计划继续采购进行销售.已知这两种服装过去两次的进货情况如下表.(1)问,A B两种品牌运动服的进货单价各是多少元?(2)由于品牌运动服的销量明显好于品牌,商家决定采购品牌的件数比品牌件数的32倍多5件,在采购总价不超过21300元的情况下,最多能购进多少件品牌运动服?【答案】(1),A B两种品牌运动服的进货单价分别为240元和180元;(2)最多能购进65件品牌运动服. 【解析】【分析】(1)直接利用两次采购的总费用得出等式进而得出答案;(2)利用采购B品牌的件数比A品牌件数的32倍多5件,在采购总价不超过21300元,进而得出不等式求出答案.【详解】(1)设,A B两种品牌运动服的进货单价分别为元和元.根据题意,得203010200304014400x y x y +=⎧⎨+=⎩,解之,得240180x y =⎧⎨=⎩.经检验,方程组的解符合题意.答:,A B 两种品牌运动服的进货单价分别为240元和180元.(2)设购进品牌运动服件,则购进品牌运动服352m ⎛⎫+⎪⎝⎭件, ∴32401805213002m m ⎛⎫++≤⎪⎝⎭, 解得,40m ≤.经检验,不等式的解符合题意,∴3354056522m +≤⨯+=. 答:最多能购进65件品牌运动服.【点睛】此题主要考查了一元一次不等式的应用和二元一次方程组的应用,正确得出等量关系是解题关键. 20. 在如图菱形ABCD 中,点是BC 边上一点,连接AP ,点,E F 是AP 上的两点,连接DE ,BF ,使得AED ABC ∠=∠,ABF BPF ∠=∠.(1)求证:ABF DAE ≌;(2)求证:DE BF EF =+. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)根据菱形的性质得到AB=AD ,AD ∥BC ,由平行线的性质得到∠BOA=∠DAE ,等量代换得到∠BAF=∠ADE ,求得∠ABF=∠DAE ,根据全等三角形的判定定理即可得到结论; (2)根据全等三角形的性质得到AE=BF ,DE=AF ,根据线段的和差即可得到结论. 【详解】证明:(1)∵四边形ABCD 为菱形, ∴AB AD =,AD BC ∥, ∴BPA DAE ∠=∠.在ABP ∆和DAE ∆中, 又∵ABC AED ∠=∠, ∴BAF ADE ∠=∠.∵ABF BPF ∠=∠且BPA DAE ∠=∠, ∴ABF DAE ∠=∠, 又∵AB DA =, ∴()ABF DAE ASA ≅ (2)∵ABF DAE ≅, ∴AE BF =,DE AF =. ∵AF AE EF BF EF =+=+, ∴DE BF EF =+.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的性质是解题的关键. 21. 2018年3月2日,500架无人飞机在西安创业咖啡街区的夜空绽放,西安高新区用”硬科技”打造了最具独特的风景线,2018”西安年,最中国”以一场华丽的视觉盛宴完美收官,当晚,某兴趣爱好者想用手中的无人机测量大雁塔的高度,如图是从大雁塔正南面看到的正视图,兴趣爱好者将无人机上升至离地面185米高大雁塔正东面的F 点,此时,他测得F 点都塔顶A 点的俯视角为30°,同时也测得F 点到塔底C 点的俯视角为45°,已知塔底边心距OC =23米,请你帮助该无人机爱好者计算出大雁塔的大体高度(结果精确到0.1米)?(3≈1.73,2 ≈1.41).【答案】大雁塔的大体高度是65.1米. 【解析】 【分析】作FD ⊥BC ,交BC 的延长线于D ,作AE ⊥DF 于E ,则四边形AODE 是矩形.解直角△CDF ,得出CD =DF =185米,那么OD =OC+CD =208米,AE =OD =208米.再解直角△AEF ,求出EF =AE•tan ∠FAE =20833米,然后根据OA=DE=DF﹣EF即可求解.【详解】解:如图,作FD⊥BC,交BC的延长线于D,作AE⊥DF于E,则四边形AODE是矩形.由题意,可知∠FAE=30°,∠FCD=45°,DF=185米.在直角△CDF中,∵∠D=90°,∠FCD=45°,∴CD=DF=185米,∴OD=OC+CD=208米,∴AE=OD=208米.在直角△AEF中,∵∠AEF=90°,∠FAE=30°,∴EF=AE•tan∠FAE=208×33=20833(米),∴DE=DF﹣EF=185﹣20833≈185﹣119.95≈65.1(米),∴OA=DE≈65.1米.故大雁塔的大体高度是65.1米.【点睛】本题考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.22. 如图,点A(32,4),B(3,m)是直线AB与反比例函数nyx(x>0)图象的两个交点.AC⊥x轴,垂足为点C,已知D(0,1),连接AD,BD,BC.(1)求直线AB 的表达式;(2)△ABC 和△ABD 的面积分别为S 1,S 2,求S 2-S 1.【答案】(1)463y x =-+;(2)34 【解析】【分析】(1)先由A 点坐标求出反比例函数的表达式,再求出B 点坐标,最后运用待定系数法求直线AB 的表达式即可;(2)ABC 的面积可由”底乘高除以2”直接求得,ABD △的面积运用”补”的思想求出,然后两者作差即可得.【详解】(1)由点3(,4)2A 在反比例函数(0)n y x x=>的图象上 ∴432n=∴6n = ∴反比例函数的表达式为6(0)y x x=> 将点(3,)B m 代入6y x =得623m == ∴(3,2)B设直线AB 的表达式为y kx b =+ 将点3(,4),(3,2)2A B 代入得34232k b k b ⎧+=⎪⎨⎪+=⎩, 解得436k b ⎧=-⎪⎨⎪=⎩ 则直线AB 的表达式为463y x =-+;(2)由点A 、B 的坐标得4AC =,点B 到AC 的距离为33322-= ∴1134322S =⨯⨯= 如图,设直线AB 与y 轴的交点为E令0x =得6y =,则点E 坐标为(0,6)E(0,1)D∴615DE =-=由点3(,4),(3,2)2A B 得:点A 、B 到DE 的距离分别为32,3 ∴2113155352224BDE ADE S S S=-=⨯⨯-⨯⨯= 则21153344S S -=-=.【点睛】本题考查了运用待定系数法求反比例函数、一次函数的表达式,在平面直角坐标系中求几何图形的面积,正确求出两个函数的表达式是解题关键.23. 如图,在平面直角坐标系中,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣2,0),点B (4,0),与y 轴交于点C (0,8),连接BC ,又已知位于y 轴右侧且垂直于x 轴的动直线l ,沿x 轴正方向从O 运动到B (不含O 点和B 点),且分别交抛物线、线段BC 以及x 轴于点P ,D ,E .(1)求抛物线的表达式;(2)连接AC ,AP ,当直线l 运动时,求使得△PEA 和△AOC 相似点P 的坐标;(3)作PF ⊥BC ,垂足为F ,当直线l 运动时,求Rt △PFD 面积的最大值.【答案】(1) y =﹣x 2+2x +8;(2)点P (1523,416);(3)165 【解析】【分析】(1)将点A 、B 、C 的坐标代入二次函数表达式,即可求解;(2)只有当∠PEA =∠AOC 时,PEA △∽AOC ,可得:PE =4AE ,设点P 坐标(4k ﹣2,k ),即可求解; (3)利用Rt △PFD ∽Rt △BOC 得: 2()PFD BOC S PD S BC=,再求出PD 的最大值,即可求解. 【详解】解:(1)将点A 、B 、C 的坐标代入二次函数表达式得:42016408a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得:a = -1,b =2,c =8,故抛物线的表达式为:y =﹣x 2+2x +8;(2)∵点A (﹣2,0)、C (0,8),∴OA =2,OC =8,∵l ⊥x 轴,∴∠PEA =∠AOC =90°,∵∠P AE ≠∠CAO ,∴只有当∠PEA =∠AOC 时,PEA △∽AOC , 此时AE PE CO AO =,即:82AE PE =, ∴AE =4PE ,设点P 的纵坐标为k ,则PE =k ,AE =4k ,∴OE =4k ﹣2,将点P 坐标(4k ﹣2,k )代入二次函数表达式并解得:k =0或2316(舍去0),则点P (1523,416); (3)在Rt △PFD 中,∠PFD =∠COB =90°,∵l ∥y 轴,∴∠PDF =∠COB ,∴Rt △PFD ∽Rt △BOC , ∴2()PFD BOC S PD S BC=, ∴S △PDF =2()PD BC •S △BOC , 而S △BOC =12OB •OC =12×4×8=16,BC==∴S △PDF =2()PD BC•S △BOC =15PD 2, 即当PD 取得最大值时,S △PDF 最大,将B 、C 坐标代入一次函数表达式y kx b =+得:408k b b +=⎧⎨=⎩, 解得:28k b =-⎧⎨=⎩, ∴直线BC 的表达式为:y =﹣2x +8,设点P (m ,﹣m 2+2m +8),则点D (m ,﹣2m +8),则PD =﹣m 2+2m +8+2m ﹣8=﹣(m ﹣2)2+4,当m =2时,PD 的最大值为4,故当PD =4时,∴S △PDF =15PD 2=165. 【点睛】本题主要考查了待定系数法求二次函数和一次函数的解析式,相似三角形的判定和性质,利用数形结合的思想把代数和几何结合起来,利用点的坐标的意义表示线段的长度,从而求得线段之间的关系是正确解答本题的关键.24. 问题探究(1)如图①,点E 、F 分别在正方形ABCD 的边BC 、CD 上,∠EAF=45°,则线段BE 、EF 、FD 之间的数量关系为 ;(2)如图②,在△ADC 中,AD=2,CD=4,∠ADC 是一个不固定的角,以AC 为边向△ADC 的另一侧作等边△ABC ,连接BD ,则BD 的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由; 问题解决(3)如图③,在四边形ABCD 中,AB=AD ,∠BAD=60°,,若BD ⊥CD ,垂足为点D ,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.【答案】(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为26.【解析】【分析】(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【点睛】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.。

中考数学模拟试卷一附答案解析

中考数学模拟试卷一附答案解析

2021年湖南省长沙市教科所中考模拟试卷〔一〕数学一、选择题〔在以下各题四个选项中,只有一项为哪一项符合题意.请在答题卡中填涂符合题意选项.本大题共12个小题,每题3分,共36分〕1.以下各组数中,互为相反数是〔〕A.﹣2 与2B.2与2C.3与D.3与32.长城、故宫等是我国第一批胜利入选世界遗产文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为〔〕×106×10﹣6×105×1073.如图,与∠1是内错角是〔〕A.∠2B.∠3C.∠4D.∠54.以下运算正确是〔〕A.B.C.a2•a3=a5D.〔2a〕3=2a35.如图是小强用八块一样小正方体积木搭建几何体,这个几何体左视图是〔〕A.B.C.D.6.如图,点C、D是线段AB上两点,点D是线段AC中点.假设AB=10cm,BC=4cm,那么线段DB长等于〔〕A.2cm B.3cm C.6cm D.7cm7.以下命题中,错误是〔〕A.三角形两边之和大于第三边B.三角形外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形8.有15位同学参与歌咏竞赛,所得分数互不一样,获得分前8位同学进入决赛.某同学知道自己分数后,要推断自己能否进入决赛,他只需知道这15位同学〔〕A.平均数B.中位数C.众数D.方差9.某人想沿着梯子爬上高4米房顶,梯子倾斜角〔梯子与地面夹角〕不能>60°,否那么就有危急,那么梯子长至少为〔〕A.8米B.米C.米D.米10.如图,要使平行四边形ABCD成为矩形,需添加条件是〔〕A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠211.关于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么a满意〔〕A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠512.如图1,点E为矩形ABCD边AD上一点,点P从点B动身沿BE→ED→DC运动到点C停顿,点Q从点B动身沿BC运动到点C停顿,它们运动速度都是1cm/s.假设点P、Q同时开始运动,设运动时间为t〔s〕,△BPQ面积为y〔cm2〕,y与t之间函数图象如图2所示.给=48cm2;③14<t<22时,出以下结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABEy=110﹣5t;④在运动过程中,使得△ABP是等腰三角形P点一共有3个;⑤当△BPQ与△BEA相像时,t=14.5.其中正确结论序号是〔〕A.①④⑤B.①②④C.①③④D.①③⑤二、填空题〔本大题共6个小题,每题3分,共18分〕13.假设二次根式有意义,那么x取值范围为.14.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都一样.假设从该布袋里随意摸出1个球,是红球概率为,那么a等于.16.某蔬菜基地圆弧形蔬菜大棚剖面如下图,AB=16m,半径OA=10m,那么蔬菜大棚高度CD=m.17.如图,在△ABC中,BE平分∠ABC,DE∥BC,假如DE=2AD,AE=3,那么EC=.18.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,那么tan∠DBE值是.三、解答题〔本大题共8个小题,第19、20题每题6分,第21、22题每题6分,第23、24题每题6分,第25、26题每题6分,共66分.解容许写出必要文字说明、证明过程或演算步骤〕19.〔6分〕计算:〔π﹣3.14〕0﹣2﹣|﹣3|=.20.〔6分〕解不等式组,并写出其全部整数解.21.〔8分〕“端午节〞是我国传统佳节,民间历来有吃“粽子〞风俗.我市某食品厂为理解市民对去年销量较好肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽〔以下分别用A、B、C、D表示〕这四种不同口味粽子宠爱状况,在节前对某居民区市民进展了抽样调查,并将调查状况绘制成如下两幅统计图〔尚不完好〕.请根据以上信息答复:〔1〕本次参与抽样调查居民有多少人?〔2〕将两幅不完好图补充完好;〔3〕求扇形统计图中C所对圆心角度数;〔4〕假设有外型完全一样A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图方法,求他第二个吃到恰好是C粽概率.22.〔8分〕如图,AB为圆O直径,点C为圆O上一点,假设∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.〔1〕试推断CD与圆O位置关系,并说明理由;〔2〕假设直线l与AB延长线相交于点E,圆O半径为3,并且∠CAB=30°,求AD长.23.〔9分〕由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工作所需时间比是3:2,两队共同施工6天可以完成.〔1〕求两队单独完成此项工程各需多少天?〔2〕此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元酬劳,假设按各自完成工程量安排这笔钱,问甲、乙两队各应得到多少元?24.〔9分〕如图,边长为1正方形ABCD对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ〔0°<θ<90°〕,PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.〔1〕求四边形OEBF面积;〔2〕求证:OG•BD=EF2;25.〔10分〕在数学上,我们把符合肯定条件动点所形成图形叫做满意该条件点轨迹.例如:动点P坐标满意〔m,m﹣1〕,全部符合该条件点组成图象在平面直角坐标系xOy中就是一次函数y=x﹣1图象.即点P轨迹就是直线y=x﹣1.〔1〕假设m、n满意等式mn﹣m=6,那么〔m,n﹣1〕在平面直角坐标系xOy中轨迹是;〔2〕假设点P〔x,y〕到点A〔0,1〕间隔与到直线y=﹣1间隔相等,求点P轨迹;〔3〕假设抛物线y=上有两动点M、N满意MN=a〔a为常数,且a≥4〕,设线段MN中点为Q,求点Q到x轴最短间隔.26.〔10分〕如图1,二次函数y=ax2﹣2ax﹣3a〔a<0〕图象与x轴交于A、B两点〔点A在点B右侧〕,与y轴正半轴交于点C,顶点为D.〔1〕求顶点D坐标〔用含a代数式表示〕;〔2〕假设以AD为直径圆经过点C.①求抛物线函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN〔点P、M、N分别和点O、B、E对应〕,并且点M、N都在抛物线上,作MF⊥x轴于点F,假设线段MF:BF=1:2,求点M、N坐标;③点Q在抛物线对称轴上,以Q为圆心圆过A、B两点,并且和直线CD相切,如图3,求点Q坐标.参考答案与试题解析一、选择题1.以下各组数中,互为相反数是〔〕A.﹣2 与2B.2与2C.3与D.3与3【分析】根据相反数概念作出推断.【解答】解:A.﹣2与2互为相反数,正确;B.2=2,不是相反数,故错误;×=1,互为倒数,故错误;D.3=3,不是相反数,故错误;应选:A.【点评】此题考察了相反数,解决此题关键是熟记相反数定义.2.长城、故宫等是我国第一批胜利入选世界遗产文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为〔〕×106×10﹣6×105×107【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数.确定n值时,要看把原数变成a时,小数点挪动了多少位,n肯定值与小数点挪动位数一样.当原数肯定值>1时,n是正数;当原数肯定值<1时,n是负数.【解答】×106,应选:A.【点评】此题考察科学记数法表示方法.科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值.3.如图,与∠1是内错角是〔〕A.∠2B.∠3C.∠4D.∠5【分析】根据内错角定义找出即可.应选:B.【点评】此题考察了“三线八角〞问题,确定三线八角关键是从截线入手.对平面几何中概念理解,肯定要紧扣概念中关键词语,要做到对它们正确理解,对不同几何语言表达要留意理解它们所包含意义.4.以下运算正确是〔〕A.B.C.a2•a3=a5D.〔2a〕3=2a3【分析】根据算术平方根定义、二次根式加减运算、同底数幂乘法及积乘方运算法那么逐一计算即可推断.【解答】解:A、=2,此选项错误;B、2+不能进一步计算,此选项错误;C、a2•a3=a5,此选项正确;D、〔2a〕3=8a3,此选项计算错误;应选:C.【点评】此题主要考察二次根式加减和幂运算,解题关键是驾驭算术平方根定义、二次根式加减运算、同底数幂乘法及积乘方运算法那么.5.如图是小强用八块一样小正方体积木搭建几何体,这个几何体左视图是〔〕A.B.C.D.【分析】左视图有2列,从左到右分别是2,1个正方形.【解答】解:这个几何体左视图是,应选:D.【点评】此题主要考察了简洁组合体三视图,关键是驾驭左视图所看位置.6.如图,点C、D是线段AB上两点,点D是线段AC中点.假设AB=10cm,BC=4cm,那么线段DB长等于〔〕A.2cm B.3cm C.6cm D.7cm【分析】先根据线段和差关系求出AC,再根据中点定义求得CD长,再根据BD=CD+BC即可解答.【解答】解:∵AB=10,BC=4,∴AC=AB﹣BC=6,∵点D是AC中点,∴AD=CD=AC=3.∴BD=BC+CD=4+3=7cm,应选:D.【点评】此题考察了两点间间隔,根据是娴熟驾驭线段和差计算,以及中点定义.7.以下命题中,错误是〔〕A.三角形两边之和大于第三边B.三角形外角和等于360°C.等边三角形既是轴对称图形,又是中心对称图形D.三角形一条中线能将三角形分成面积相等两部分【分析】根据三角形性质即可作出推断.【解答】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形,不是中心对称图形;D、三角形一条中线能将三角形分成面积相等两部分,正确.应选:C.【点评】此题考察了命题真假推断,属于根底题.根据定义:符合事实真理推断是真命题,不符合事实真理推断是假命题,不难选出正确项.8.有15位同学参与歌咏竞赛,所得分数互不一样,获得分前8位同学进入决赛.某同学知道自己分数后,要推断自己能否进入决赛,他只需知道这15位同学〔〕A.平均数B.中位数C.众数D.方差【分析】由中位数概念,即最中间一个或两个数据平均数;可知15人成果中位数是第8名成果.根据题意可得:参赛选手要想知道自己是否能进入前8名,只须要理解自己成果以及全部成果中位数,比较即可.【解答】解:由于15个人中,第8名成果是中位数,故小方同学知道了自己分数后,想知道自己能否进入决赛,还需知道这十五位同学分数中位数.【点评】此题主要考察统计有关学问,主要包括平均数、中位数、众数意义.反映数据集中程度统计量有平均数、中位数、众数等,各有局限性,因此要对统计量进展合理选择和恰当运用.9.某人想沿着梯子爬上高4米房顶,梯子倾斜角〔梯子与地面夹角〕不能>60°,否那么就有危急,那么梯子长至少为〔〕A.8米B.米C.米D.米【分析】倾斜角取最大,利用最大角正弦值即可求解.【解答】解:如图:AC=4,AC⊥BC.∵梯子倾斜角〔梯子与地面夹角〕不能>60°.∴∠ABC≤60°,最大角为60°.∴AB====4×===.即梯子长至少为米.应选:C.【点评】此题主要考察学生对直角三角形坡度问题驾驭,做此题关键是明白当梯子倾斜角越大时梯子长度要求越短,所以坡角取最大值.10.如图,要使平行四边形ABCD成为矩形,需添加条件是〔〕A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠1=∠2【分析】根据一个角是90度平行四边形是矩形进展选择即可.【解答】解:A、是邻边相等,可断定平行四边形ABCD是菱形;B、是对角线互相垂直,可断定平行四边形ABCD是菱形;C、是一内角等于90°,可推断平行四边形ABCD成为矩形;D、是对角线平分对角,可断定平行四边形ABCD是菱形.【点评】此题主要应用学问点为:矩形断定.①对角线相等且互相平分四边形为矩形.②一个角是90度平行四边形是矩形.11.关于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么a满意〔〕A.a≥1B.a>1且a≠5C.a≥1且a≠5D.a≠5【分析】由于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么分两种状况:〔1〕当a﹣5=0时,方程肯定有实数根;〔2〕当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a 取值范围.【解答】解:分类探讨:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程肯定有实数根;②当a﹣5≠0即a≠5时,∵关于x方程〔a﹣5〕x2﹣4x﹣1=0有实数根∴16+4〔a﹣5〕≥0,∴a≥1.∴a取值范围为a≥1.应选:A.【点评】此题考察了一元二次方程ax2+bx+c=0〔a≠0〕根判别式△=b2﹣4ac:当△>0,方程有两个不相等实数根;当△=0,方程有两个相等实数根;当△<0,方程没有实数根;切记不要忽视一元二次方程二次项系数不为零这一隐含条件.12.如图1,点E为矩形ABCD边AD上一点,点P从点B动身沿BE→ED→DC运动到点C停顿,点Q从点B动身沿BC运动到点C停顿,它们运动速度都是1cm/s.假设点P、Q同时开始运动,设运动时间为t〔s〕,△BPQ面积为y〔cm2〕,y与t之间函数图象如图2所示.给=48cm2;③14<t<22时,出以下结论:①当0<t≤10时,△BPQ是等腰三角形;②S△ABEy=110﹣5t;④在运动过程中,使得△ABP是等腰三角形P点一共有3个;⑤当△BPQ与△BEA相像时,t=14.5.其中正确结论序号是〔〕A.①④⑤B.①②④C.①③④D.①③⑤【分析】根据题意,得到P、Q分别同时到达D、C可推断①②,分段探讨PQ位置后可以推断③,再由等腰三角形分类探讨方法确定④,根据两个点相对位置推断点P在DC上时,存在△BPQ与△BEA相像可能性,分类探讨计算即可.【解答】解:由图象可知,点Q到达C时,点P到E那么BE=BC=10,ED=4故①正确那么AE=10﹣4=6t=10时,△BPQ面积等于∴AB=DC=8=故S△ABE故②错误当14<t<22时,y=故③正确;分别以A、B为圆心,AB为半径画圆,将两圆交点连接即为AB垂直平分线那么⊙A、⊙B及AB垂直平分线与点P运行途径交点是P,满意△ABP是等腰三角形此时,满意条件点有4个,故④错误.∵△BEA为直角三角形∴只有点P在DC边上时,有△BPQ与△BEA相像由,PQ=22﹣t∴当或时,△BPQ与△BEA相像分别将数值代入或解得t=故⑤正确应选:D.【点评】此题是动点问题函数图象探究题,考察了三角形相像断定、等腰三角形断定,应用了分类探讨和数形结合数学思想.二、填空题〔本大题共6个小题,每题3分,共18分〕13.假设二次根式有意义,那么x取值范围为x≥.【分析】函数关系中主要有二次根式.根据二次根式意义,被开方数是非负数.【解答】解:根据题意得:1+2x≥0,解得x≥﹣.故答案为:x≥﹣.【点评】此题主要考察自变量取值范围,函数自变量范围一般从三个方面考虑:〔1〕当函数表达式是整式时,自变量可取全体实数;〔2〕当函数表达式是分式时,考虑分式分母不能为0;〔3〕当函数表达式是二次根式时,被开方数为非负数.14.一个布袋里装有2个红球,3个白球和a个黄球,这些球除颜色外其余都一样.假设从该布袋里随意摸出1个球,是红球概率为,那么a等于1.【分析】设袋中有a个黄球,再根据概率公式求出a值即可.【解答】解:设袋中有a个黄球,∵袋中有红球2个,白球3个,从中随意摸出一个球是红球概率为,∴=,解得:a=1.故答案为:1.【点评】此题考察是概率公式,熟知随机事务A概率P〔A〕=事务A可能出现结果数与全部可能出现结果数商是解答此题关键.15.假设反比例函数y=图象位于第一、三象限,那么正整数k值是1.【分析】由反比例函数性质列出不等式,解出k范围,在这个范围写出k整数解那么可.【解答】解:∵反比例函数图象在一、三象限,∴2﹣k>0,即k<2.又∵k是正整数,∴k值是:1.故答案为:1.【点评】此题考察了反比例函数性质:当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.16.某蔬菜基地圆弧形蔬菜大棚剖面如下图,AB=16m,半径OA=10m,那么蔬菜大棚高度CD=4m.【分析】由垂径定理,可得AD=AB,然后由勾股定理求得OD长,继而求得中间柱CD高度.【解答】解:∵CD是中间柱,即=,∴OC⊥AB,∴AD=BD=AB=×16=8〔m〕,∵半径OA=10m,在Rt△AOD中,OD==6〔m〕,∴CD=OC﹣OD=10﹣6=4〔m〕.故答案为:4【点评】此题考察了垂径定理应用与勾股定理.此题比较简洁,留意数形结合思想应用.17.如图,在△ABC中,BE平分∠ABC,DE∥BC,假如DE=2AD,AE=3,那么EC=6.【分析】由BE平分∠ABC,DE∥BC,易得△BDE是等腰三角形,即可得BD=2AD,又由平行线分线段成比例定理,即可求得答案.【解答】解:∵DE∥BC,∴∠DEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠DEB,∴BD=DE,∵DE=2AD,∴BD=2AD,∵DE∥BC,∴AD:DB=AE:EC,∴EC=2AE=2×3=6.故答案为:6.【点评】此题考察了平行线分线段成比例定理以及等腰三角形断定与性质.留意驾驭线段对应关系是解此题关键.18.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,那么tan∠DBE值是2.【分析】求出AD=AB,设AD=AB=5x,AE=3x,那么5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出tan∠DBE=,代入求出即可,【解答】解:∵四边形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴设AD=AB=5x,AE=3x,那么5x﹣3x=4,x=2,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:DE==8,在Rt△BDE中,tan∠DBE===2,故答案为:2.【点评】此题考察了菱形性质,勾股定理,解直角三角形应用,关键是求出DE长.三、解答题〔本大题共8个小题,第19、20题每题6分,第21、22题每题6分,第23、24题每题6分,第25、26题每题6分,共66分.解容许写出必要文字说明、证明过程或演算步骤〕19.〔6分〕计算:〔π﹣3.14〕0﹣2﹣|﹣3|=﹣1.【分析】此题涉及零指数幂、负指数幂、二次根式化简和特别角三角函数值4个考点.在计算时,须要针对每个考点分别进展计算,然后根据实数运算法那么求得计算结果.【解答】解:原式=1﹣2×+4﹣3,=1﹣3+4﹣3,=﹣1.故答案为:﹣1.【点评】此题主要考察了实数综合运算实力,是各地中考题中常见计算题型.解决此类题目关键是娴熟驾驭负整数指数幂、零指数幂、二次根式、肯定值等考点运算.20.〔6分〕解不等式组,并写出其全部整数解.【分析】先求出不等式组解集,即可求得该不等式组整数解.【解答】解:由①得,x≥1,由②得,x<4.所以不等式组解集为1≤x<4,该不等式组整数解为1,2,3.【点评】此题考察是解一元一次不等式组及求一元一次不等式组整数解,求不等式公共解,要遵循以下原那么:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.〔8分〕“端午节〞是我国传统佳节,民间历来有吃“粽子〞风俗.我市某食品厂为理解市民对去年销量较好肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽〔以下分别用A、B、C、D表示〕这四种不同口味粽子宠爱状况,在节前对某居民区市民进展了抽样调查,并将调查状况绘制成如下两幅统计图〔尚不完好〕.请根据以上信息答复:〔1〕本次参与抽样调查居民有多少人?〔2〕将两幅不完好图补充完好;〔3〕求扇形统计图中C所对圆心角度数;〔4〕假设有外型完全一样A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图方法,求他第二个吃到恰好是C粽概率.【分析】〔1〕根据B类有60人,所占百分比是10%即可求解;〔2〕利用总人数减去其他类型人数即可求得C类型人数,然后根据百分比意义求解;〔3〕利用360°乘以对应百分比即可求解;〔4〕利用列举法即可求解.【解答】解:〔1〕本次参与抽样调查居民人数是:60÷10%=600〔人〕;〔2〕C类人数是:600﹣180﹣60﹣240=120〔人〕,C类所占百分比是:×100%=20%,A类所占百分比是:×100%=30%.;〔3〕扇形统计图中C所对圆心角度数是:360°×20%=72°;〔4〕画树状图如下:那么他第二个吃到恰好是C粽概率是:=.【点评】此题考察是条形统计图和扇形统计图综合运用,读懂统计图,从不同统计图中得到必要信息是解决问题关键.条形统计图能清晰地表示出每个工程数据;扇形统计图干脆反映部分占总体百分比大小.22.〔8分〕如图,AB为圆O直径,点C为圆O上一点,假设∠BAC=∠CAM,过点C作直线l垂直于射线AM,垂足为点D.〔1〕试推断CD与圆O位置关系,并说明理由;〔2〕假设直线l与AB延长线相交于点E,圆O半径为3,并且∠CAB=30°,求AD长.【分析】〔1〕连接OC,求出OC和AD平行,求出OC⊥CD,根据切线断定得出即可;〔2〕连接BC,解直角三角形求出BC和AC,求出△BCA∽△CDA,得出比例式,代入求出即可.【解答】解:〔1〕CD与圆O位置关系是相切,理由是:连接OC,∵OA=OC,∴∠OCA=∠CAB,∵∠CAB=∠CAD,∴∠OCA=∠CAD,∴OC∥AD,∵CD⊥AD,∴OC⊥CD,∵OC为半径,∴CD与圆O位置关系是相切;〔2〕连接BC,∵AB是⊙O直径,∴∠BCA=90°,∵圆O半径为3,∴AB=6,∵∠CAB=30°,∴BC=AB=3,AC=BC=3,∵∠BCA=∠CDA=90°,∠CAB=∠CAD,∴△CAB∽△DAC,∴=,∴=,∴AD=.【点评】此题考察了切线性质和断定,圆周角定理,相像三角形性质和断定,解直角三角形等学问点,能综合运用学问点进展推理是解此题关键.23.〔9分〕由甲、乙两个工程队承包某校校园绿化工程,甲、乙两队单独完成这项工作所需时间比是3:2,两队共同施工6天可以完成.〔1〕求两队单独完成此项工程各需多少天?〔2〕此项工程由甲、乙两队共同施工6天完成任务后,学校付给他们4000元酬劳,假设按各自完成工程量安排这笔钱,问甲、乙两队各应得到多少元?【分析】〔1〕设甲队单独完成此项工程须要3x天,那么乙队单独完成此项工程须要2x天,根据两队共同施工6天可以完成该工程,即可得出关于x分式方程,解之经检验即可得出结论;〔2〕根据甲、乙两队单独完成这项工作所需时间比可得出两队每日完成工作量之比,再结合总酬劳为4000元即可求出结论.【解答】解:〔1〕设甲队单独完成此项工程须要3x天,那么乙队单独完成此项工程须要2x 天,根据题意得: +=1,解得:x=5,经检验,x=5是所列分式方程解且符合题意.∴3x=15,2x=10.答:甲队单独完成此项工程须要15天,乙队单独完成此项工程须要10天.〔2〕∵甲、乙两队单独完成这项工作所需时间比是3:2,∴甲、乙两队每日完成工作量之比是2:3,∴甲队应得酬劳为4000×=1600〔元〕,乙队应得酬劳为4000﹣1600=2400〔元〕.答:甲队应得酬劳为1600元,乙队应得酬劳为2400元.【点评】此题考察了分式方程应用,找准等量关系,正确列出分式方程是解题关键.24.〔9分〕如图,边长为1正方形ABCD对角线AC、BD相交于点O.有直角∠MPN,使直角顶点P与点O重合,直角边PM、PN分别与OA、OB重合,然后逆时针旋转∠MPN,旋转角为θ〔0°<θ<90°〕,PM、PN分别交AB、BC于E、F两点,连接EF交OB于点G.〔1〕求四边形OEBF面积;〔2〕求证:OG•BD=EF2;〔3〕在旋转过程中,当△BEF与△COF面积之和最大时,求AE长.【分析】〔1〕由四边形ABCD是正方形,直角∠MPN,易证得△BOE≌△COF〔ASA〕,那么可证得S四边形OEBF =S△BOC=S正方形ABCD;〔2〕易证得△OEG∽△OBE,然后由相像三角形对应边成比例,证得OG•OB=OE2,再利用OB 与BD关系,OE与EF关系,即可证得结论;〔3〕首先设AE=x,那么BE=CF=1﹣x,BF=x,继而表示出△BEF与△COF面积之和,然后利用二次函数最值问题,求得AE长.【解答】解:〔1〕∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF〔ASA〕,∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD=×1×1=;〔2〕证明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG•OB=OE2,∵OB=BD,OE=EF,∴OG•BD=EF2;〔3〕如图,过点O作OH⊥BC,∵BC=1,∴OH=BC=,设AE=x,那么BE=CF=1﹣x,BF=x,∴S△BEF +S△COF=BE•BF+CF•OH=x〔1﹣x〕+〔1﹣x〕×=﹣〔x﹣〕2+,∵a=﹣<0,∴当x=时,S△BEF +S△COF最大;即在旋转过程中,当△BEF与△COF面积之和最大时,AE=.【点评】此题属于四边形综合题,主要考察了正方形性质,旋转性质、全等三角形断定与性质、相像三角形断定与性质、勾股定理以及二次函数最值问题.留意驾驭转化思想应用是解此题关键.25.〔10分〕在数学上,我们把符合肯定条件动点所形成图形叫做满意该条件点轨迹.例如:动点P坐标满意〔m,m﹣1〕,全部符合该条件点组成图象在平面直角坐标系xOy中就是一次函数y=x﹣1图象.即点P轨迹就是直线y=x﹣1.〔1〕假设m、n满意等式mn﹣m=6,那么〔m,n﹣1〕在平面直角坐标系xOy中轨迹是y=;〔2〕假设点P〔x,y〕到点A〔0,1〕间隔与到直线y=﹣1间隔相等,求点P轨迹;〔3〕假设抛物线y=上有两动点M、N满意MN=a〔a为常数,且a≥4〕,设线段MN中点为Q,求点Q到x轴最短间隔.【分析】〔1〕先推断出m〔n﹣1〕=6,进而得出结论;〔2〕先求出点P到点A间隔和点P到直线y=﹣1间隔建立方程即可得出结论;〔3〕设出点M,N坐标,进而得出点Q坐标,利用MN=a,得出16〔k2+1〕〔k2+b〕≥16,即可得出结论.【解答】解:〔1〕设m=x,n﹣1=y,∵mn﹣m=6,∴m〔n﹣1〕=6,∴xy=6,∴y=,∴〔m,n﹣1〕在平面直角坐标系xOy中轨迹是y=,故答案为:y=;〔2〕∴点P〔x,y〕到点A〔0,1〕,∴点P〔x,y〕到点A〔0,1〕间隔平方为x2+〔y﹣1〕2,∵点P〔x,y〕到直线y=﹣1间隔平方为〔y+1〕2,∵点P〔x,y〕到点A〔0,1〕间隔与到直线y=﹣1间隔相等,∴x2+〔y﹣1〕2=〔y+1〕2,∴y=x2;〔3〕设直线MN解析式为y=kx+b,M〔x1,y1〕,N〔x2,y2〕,∴线段MN中点为Q纵坐标为,∴x2=kx+b,∴x2﹣4kx﹣4b=0,∴x1+x2=4k,x1x2=﹣4b,∴=〔kx1+b+kx2+b〕= [k〔x1+x2〕+2b]=2k2+b∴MN2=〔x1﹣x2〕2+〔y1﹣y2〕2=〔k2+1〕〔x1﹣x2〕2=〔k2+1〕[〔x1+x2〕2﹣4x1x2]=16〔k2+1〕〔k2+b〕≥16,∴k2+b≥,∴=k2+k2+b≥k2+=〔k2+1+〕﹣1≥2﹣1=1,∴点Q到x轴最短间隔为1.【点评】此题是二次函数综合题,主要考察了点轨迹定义,两点间间隔公式,中点坐标公式公式,根与系数关系,确定出16〔k2+1〕〔k2+b〕≥16是解此题关键.26.〔10分〕如图1,二次函数y=ax2﹣2ax﹣3a〔a<0〕图象与x轴交于A、B两点〔点A在点B右侧〕,与y轴正半轴交于点C,顶点为D.〔1〕求顶点D坐标〔用含a代数式表示〕;〔2〕假设以AD为直径圆经过点C.①求抛物线函数关系式;②如图2,点E是y轴负半轴上一点,连接BE,将△OBE绕平面内某一点旋转180°,得到△PMN〔点P、M、N分别和点O、B、E对应〕,并且点M、N都在抛物线上,作MF⊥x轴于点F,假设线段MF:BF=1:2,求点M、N坐标;③点Q在抛物线对称轴上,以Q为圆心圆过A、B两点,并且和直线CD相切,如图3,求点Q坐标.【分析】〔1〕将二次函数解析式进展配方即可得到顶点D坐标.〔2〕①以AD为直径圆经过点C,即点C在以AD为直径圆圆周上,根据圆周角定理不难得出△ACD是个直角三角形,且∠ACD=90°,A点坐标可得,而C、D坐标可由a表达出来,在得出AC、CD、AD长度表达式后,根据勾股定理列等式即可求出a值,由此得出抛物线解析式.②将△OBE绕平面内某一点旋转180°得到△PMN,说明了PM正好和x轴平行,且PM=OB=1,所以求M、N坐标关键是求出点M坐标;首先根据①函数解析式设出M点坐标,然后根据题干条件:BF=2MF作为等量关系进展解答即可.③设⊙Q与直线CD切点为G,连接QG,由C、D两点坐标不难推断出∠CDQ=45°,那么△QGD为等腰直角三角形,即QD2=2QG2=2QB2,设出点Q坐标,然后用Q点纵坐标表达出QD、QB长,根据上面等式列方程即可求出点Q坐标.【解答】解:〔1〕∵y=ax2﹣2ax﹣3a=a〔x﹣1〕2﹣4a,∴D〔1,﹣4a〕.〔2〕①∵以AD为直径圆经过点C,∴△ACD为直角三角形,且∠ACD=90°;由y=ax2﹣2ax﹣3a=a〔x﹣3〕〔x+1〕知,A〔3,0〕、B〔﹣1,0〕、C〔0,﹣3a〕,那么:AC2=〔0﹣3〕2+〔﹣3a﹣0〕2=9a2+9、CD2=〔0﹣1〕2+〔﹣3a+4a〕2=a2+1、AD2=〔3﹣1〕2+〔0+4a〕2=16a2+4由勾股定理得:AC2+CD2=AD2,即:9a2+9+a2+1=16a2+4,化简,得:a2=1,由a<0,得:a=﹣1即,抛物线解析式:y=﹣x2+2x+3.②∵将△OBE绕平面内某一点旋转180°得到△PMN,∴PM∥x轴,且PM=OB=1;设M〔x,﹣x2+2x+3〕,那么OF=x,MF=﹣x2+2x+3,BF=OF+OB=x+1;∵MF:BF=1:2,即BF=2MF,∴2〔﹣x2+2x+3〕=x+1,化简,得:2x2﹣3x﹣5=0解得:x1=﹣1、x2=∴M〔,〕、N〔,〕.③设⊙Q与直线CD切点为G,连接QG,过C作CH⊥QD于H,如右图;设Q〔1,b〕,那么QD=4﹣b,QB2=QG2=〔1+1〕2+〔b﹣0〕2=b2+4;∵C〔0,3〕、D〔1,4〕,∴CH=DH=1,即△CHD是等腰直角三角形,∴△QGD也是等腰直角三角形,即:QD2=2QG2;代入数据,得:〔4﹣b〕2=2〔b2+4〕,化简,得:b2+8b﹣8=0,解得:b=﹣4±2;即点Q坐标为〔1,﹣4+2〕或〔1,﹣4﹣2〕.【点评】此题主要考察了二次函数解析式确定、旋转图形性质、圆周角定理以及直线和圆位置关系等重要学问点;后两个小题较难,最终一题中,通过构建等腰直角三角形找出QD和⊙Q半径间数量关系是解题题目关键.。

人教版数学八年级上册期中考试模拟试卷(一)(前3章)含答案

人教版数学八年级上册期中考试模拟试卷(一)(前3章)含答案

八年级上学期期中考试数学模拟试卷(一)(前3章)(人教版)(满分120分,考试时间100分钟)(附答案)学校____________ 班级________ 姓名___________一、选择题(每小题3分,共30分)1.如图分别是贵州、旅游、河北、黑龙江卫视的图标,其中属于轴对称图形的是()A.B.C.D.2.下列条件:①∠A+∠B=∠C;②∠A∶∠B∶∠C=1∶2∶3;③∠A=90°-∠B;④∠A=∠B-∠C,其中能确定△ABC是直角三角形的条件有()A.1个B.2个C.3个D.4个3.有长为2 cm,3 cm,4 cm,5 cm的四根木棒,选其中的3根作为三角形的边,可以围成的三角形的个数是()A.1个B.2个C.3个D.4个4.满足下列条件的两个三角形不一定全等的是()A.有一边相等的两个等边三角形B.有一腰和底边对应相等的两个等腰三角形C.周长相等的两个三角形D.斜边和直角边对应相等的两个等腰直角三角形5.已知∠AOB,作∠AOB的平分线OM,在射线OM上截取线段OC,分别以O,C为圆心,大于1OC的长为半径画弧,两弧相交于E,F,画直线EF,分别交OA于点D,交OB2于点G,那么△ODG一定是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形6.若等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数是()A.65° B.55° C.125°或55° D.65°或115°7. 图中有三个正方形,其中构成的三角形中全等三角形的对数有( )A .2对B .3对C .4对D .5对8. 如图,将△ABC 纸片沿DE 折叠,使点A 落在点A '处,且A 'B 平分∠ABC ,A 'C 平分∠ACB .若∠BA 'C =110°,则∠1+∠2的度数为( ) A .80°B .90°C .100°D .110°9. 如图,在△ABC 中,点D 在BC 边上,过D 作DE ⊥BC 交AB 于点E ,P 为DC 上的一个动点,连接PA ,PE ,若PA +PE 最小,则点P 应该满足( ) A .PA =PCB .PA =PEC .∠APE =90°D .∠APC =∠DPE10. 如图所示,△ABC 的两条外角平分线AP ,CP 相交于点P ,PH ⊥AC 于H .若∠ABC =60°,则下面的结论:①∠ABP =30°;②∠APC =60°;③△ABC ≌△APC ;④P A ∥BC ;⑤∠APH =∠BPC ,其中正确结论的个数是( )A .2个B .3个C .4个D .5个A'21E D CBAAB CD EP二、填空题(每小题3分,共15分)11. 一个多边形的每一个外角都等于36°,则该多边形的内角和等于_______度.12. 已知点P (1,a )与点Q (b ,2)关于x 轴对称,点Q (b ,2)与点M (m ,n )关于y 轴对称,则m -n 的值为___________.13. 已知△ABC 三内角满足:3∠A >5∠B ,2∠B ≥3∠C ,则按角分类,△ABC 是__________三角形.14. 若满足∠AOB =30°,OA =4,AB =k 的△AOB 的形状与大小是唯一的,则k 的取值范围是_________.15. 如图,等边△ABC 的边长为2,CD 为AB 边上的中线,E 为线段CD 上的动点,以BE 为边,在BE 左侧作等边△BEF ,连接DF ,则DF 的最小值为_________.三、解答题(本大题共8个小题,满分75分)16. (8分)如图所示,两条笔直的公路AO 与BO 相交于点O ,村庄D 和E 在公路AO 的两侧,现要在公路AO 和BO 之间修一个供水站P 向D ,E 两村供水,使供水站P 到两公路的距离相等,且到D ,E 两村的距离也相等.请你在图中画出点P 的位置.(要求:尺规作图,不写作法,保留作图痕迹.)A B C D EPHA BCDEF17. (9分)如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4).(1)画出△ABC 关于y 轴的对称图形△A 1B 1C 1,并写出点B 1的坐标; (2)在x 轴上求作一点P ,使△PAB 的周长最小,并直接写出点P 的坐标.18. (9分)如图,∠A =∠B ,AE =BE ,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O .(1)求证:△AEC ≌△BED ; (2)若∠1=40°,求∠BDE 的度数.BOABCDEO1219. (9分)如图,在△ABC 中,∠BAC =120°,BC =26,AB ,AC 的垂直平分线分别交BC 于点E ,F ,与AB ,AC 分别交于点D ,G . (1)求∠EAF 的度数; (2)求△AEF 的周长.20. (9分)如图,在△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC于E ,与CD 相交于点F ,H 是BC 边的中点,连接DH 与BE 相交于点G . (1)求证:BF =AC ;DGABCEF(2)求证:CE=12BF .21. (10分)已知:如图,AF 平分∠BAC ,BC ⊥AF ,垂足为E ,点D 与点A 关于点E 对称,PB 分别与线段CF ,AF 相交于点P ,M . (1)求证:AB =CD ;(2)若∠BAC =2∠MPC ,请你判断∠F 与∠MCD 的数量关系,并说明理由.H A BCD EFGPMFE D CBA22. (10分)如图,在等边△ABC 中,AB =BC =AC =12 cm ,∠B =∠C =60°,现有M ,N 两点分别从点A ,B 同时出发,沿△ABC 的边运动,已知点M 的速度为1 cm/s ,点N 的速度为2 cm/s ,当点N 第一次到达B 点时,M ,N 同时停止运动,设运动时间为t (s ). (1)当t 为何值时,M ,N 两点重合?两点重合在什么位置?(2)当点M ,N 在BC 边上运动时,是否存在使AM =AN 的位置?若存在,请求出此时点M ,N 运动的时间;若不存在,请说明理由.23. (11分)如图1,点C 在线段AB 上(点C 不与A ,B 重合),分别以AC ,BC 为边在AB同侧作等边三角形ACD 和等边三角形BCE ,连接AE ,BD 交于点P .N M(1)观察猜想:①AE 与BD 的数量关系为____________; ②∠APD 的度数为____________. (2)数学思考:如图2,当点C 在线段AB 外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明. (3)拓展应用:如图3,点E 为四边形ABCD 内一点,且满足∠AED =∠BEC =90°,AE =DE ,BE =CE ,对角线AC ,BD 交于点P ,AC =10,则四边形ABCD 的面积为_________.图1A BC DEP图2DAC P EB图3ABP DCE八年级上学期期中考试数学模拟试卷(一)(前3章)(人教版)【参考答案】一、选择题二、填空题11.1440.12.-3.13.钝角.14.k=2或k≥4.15.12.三、解答题16.如图,点P即为所求.17.(1)作图略,B1(-4,2);(2)P(2,0).18.(1)证明略;(2)70°.19.(1)∠EAF=60°;(2)△AEF的周长为26.20.(1)证明略;(2)证明略.21.(1)证明略;(2)∠F=∠MCD,理由略.22.(1)12 s,两点重合在C点;(2)存在,t=16 s.23.(1)①AE=BD;②60°;(2)成立,证明略;(3)50.。

2012年湖南省长沙市中考数学模拟试题(含答案2)

2012年湖南省长沙市中考数学模拟试题(含答案2)

2011年长沙市初中数学考试模拟试卷(一)一、选择题(每小题3分,共30分) 1.16的平方根是 A .2B .2C .±2D .22. -21的绝对值是 A .-21 B .21C .-2D .23.图3-1是由5个大小相同的正方体摆成的立方体图形,它的主视图是图3-2中的4.有30位同学参加数学竞赛,已知他们的分数互不相同,按分数从高到低选l5位同学进入下一轮比赛.小明同学知道自己的分数后,还需知道哪个统计量,才能判断自己能否进入下一轮比赛?A .中位数B .方差C .众数D .平均数 5.已知△ABC 如图2-1所示。

则与△ABC 相似的是图2-2中的6.已知⊙O 1的半径为3cm ,⊙O 2的半径为7cm ,若⊙O 1和⊙O 2的公共点不超过1个,则两圆的圆心距不可能为A .0 cmB .8 cmC .4 cmD .12 cm 7.下列计算正确的是A .2x+3y=5xyB .x·x 4=x 4C .x·x=2xD .(x 2y)3=x 6y 38. 如图,已知矩形ABCD 沿着直线BD 折叠,使点C 落在C /处,BC /交AD 于E ,AD =8,AB =4,则DE 的长为A.3B.4C.5D.69.已知梯形的两条对角线长分别为6cm 、8cm ,且对角线相互垂直,梯形的上底长为3cm,则梯形的下底长为A .7cm B. 10cm C. 13cm D. 16cm 10.如图2—5,⊙O 的直径AB 垂直于弦CD ,垂足为H ,点P 是弧AC 上的一点(点P 不与A ,C 重合),连结PC ,PD ,PA ,AD ,点E 在AP 的延长线上,PD 与AB 交于点F .给出下列四个结论:①CH 2=AH·BH;②弧AD=弧AC ;③AD 2=DF·DP;④∠EPC=∠APD .其中正确的个数有A .1个B .2个C .3个D .4个 二、填空题(每小题3分,共24分) 11.函数y=ax 21,当x=2时没有意义,则a=__________.12.纳米(nm)是一种长度度量单位,lnm=0.000000001 m ,用科学记数法表示0.3011nm=___________m(保留两个有效数字).13.已知一组数据:-2,-2,3,-2,x ,-1,若这组数据的平均数是0.5.则这组数据的中位数是 .14.如图l —6,数轴上A ,B 两点所表示的有理数的和是__________. 15.已知直线y=2x+k 和双曲线y=xk的一个交点的纵坐标为-4,则k 的值为________.16.右图①是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的.若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到如右图②所示的“数学风车”,则这个风车的外围周长是_________.17.如图3—7,在等腰直角三角形ABC 中,点D 为斜边AB 的中点,已知扇形GAD ,HBD 的圆心角∠DAG ,∠DBH 都等于90°,且AB=2,则图中阴影部分的面积为__________.18.如果从小华等6名学生中任选1名作为“世博会”志愿者,那么小明被选中的概率是_____.三、解答题(本题共2个小题,每小题6分,共12分) 19.计算:20)21()23(363298-+-++--20.先化简,再求值:2122444222--+-⨯+-+x x x x x x x ,其中x=23四、解答题(本题共2个小题,每小题8分,共16分)21.有A ,B 两个黑布袋,A 布袋中有两个完全相同的小球,分别标有数字l 和2.B 布袋中有三个完全相同的小球,分别标有数字-1,-2和-3.小明从A 布袋中随机取出一个小球,记录其标有的数字为x ,再从B 布袋中随机取出一个小球,记录其标有的数字为y ,这样就确定点Q 的一个坐标为(x ,y).(1)用列表或画树状图的方法写出点Q 的所有可能坐标; (2)求点Q 落在直线y=x-3上的概率.22.如图4—10,在网格中、建立了平面直角坐标系,每个小正方形的边长均为1个单位长度,将四边形ABCD 绕坐标原点O 按顺时针方向旋转180°后得到四边形A 1B 1C 1D 1. (1)写出点D 1的坐标_________,点D 旋转到点D 1所经过的路线长__________;(2)请你在△ACD 的三个内角中任选二个锐角,若你所选的锐角..是________,则它所对应的正弦函数值是_________;(3)将四边形A 1B 1C 1D 1平移,得到四边形A 2B 2C 2D 2,若点D 2 (4,5),画出平移后的图形.(友情提示:画图时请不要涂错阴影的位置哦!)23.如图1-13,某堤坝的横截面是梯形AB—CD,背水坡AD的坡度i(即tana)为1:1.2,坝高为5m,为了提高堤坝的防洪抗洪能力,市防汛指挥部决定加固堤坝,要求坝顶CD加宽lm,形成新的背水坡EF,其坡度为1:1.4,已知堤坝总长度为4000m.(1)完成该工程需要多少土方?(2)该工程由甲、乙两个工程队同时合作完成,按原计划需要20天.准备开工前接到上级通知,汛期可能提前,要求两个工程队提高工作效率,甲队工作效率提高30%,乙队工作效率提高40%,结果提前5天完成.问这两个工程队原计划每天各完成多少土方?24.如图2—10,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连结AC,过点D作DE⊥AC,垂足为E。

中考仿真模拟测试《数学试卷》含答案解析

中考仿真模拟测试《数学试卷》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列实数中,无理数是( )A. 3.14B. 2.12122C. 39D. 237 2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D. 3. 下列计算正确的是( )A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅= D. ()()2111a a a -+--=- 4. 如图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A. B. C. D.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒ 7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线解析式为( ) A. 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A. B. 4.5 C. D.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 3B. 62C. 3D. 9210. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 32-B. 3C. 32D. 52二、填空题11. 分解因式:224ax ay -=________.12. 已知正六边形的周长为,则这个正六边形的边心距是_______. 13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 17. 如图,已知ABC ∆,点AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等学生有多少人?20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线.(1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.答案与解析一、选择题1. 下列实数中,无理数是()A. 3.14B. 2.12122C. 39D. 23 7【答案】C【解析】【分析】根据无理数的定义,逐一判断选项,即可得到答案.【详解】∵3.14,2.12122,237是分数,属于有理数,39是无理数,∴C符合题意,故选C.【点睛】本题主要考查无理数的定义,掌握实数的分类以及无理数的定义,是解题的关键.2. 如图是一个大正方体切去一个小正方体形成的几何体,它的左视图是( )A. B. C. D.【答案】B【解析】【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中【详解】从几何体的左边看可得到一个正方形,正方形的右上角处有一个小正方形,故选B.【点睛】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.3. 下列计算正确的是()A. ()222a b a b +=+B. ()3326a a -=- C. 428a a a ⋅=D. ()()2111a a a -+--=- 【答案】D【解析】【分析】 根据完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,逐一判断选项,即可.【详解】A. ()2222a b a ab b +=++,故本选项错误,B. ()3328a a -=-,故本选项错误,C 426a a a ⋅=,故本选项错误,D. ()()22211(1)1a a a a -+--=--=-,故本选项正确. 故选D .【点睛】本题主要考查完全平方公式,积的乘方公式,同底数幂的乘法法则以及平方差公式,熟练掌握上述公式和法则是解题的关键.4. 如图所示,已知AB∥CD,EF 平分∠CEG,∠1=80°,则∠2的度数为( )A. 20°B. 40°C. 50°D. 60°【答案】C【解析】 【详解】解:∵EF 平分∠CEG ,∴∠CEG=2∠CEF又∵AB ∥CD ,∴∠2=∠CEF=(180°-∠1)÷2=50°,故选:C .5. 若正比例函数y kx =图象的经过一、三象限,且过点()2,4A a 和()2,B a ,则的值为( ) A.B. C. D.【答案】D【解析】【分析】把()2,4A a 和()2,B a 代入y kx =,结合函数y kx =图象的经过一、三象限,即可得到答案. 【详解】∵正比例函数y kx =图象过点()2,4A a 和()2,B a , ∴422ak a k =⎧⎨=⎩,解得:1k =±, ∵正比例函数y kx =图象的经过一、三象限,∴k >0,∴k=1.故选D .【点睛】本题主要考查正比例函数的待定系数法以及比例系数的几何意义,掌握正比例函数y kx =图象的经过一、三象限,则k >0,是解题的关键.6. 如图,ABC ∆中,,70,AB AC C BD =∠=︒是AC 边上的高线,点在AB 上,且BE BD =,则ADE ∠的度数为( )A. 20︒B. 25︒C. 30D. 35︒【答案】B【解析】【分析】 根据等腰三角形的性质,得∠ABC=∠C ,∠A=40°,由直角三角形的性质得∠ABD=50°,从而得∠BDE=65°,进而即可求解.【详解】∵ABC ∆中,,70AB AC C =∠=︒,∴∠ABC=∠C=70°,∠A=180°-70°=70°=40°,∵BD 是AC 边上的高线,∴∠ADB=90°,∴∠ABD=90°-40°=50°,∵BE BD =,∴∠BDE=∠BED=(180°-50°)÷2=65°,∴ADE ∠=90°-65°=25°.故选B .【点睛】本题主要考查等腰三角形的性质定理,直角三角形的性质定理,掌握等腰三角形的底角相等,直角三角形的两个锐角互余,是解题的关键.7. 将直线1:12L y x =-向左平移个单位长度得到直线,则直线的解析式为( ) A 112y x =+ B. 122y x =+ C. 132y x =+ D. 112y x =-+ 【答案】A【解析】【分析】根据一次函数的平移规律:”左加右减,上加下减”,即可得到答案.【详解】将直线1:12L y x =-向左平移个单位长度得到:11(4)1122y x x =+-=+, 故选A .【点睛】本题主要考查一次函数的平移后所得的新一次函数解析式,掌握一次函数的平移规律:”左加右减,上加下减”,是解题的关键.8. 如图,菱形ABCD 的对角线,AC BD 相交于点,过点作AE BC ⊥于点,连接OE .若6OB =,菱形ABCD 的面积为,则OE 的长为( )A.B. 4.5C.D.【答案】B【解析】【分析】由6OB =,菱形ABCD 的面积为,得OC=4.5,根据直角三角形的性质,即可求解.【详解】∵6OB =,菱形ABCD 的面积为,∴54413.5BOC S =÷=,∵AC ⊥BD ,∴OC=13.5×2÷6=4.5, ∵AE BC ⊥,AO=CO ,∴OE=OC=4.5,故选B .【点睛】本题主要考查菱形的性质定理和直角三角形的性质定理,掌握菱形的对角线互相垂直平分,直角三角形斜边上的中线等于斜边的一半,是解题的关键.9. 如图,四边形ABCD 内接于半径为的O 中,连接AC ,若,45AB CD ACB =∠=︒,12ACD BAC ∠=∠,则BC 的长度为( )A. 63B. 2C. 93D. 2【答案】A【解析】【分析】 连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,易得∠AOB=∠COD=90°,∠DAC=∠ACB=45°,从而得∠OAD=∠CAB ,进而得∠OAD=∠AOD ,可得∠AOD=60°,∠BOC=120°,进而即可求解.【详解】连接OA ,OB ,OC ,OD ,过点O 作OM ⊥BC 于点M ,∵在四边形ABCD 内接于半径为的O 中,,45AB CD ACB =∠=︒,∴∠AOB=∠COD=2∠ACB=90°,∠DAC=∠ACB=45°,∵OA=OB ,∴∠OAB=45°,∴∠OAD=∠DAC+∠CAO=∠OAB+∠CAO=∠CAB ,又∵∠ACD=12∠AOD ,12ACD BAC ∠=∠, ∴∠AOD=∠BAC ,∴∠OAD=∠AOD ,∴AD=OD ,∵OD=OA ,∴∆AOD 是等边三角形,∴∠AOD=60°,∴∠BOC=360°-90°-90°-60°=120°,∵OC=OC=6,∴∠OCM=30°, ∴CM=32OC=33, ∴BC=2 CM==63.故选A .【点睛】本题主要考查圆的基本性质,熟练掌握圆周角定理以及推论,圆心角定理,垂径定理,等腰三角形的性质定理,是解题的关键.10. 已知抛物线2:4W y x x c =-+,其顶点为,与轴交于点,将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,若四边形''ABA B 为矩形,则的值为( )A. 3 3 C. 32 D. 52【答案】D【解析】【分析】先求出A(2,c-4),B(0,c),'(24),'(0)A c B c ---,,,,结合矩形性质,列出关于c 的方程,即可求解. 【详解】∵抛物线2:4W y x x c =-+,其顶点为,与轴交于点,∴A(2,c-4),B(0,c),∵将抛物线绕原点旋转180︒得到抛物线'W ,点,A B 的对应点分别为','A B ,∴'(24),'(0)A c B c ---,,,, ∵四边形''ABA B 为矩形,∴''AA BB =,∴[][]2222(2)(4)(4)(2)c c c --+---=,解得:52c =. 故选D .【点睛】本题主要考查二次函数图象的几何变换以及矩形的性质,掌握二次函数图象上点的坐标特征,关于原点中心对称的点的坐标特征以及矩形的对角线相等,是解题的关键. 二、填空题11. 分解因式:224ax ay -=________.【答案】a(x-2y)( x+2y)【解析】【分析】先提取公因式,再利用平方差公式进行分解因式,即可.【详解】224ax ay -=a(x 2-4y 2)= a(x-2y)( x+2y).故答案是:a(x-2y)( x+2y).【点睛】本题主要考查分解因式,掌握提取公因式法和公式法分解因式,是解题的关键.12. 已知正六边形的周长为,则这个正六边形的边心距是_______.【解析】【分析】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB ,易得∆AOB 是等边三角形,进而即可求解.【详解】设正六边形的中心为点O ,AB 为一条边,过点O 作OC ⊥AB 于点C ,连接OA ,OB , ∴∠AOB=60°,OA=OB ,即:∆AOB 是等边三角形,∴∠OAB=60°,∵正六边形的周长为,∴OA=OB =AB=2,∴OC=32OA=3. ∴这个正六边形的边心距是:3.故答案是:3.【点睛】本题主要考查正六边形的性质以及等边三角形的判定和性质定理,掌握等边三角形的性质定理,是解题的关键.13. 如图,在平面直角坐标系中,过原点的直线与反比例函数80y x x=-(<)交于点,与反比例函数 ()0k y x x=>交于点,过点作轴的垂线,过点作轴的垂线,两直线交于点,若ABC ∆的面积为,则的值为_______.【答案】-2【解析】【分析】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,易得∆DAO ~∆ EOB ,从而得2()AOD BOE S AD S OE=,进而得228b k a-=,由ABC ∆的面积为,得1610b a ka -=+,进而得到关于b a 的方程,即可求解. 【详解】设A(a ,8a -),B(b ,k b ),AC 交x 轴于点D ,BC 交y 轴于点E ,由题意得:k <0,a <0,b >0, ∴4AOD S =,22BOE k k S ==-,AD=8a -,OE=k b-, ∵AD ∥OE ,OD ∥BE ,∴∠DAO=∠EOB ,∠AOD=∠OBE ,∴∆DAO ~∆ EOB ,∴2()AOD BOE S AD S OE =,即:2842a k k b -⎛⎫ ⎪= ⎪ ⎪--⎝⎭,化简得:228a k b =-, ∴228b k a -=, ∵ABC ∆的面积为,∴(b-a )(8a --k b)=18,化简:22810a k b ab kab -=+, ∴21610b ab kab -=+,即:1610b a ka -=+,∴24-8-5=0b b a a ⎛⎫ ⎪⎝⎭,解得:12b a =-或52b a =(不合题意,舍去), ∴228b k a-==-2. 故答案是:-2.【点睛】本题主要考查反比例函数的图象和性质,比例系数的几何意义以及相似三角形的判定和性质定理,根据函数图象上点的坐标特征,三角形的面积公式以及相似三角形的性质,列出方程,是解题的关键. 14. 如图,正方形ABCD 的边长为,点在AD 上,连接 BP CP 、,则 s in BPC ∠的最大值为________.【答案】45【解析】【分析】 先证明当AP=DP=2时, s in BPC ∠有最大值,过点B 作BE ⊥PC 于点E ,根据勾股定理求出PB=PC=25根据三角形的面积法,求出BE 的值,进而即可得到答案.【详解】设∠APB=x ,∠DPC=y ,∴∠BPC=180°-∠APB -∠DPC=180°-(x+y ),∵当x >0,y >0时,2()0x y ≥, ∴20x y xy +-≥,即:2x y xy +≥x=y 时,2x y xy +=,∴当x=y 时,x+y 有最小值,此时,∠BPC=180°-(x+y )有最大值,即 s in BPC ∠有最大值.∵在正方形ABCD 中,∠A=∠D ,AB=CD ,当∠APB=∠DPC 时,∴∆APB ≅ DPC (AAS ),∴AP=DP=2,∴PB=PC=222425+=,过点B 作BE ⊥PC 于点E ,∵114422BCP S PC BE =⨯⨯=⋅, ∴BE=855, ∴ s in BPC ∠=8545525BE PB ==. 故答案是:45.【点睛】本题主要考查正方形的性质定理,勾股定理,锐角三角函数的定义以及全等三角形的判定和性质定理,证明当点P 是AD 的中点时, s in BPC ∠有最大值,是解题的关键.三.解答题15. 计算:211133tan 3033-⎛⎫⨯-+︒ ⎪⎝⎭. 【答案】【解析】【分析】先算负整数指数幂,绝对值以及特殊角三角函数值,再进行加减运算,即可求解.【详解】原式=13931)333⨯-+⨯=3313=.【点睛】本题主要考查实数的混合运算,掌握负整数指数幂的运算法则,求绝对值法则以及特殊角三角函数值,是解题的关键.16. 化简:221111x x x x x ⎛⎫-+--÷ ⎪++⎝⎭. 【答案】-x+1【解析】【分析】先算分式的减法运算,再把除法化为乘法,然后进行约分,即可得到答案.【详解】原式=212111x x x x x x ⎛⎫+-+-+⋅ ⎪+-⎝⎭=221111x x x x x ⎛⎫-+-+⋅ ⎪+-⎝⎭=2(1)111x x x x -+-⋅+- =-(x-1)=-x+1.【点睛】本题主要考查分式的化简,掌握分式的通分和约分,是解题的关键.17. 如图,已知ABC ∆,点在AB 边上,且90ACD ∠=︒,请用尺规作图法在BC 边上求作一点,使得APC ADC ∠=∠.(保留作图痕迹,不写作法)【答案】见详解【解析】【分析】作AD 的垂直平分线交AD 于点O ,以点O 为圆心,OD 长为半径,画圆,交BC 于点P ,即可.【详解】如图所示:∆ADC 的外接圆与BC 的交点P ,即为所求.【点睛】本题主要考查尺规作垂直平分线以及三角形的外接圆,掌握直角三角形的外接圆的圆心是斜边的中点,圆周角定理的推论,是解题的关键.18. 如图,已知点 ,,,A D C B 在同一直线上,,//,//AD BC DE CF AE BF =;求证:AE BF =.【答案】见详解【解析】【分析】根据平行线的性质得∠A=∠B ,∠CDE=∠DCF ,从而得∠ADE=∠BCF ,再根据ASA ,即可得到结论.【详解】∵//DE CF ,∴∠CDE=∠DCF ,∴∠ADE=∠BCF ,∵//AE BF ,∴∠A=∠B ,又∵AD BC =,∴∆ADE ≅∆BCF (ASA ),∴AE BF =.【点睛】本题主要考查三角形全等的判定和性质定理以及平行线的性质定理,掌握 ASA 证明三角形全等,是解题的关键.19. 2021年高考方案与高校招生政策都将有重大的变化,我市某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为,,,四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度为等的学生有多少人?【答案】(1)被调查学生的人数为200人.补全条形统计图见解析;(2)等对应的圆心角的度数为18︒;(3)对政策内容了解程度达到等的学生人数有75人.【解析】【分析】(1)从两个统计图中可得B 组的人数为50人,占调查人数的25%,可求出调查人数,从而计算出A 等人数和D 等人数,补全条形统计图,(2)用360°乘以D 组所占的百分比即可,(3)样本估计总体,用样本中D 组所占的百分比乘以总人数即可.【详解】(1)5020025%=(人) ∴被调查学生的人数为200人.等的人数:20060%120⨯=(人),等的人数:200120502010---=(人),补全条形统计图如下.(2)1036018200⨯︒=︒ ∴等对应的圆心角的度数为18︒. (3)10150075200⨯=(人) ∴对政策内容了解程度达到等的学生人数有75人.【点睛】考查条形统计图、扇形统计图的制作方法,从两个统计图中获取有用的数据,理清统计图中各个数据之间的关系是解决问题的关键,用样本估计总体是统计中常用的方法.20. 如图,在建筑物顶部有一长方形广告牌架CDEF ,已知2CD m =,在地面上处测得广告牌 上端的仰角为,且34tan α=,前进10m 到达处,在处测得广告牌架下端的仰角为45︒,求广告牌 架下端到地面的距离.【答案】22m【解析】【分析】延长CD 交AB 的延长线于H ,设DH=xm ,在Rt △DHB 中,利用正切的定义,用x 表示出BH ,在Rt △CAH 中,根据正切的定义,列出关于x 的方程,即可求解.【详解】延长CD 交AB 延长线于H ,则CD ⊥AB ,设DH=xm ,则CH=(x+2)m ,在Rt △DHB 中,tan45°=DH BH, ∴BH=DH tan45°=xm ,∴AH=AB+BH=(x+10)m ,在Rt △CAH 中,tan=CH AH ,即210x x ++=0.75, 解得:x=22, 答:广告牌架下端D 到地面的距离为22m .【点睛】本题主要考查解直角三角形的实际应用,熟练掌握锐角三角函数的定义,添加合适的辅助线,构造直角三角形,是解题的关键.21. 在抗击新型冠状病毒感染的肺炎疫情过程中,某医药研究所正在试研发一种抑制新型冠状病毒的药物,据临床观察:如果成人按规定的剂量注射这种药物,注射药物后每毫升血液中的含药量 (微克)与时间 (小时)之间的关系近似地满足图中折线. (1)求注射药物后每毫升血液中含药量与时间之间的函数关系式,并写出自变量的取值范围;(2)据临床观察:每毫升血液中含药量不少于微克时,对控制病情是有效的.如果病人按规定的剂量注射 该药物后,求控制病情的有效时间.【答案】(1)2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩;(2)103(小时) 【解析】【分析】(1)当0≤t ≤1时,是正比例函数,用待定系数法进行求解,即可,当1<t ≤10时,是一次函数,用待定系数法求函数的关系式,即可;(2)当0≤t ≤1时,当含药量上升到4微克时,控制病情开始有效,令y=4,代入y=6t ,求出对应的t 值,同理,当1<t ≤10时,求出另一个t 值,他们的差就是药的有效时间.【详解】(1)当0≤t ≤1时,设y=k 1t ,则6=k 1×1,∴k 1=6,∴y=6t .当1<t ≤10时,设y=k 2t+b ,∴226010k b k b =+=+⎧⎨⎩,解得:223203k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴ y=23-t+203, 综上所述:2206(110)33(01)y t t t t ⎧⎪=⎨-+<≤≤≤⎪⎩; (2)当0≤t ≤1时,令y=4,即:6t=4,解得:t=23, 当0<t ≤10时,令y=4,即:23-t+203=4,解得:t=4, ∴控制病情的有效时间为:4−23=103(小时). 【点睛】本题主要考查一次函数的实际应用,掌握一次函数的图象上的点的坐标特征和待定系数法,是解题的关键.22. 现有,,,A B C D 四张不透明的卡片,除正面上的图案不同外,其他均相同,将这四张卡片背 面向上洗匀后放在桌面上.(1)从中随机取出一张卡片,卡片上的图案是中心对称图形的概率是_____;(2)若从四张卡片中随机拿出两张卡片,请用画树状图或列表的方法,求抽取的两张卡片都是轴对称图形的概率.【答案】(1)14;(2)12 【解析】【分析】(1)直接利用概率公式求解可得;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】(1)∵4中卡片中,只有1张是中心对称图形,∴从中随机抽取1张卡片,卡片上的图案是中心对称图形的概率为14, 故答案为:14; (2)画树状图如下:由树状图知,共有12种等可能结果,其中两次所抽取的卡片恰好都是轴对称图形的有6种结果, ∴两次所抽取的卡片恰好都是轴对称图形的概率为:61122=.【点睛】本题主要考查等可能随机事件的概率,学会画树状图,掌握概率公式,是解题的关键. 23. 如图,已知以Rt ABC ∆的边AB 为直径作ABC ∆的外接圆的,O ABC ∠平分线BE 交AC 于,交O 于,过作//EF AC 交BA 的延长线于.(1)求证:EF 是O 切线;(2)若15,10,AB EF ==求AE 的长.【答案】(1)见详解;(2)35【解析】【分析】(1)要证EF 是 O 的切线,只要连接OE ,再证∠FEO=90°即可;(2)证明△FEA ∽△FBE ,得出EF AF BF EF =,从而得到AF 的值,进而得到12AE BE =,结合勾股定理得到关于AE 的方程,即可求出AE 的长.【详解】(1)连接OE ,∵∠B 的平分线BE 交AC 于D ,∴∠CBE=∠OBE ,∵EF ∥AC ,∴∠CAE=∠FEA ,∵∠OBE=∠OEB ,∠CBE=∠CAE ,∴∠FEA=∠OEB ,∵AB 是O 的直径,∴∠AEB=90°,∴∠FEO=90°,∴EF 是O 切线;(2)∵∠FEA=∠OEB=∠OBE ,∠F=∠F ,∴∆FEA ~∆FBE , ∴EF AF BF EF =, 即:2EF AF BF =⋅,∴AF×(AF+15)=10×10,解得:AF=5或AF=-20(舍去), ∴51102AE AF BE EF ===, ∵在Rt ∆ABE 中,AE 2+BE 2=AB 2,∴AE 2+(2AE )2=152,∴AE=35.【点睛】本题主要考查切线的判定定理,圆周角定理,相似三角形的判定和性质定理以及勾股定理,掌握切线的判定定理以及相似三角形的判定和性质定理是解题的关键.24. 如图,已知抛物线2y x bx c =-++与直线AB 交于点()3,0A -,点()1,4B .(1)求抛物线的解析式;(2)点M 是轴上方抛物线上一点,点是直线AB 上一点,若A O M N 、、、以为顶点的四边形是以 OA 为边的平行四边形,求点M 的坐标.【答案】(1)2 6y x x =--+;(2)(0,6)或(-2,4)或(17-+17-).【解析】【分析】(1)根据待定系数法,即可得到答案;(2)先求出直线AB 的解析式,由平行四边形的性质得AO=MN=3且AO ∥MN ,设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),根据M ,N 的纵坐标相等,列出关于x 的方程,即可求解.【详解】(1)∵抛物线2y x bx c =-++与直线AB 交于点() 3,0A -,点() 1,4B , ∴ 09341b c b c =--+=-++⎧⎨⎩,解得: 16b c =-=⎧⎨⎩, ∴抛物线解析式为:26y x x =--+; (2)设直线AB 的解析式为:y=kx+m , 把() 3,0A -,() 1,4B ,代入得: 034k m k m =-+=+⎧⎨⎩,解得: 13k m ==⎧⎨⎩, ∴直线AB 的解析式为:y=x+3.∵以A O M N 、、、为顶点的四边形是以OA 为边的平行四边形,∴AO=MN=3且AO ∥MN ,∵点M 是轴上方抛物线上一点,点是直线AB 上一点,∴设M(x ,26x x --+),则N(x+3,x+6)或N(x-3,x),∴26x x --+=x+6或26x x --+=x ,解得:10x =,22x =-,317x =-417x =-令y=0代入26y x x =--+,得:2 60x x --+=,解得:x=-3或x=2,∴抛物线与x 轴的另一个交点坐标为(2,0),∵点M 是轴上方抛物线上一点,∴点M 的横坐标取值范围为:-3<x <2,∴点M 的坐标为:(0,6)或(-2,4)或(17-+,17-+).【点睛】本题主要考查二次函数与一次函数的综合以及平行四边形的性质,掌握待定系数法,函数图象上的点的坐标特征以及平行四边形的对边平行且相等,是解题的关键.25. 问题发现(1)如图①,ABC ∆为边长为的等边三角形,是AB 边上一点且CD 平分ABC ∆的面积,则线段CD 的长度为____;问题探究(2)如图②,ABCD 中,6,8,60AB BC B ==∠=︒,点M 在AD 上,点在BC 上,若MN 平分ABCD 的面积,且MN 最短,请你画出符合要求的线段MM ,并求出此时MN 与AM 的长度.问题解决(3)如图③,某公园的一块空地由三条道路围成,即线段AC AB BC 、、,已知160AB =米,120BC =米,90,AC ABC ∠=︒的圆心在AB 边上,现规划在空地上种植草坪,并AC 的中点修一条直路PM (点M 在 AB 上).请问是否存在PM ,使得PM 平分该空地的面积?若存在,请求出此时AM 的长度;若不存在,请说明理由.【答案】(12)AM=2.5,作图见详解;(3)存在PM ,使得PM 平分该空地的面积,AM= 146(米).【解析】【分析】(1)作CD ⊥AB 于点D ,利用等边三角形三线合一的性质和直角三角形的性质求出AD 的长,即可;(2)经过平行四边形对角线的交点的直线将平行四边形的面积分成相等的两部分,当MN ⊥BC 时,MN 最短,过A 作AE ⊥BC 于点E ,根据三角函数的定义,求AE 的长,即是MN 的长,再求出EN 的长,即AM 的长;(3)作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,通过锐角三角函数的定义,求得OD 的值,从而得AOD S ,OBCD S 四边形,在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050,进而求出OM ,即可求出AM 的值,然后得到结论.【详解】(1)如图①,作CD ⊥AB 于点D ,∵ABC ∆为边长为的等边三角形,∴AD=BD ,∴CD 平分ABC ∆的面积,∴(2)连接AC 、BD 交于点O ,过点O 作直线MN ,交AD 于M ,交BC 于N ,如图②,∵四边形ABCD 为平行四边形,∴OA=OC ,AD ∥BC ,∴∠CAD=∠ACB ,∵∠AOM=∠CON ,∴△AOM ≌△CON (ASA ),∴S △AOM =S △CON ,同理可得:△OMD ≌△ONB ,△AOB ≌△COD ,∴S △OMD =S △ONB ,S △AOB =S △COD ,∴S △AOM +S △AOB +S △BON =S △CON +S △COD +S △OMD ,即:MN 将四边形ABCD 分成面积相等的两部分,当MN ⊥BC 时,MN 最短,如图③所示,过A 作AE ⊥BC 于点E ,在Rt △ABE 中,∵∠ABC=60°,∴sin60°=AE AB,∴AE=2× ∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴∴此时MN 的长度为∵AE ∥MN ,AO=CO ,∴EN=CN ,∵BE=12AB=3, ∴CE=BC-BE=8-3=5,∴EN=2.5,∵AD ∥BC ,AE ⊥BC ,MN ⊥BC ,∴四边形AENM 是矩形,即:AM=EN=2.5;(3)存在PM ,使得PM 平分该空地的面积,理由如下:作AC 的垂直平分线EF 交AB 于点O ,交AC 于点D ,则点O 为AC 所在圆的圆心,如图④, ∵点P 是AC 的中点,∴点P 在直线EF 上,∵160AB =(米),120BC =(米),90ABC ∠=︒,∴=200(米),AD=12AC=100(米), ∵tan ∠BAC =34OD BC AD AB ==, ∴OD=34AD=75(米),∴11007537502AOD S =⨯⨯=(平方米), ∵112016096002ABC S =⨯⨯=(平方米), ∴960037505850OBCD S =-=四边形(平方米),∴图形OBCP 的面积比图形AOP 的面积多2100平方米,∴在线段OB 上取点M ,连接PM ,使∆OPM 的面积=1050(平方米),即可.∵sin ∠BAC=35OD BC OA AC ==, ∴OA=53OD=53×75=125(米), ∴OP=OA=125(米),过点M 作MN ⊥EF 于点N ,∴12OP ∙MN=1050,即:MN=2100÷125=845(米), ∵MN ∥AC ,∴∆AOD ~∆MON ,∴AD AO MN MO =,即:100125845MO =,解得:MO=21(米), ∴AM=AO+MO=125+21=146(米),∵AM <AB ,∴存在PM ,使得PM 平分该空地的面积,此时,AM= 146(米).【点睛】本题主要等边三角形的性质,平行四边形的性质,圆的基本性质,三角函数的定义以及相似三角形的判定和性质,熟练掌握垂径定理,三角函数的定义和相似三角形的性质,合理添加辅助线,构造直角三角形和相似三角形,是解题的关键.。

长沙中考数学命题分析

长沙中考数学命题分析

长沙中考数学命题分析长沙中考数学命题一直以注重基础、强调应用、选拔性强等特点备受。

近年来,随着教育改革的不断深化,长沙中考数学的命题趋势也在发生着变化。

本文将从命题原则、题型设计、知识点分布、难度分析等几个方面对长沙中考数学命题进行分析。

一、命题原则长沙中考数学命题严格遵循《义务教育数学课程标准》和《长沙市中考数学考试说明》的要求。

在命题过程中,注重考查学生的基础知识、基本技能和基本思想方法,同时强调数学的应用和实践能力。

命题者会充分考虑学生的认知特点和心理发展规律,让学生在考试中充分发挥自己的水平和潜力。

二、题型设计长沙中考数学题型一般包括选择题、填空题、解答题等。

其中,选择题注重考查基础知识和基本技能,填空题则更注重考查学生的计算能力和空间想象能力,解答题则主要考查学生的综合运用能力和数学思想方法。

题型设计的多样性保证了试题的覆盖面和难度层次,有利于全面考查学生的数学素养。

三、知识点分布长沙中考数学的命题内容涵盖了初中数学的所有知识点。

其中,代数、几何、概率与统计等部分占据较大的比例,而函数、方程、不等式等知识点也是重点考查内容。

知识点分布的均衡性使得考试内容既全面又突出重点,有利于引导学生全面掌握数学知识,同时提高对重点知识的理解和应用能力。

四、难度分析长沙中考数学的命题难度一般分为容易题、中等难度题和较难题三个层次。

其中,容易题占比约为70%,中等难度题占比约为20%,较难题占比约为10%。

这样的难度分布既保证了试卷的区分度,又有利于选拔出优秀的学生。

同时,命题者还会根据学生的实际情况和学科特点,适当调整各难度层次的题目比例,以更好地发挥考试的评价功能和指导作用。

五、命题趋势随着教育改革的不断深化,长沙中考数学的命题趋势也在发生着变化。

未来几年,长沙中考数学命题将更加注重以下几点:1、强化数学思想方法的考查。

命题者将更加注重考查学生的数学思维能力和问题解决能力,加强对数学思想方法的考查力度。

中考数学模拟试卷(三)(含解析)-人教版初中九年级全册数学试题

中考数学模拟试卷(三)(含解析)-人教版初中九年级全册数学试题

2016年某某省某某市思源实验学校中考数学模拟试卷(三)一、选择题.(本大题满分42分,每小题3分)1.2016的倒数是()A.B.﹣C.2016 D.﹣20162.计算a2•a3,正确结果是()A.a5B.a6C.a8D.a93.数据3,﹣1,0,2,﹣1的中位数是()A.﹣1 B.0 C.2 D.34.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105×105×106×1055.若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9 B.12 C.9或12 D.106.如图中几何体的主视图是()A.B.C.D.7.若分式的值为0,则x的值为()A.﹣2 B.2 C.4 D.2和﹣28.如图,点D、E分别在AB、AC上,且DE∥BC,∠A=30°,∠B=100°,则∠AED的度数是()A.30° B.100°C.130°D.50°9.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为()A.3 B.5 C.6 D.810.在如图的正方形网格中,sin∠AOB的值为()A.B.2 C.D.11.在平面直角坐标系中,点P(2,5)与点Q关于x轴对称,则点Q的坐标是()A.(﹣2,5)B.(2,﹣5)C.(﹣2,﹣5)D.(5,2)12.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,则恰好选中甲、乙两位同学打第一场比赛的概率是()A.B.C.D.13.已知菱形ABCD的两条对角线AC、BD的长分别为6和8,则边长CD的长为()A.6 B.8 C.14 D.514.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m 的取值X围是()A.m<﹣3 B.m<0 C.m>﹣3 D.m>0二、填空题.(本大题满分16分,每小题4分)15.分解因式:2x2﹣8=.16.不等式4+2x>0的解集是.17.如图,AC=BC,∠ACD=120°,则∠A的度数为.18.如图,在梯形ABCD中,AB∥DC,DE∥CB,梯形的周长为28,△ADE周长为20,则DC=.三、解答题.(本大题满分62分)19.(1)计算:|﹣3|﹣(﹣2)3×2﹣2+(﹣2)2(2)化简:(+)÷.20.“五•一”黄金周期间,某某市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费144万元,其中一日游每人收费400元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?21.学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将图甲中“B”部分的图形补充完整;(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?22.已知如图,从20米高的甲楼A望乙楼顶C处的仰角是30°,望乙楼底D处的俯角是45°,求乙楼的高度(精确到0.1米,≈1.414,≈1.732).23.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.24.如图,直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,抛物线y=﹣x2+bx+c 过A、B两点.(1)求直线和抛物线的解析式;(2)设N(x、y)是(1)所得抛物线上的一个动点,过点N作直线MN垂直x轴交直线AB 于点M,若点N在第一象限内.试问:线段MN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.2016年某某省某某市思源实验学校中考数学模拟试卷(三)参考答案与试题解析一、选择题.(本大题满分42分,每小题3分)1.2016的倒数是()A.B.﹣C.2016 D.﹣2016【考点】倒数.【分析】直接利用倒数的定义分析得出答案.【解答】解:∵2016×=1,∴2016的倒数是,故选A.2.计算a2•a3,正确结果是()A.a5B.a6C.a8D.a9【考点】同底数幂的乘法.【分析】根据同底数幂的乘法进行计算即可.【解答】解:a2•a3=a2+3=a5,故选A.3.数据3,﹣1,0,2,﹣1的中位数是()A.﹣1 B.0 C.2 D.3【考点】中位数.【分析】先把数据按从小到大排列:﹣1,﹣1,0,2,3共有5个数,最中间一个数为0,根据中位数的定义求解.【解答】解:把数据按从小到大排列:﹣1,﹣1,0,2,3共有5个数,最中间一个数为0,所以这组数据的中位数为0.故选B.4.钓鱼岛是中国的固有领土,位于中国东海,面积约4400000平方米,数据4400000用科学记数法表示为()A.44×105×105×106×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】×106.故选:C.5.若等腰三角形有两条边的长度为2和5,则此等腰三角形的周长为()A.9 B.12 C.9或12 D.10【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知长度为2和5两边,没有明确是底边还是腰,所以有两种情况,需要分类讨论.【解答】解:①当5为底时,其它两边都为2,∵2+2<5,∴不能构成三角形,故舍去,当5为腰时,其它两边为2和5,5、5、2可以构成三角形,周长为12.故选B.6.如图中几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】几何体的主视图是从正面看所得到的图形即可.【解答】解:从正面看从左往右正方形的个数依次为2,1.故选D.7.若分式的值为0,则x的值为()A.﹣2 B.2 C.4 D.2和﹣2【考点】分式的值为零的条件.【分析】根据分式值为0的条件:分子=0且分母≠0,求得x的值即可.【解答】解:∵分式的值为0,∴x2﹣4=0且x+2≠0,∴x=2,故选B.8.如图,点D、E分别在AB、AC上,且DE∥BC,∠A=30°,∠B=100°,则∠AED的度数是()A.30° B.100°C.130°D.50°【考点】平行线的性质;三角形内角和定理.【分析】根据平行线的性质得出∠ADE=∠B=100°,根据三角形内角和定理求出即可.【解答】解:∵DE∥BC,∠B=100°,∴∠ADE=∠B=100°,∵∠A=30°,∴∠AED=180°﹣∠A﹣∠ADE=50°,故选D.9.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为()A.3 B.5 C.6 D.8【考点】垂径定理.【分析】根据垂径定理求出AB,根据三角形的面积公式求出即可.【解答】解:∵CD为⊙O的直径,弦AB⊥CD,AE=3,∴AB=2AE=6,∴△ACB的面积为×AB×CE=×6×2=6,故选C.10.在如图的正方形网格中,sin∠AOB的值为()A.B.2 C.D.【考点】锐角三角函数的定义;勾股定理.【分析】找出以∠AOB为内角的直角三角形,根据正弦函数的定义,即直角三角形中∠AOB 的对边与斜边的比,就可以求出.【解答】解:如图,作EF⊥OB,则EF=2,OF=1,由勾股定理得,OE=,∴sin∠AOB=,故选:D.11.在平面直角坐标系中,点P(2,5)与点Q关于x轴对称,则点Q的坐标是()A.(﹣2,5)B.(2,﹣5)C.(﹣2,﹣5)D.(5,2)【考点】关于x轴、y轴对称的点的坐标.【分析】根据平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,﹣y),据此即可求得点P(2,5)关于x轴对称的点的坐标.【解答】解:∵点P(2,5)与点Q关于x轴对称,∴点Q的坐标是(2,﹣5).故选:B.12.甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,要从中选出两位同学打第一场比赛,则恰好选中甲、乙两位同学打第一场比赛的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】此题需要两步完成,所以采用树状图法或者采用列表法都比较简单,求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:列表得:甲乙丙丁/ 甲、乙甲、丙甲、丁甲乙乙、甲/ 乙、丙乙、丁丙丙、甲丙、乙/ 丙、丁丁丁、甲丁、乙丁、丙/∴所有等可能性的结果有12种,其中恰好选中甲、乙两位同学的结果有2种,∴恰好选中甲、乙两位同学的概率为:=,故选A.13.已知菱形ABCD的两条对角线AC、BD的长分别为6和8,则边长CD的长为()A.6 B.8 C.14 D.5【考点】菱形的性质.【分析】根据菱形的对角线互相垂直平分,求出两对角线的一半的长度,再利用勾股定理列式计算即可得解.【解答】解:如图,设对角线AC、BD相交于点O,∵AC=6,BD=8,∴DO=4,CO=3,∵菱形的对角线互相垂直,∴CD==5,故选D.14.若函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,则m 的取值X围是()A.m<﹣3 B.m<0 C.m>﹣3 D.m>0【考点】反比例函数的性质.【分析】根据函数图象的性质得到关于k的不等式m+3>0,通过解该不等式来求m的值.【解答】解:∵函数y=的图象在其所在的每一象限内,函数值y随自变量x的增大而减小,∴m+3>0,解得 m>﹣3.故选:C.二、填空题.(本大题满分16分,每小题4分)15.分解因式:2x2﹣8= 2(x+2)(x﹣2).【考点】因式分解-提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).16.不等式4+2x>0的解集是x>﹣2 .【考点】解一元一次不等式.【分析】先移项,再把x的系数化为1即可.【解答】解:移项得,2x>﹣4,把x的系数化为1得,x>﹣2.故答案为:x>﹣2.17.如图,AC=BC,∠ACD=120°,则∠A的度数为60°.【考点】等腰三角形的性质.【分析】首先根据外角的度数求得其邻补角的度数,然后得到等边三角形,从而求得其内角的度数.【解答】解:∵∠ACD=120°,∴∠ACB=60°,∵AC=BC,∴△ABC为等边三角形,∴∠A=60°,故答案为:60°.18.如图,在梯形ABCD中,AB∥DC,DE∥CB,梯形的周长为28,△ADE周长为20,则DC= 4 .【考点】梯形;平行四边形的判定与性质.【分析】首先证明四边形DCBE为平行四边形,再根据平行四边形的性质和已知数据即可求出DC的长.【解答】解:∵DE∥CB,AB∥DC,∴四边形DCBE为平行四边形,∴DC=EB,DE=BC,∵梯形ABCD的周长=AE+BE+AD+CD=28,∴梯形的周长﹣△ADE周长═AE+BE+AD+CD﹣AD﹣AE﹣DE=BE+CD=2CD=8,∴DC=4,故答案为:4.三、解答题.(本大题满分62分)19.(1)计算:|﹣3|﹣(﹣2)3×2﹣2+(﹣2)2(2)化简:(+)÷.【考点】实数的运算;分式的混合运算;负整数指数幂.【分析】(1)原式第一项利用绝对值的代数意义化简,第二项利用乘方的意义及负指数幂法则计算,最后一项利用二次根式的性质计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分即可得到结果.【解答】解:(1)原式=3+8×+12=3+2+12=17;(2)原式=•=.20.“五•一”黄金周期间,某某市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费144万元,其中一日游每人收费400元,三日游每人收费1200元.该旅行社接待的一日游和三日游旅客各多少人?【考点】二元一次方程组的应用.【分析】设该旅行社接待的一日游和三日游旅客各为x人和y人,根据等量关系建立方程,求解即可.【解答】解:设该旅行社接待的一日游和三日游旅客各为x人和y人.依题意得:,解得:,答:该旅行社接待的一日游和三日游旅客各为600人和1000人.21.学校为了调查学生对教学的满意度,随机抽取了部分学生作问卷调查:用“A”表示“很满意“,“B”表示“满意”,“C”表示“比较满意”,“D”表示“不满意”,如图甲、乙是工作人员根据问卷调查统计资料绘制的两幅不完整的统计图,请你根据统计图提供的信息解答以下问题:(1)本次问卷调查,共调查了多少名学生?(2)将图甲中“B”部分的图形补充完整;(3)如果该校有学生1000人,请你估计该校学生对教学感到“不满意”的约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据C小组的频数和其所占的百分比求得总人数即可;(2)用调查的人数乘以B小组所占的百分比即可求得B组的频数;(3)用总人数乘以不满意人数所占的百分比即可.【解答】解:(1)由条形统计图知:C小组的频数为40,由扇形统计图知:C小组所占的百分比为20%,故调查的总人数为:40÷20%=200人;(2)B小组的人数为:200×50%=100人,(3)1000×(1﹣50%﹣25%﹣20%)=50人,故该校对教学感到不满意的人数有50人.22.已知如图,从20米高的甲楼A望乙楼顶C处的仰角是30°,望乙楼底D处的俯角是45°,求乙楼的高度(精确到0.1米,≈1.414,≈1.732).【考点】解直角三角形的应用-仰角俯角问题.【分析】本题是一个直角梯形的问题,可以通过点A作AE⊥CD于点E,把求CD的问题转化求CE的长.首先在Rt△ADE中求得AE的长,进而可在Rt△ACE中,利用三角函数求出CE 的长.【解答】解:过点A作AE⊥CD,垂足为E,∵AB⊥BD,CD⊥BD,∴四边形ABDE是矩形,∴DE=AB=20米,在Rt△ADE中,∠DAE=45°,DE=20米,∴AE=20米,在Rt△ACE中,CE=AE•tan30°=米,∴CD=CE+ED=+20=20(+1)≈31.5(米),答:乙楼的高度约为31.5米.23.如图,已知AC⊥BC,BD⊥AD,AC与BD交于O,AC=BD.求证:(1)BC=AD;(2)△OAB是等腰三角形.【考点】全等三角形的判定与性质;等腰三角形的判定.【分析】(1)根据AC⊥BC,BD⊥AD,得出△ABC与△BAD是直角三角形,再根据AC=BD,AB=BA,得出Rt△ABC≌Rt△BAD,即可证出BC=AD,(2)根据Rt△ABC≌Rt△BAD,得出∠CAB=∠DBA,从而证出OA=OB,△OAB是等腰三角形.【解答】证明:(1)∵AC⊥BC,BD⊥AD,∴∠ADB=∠ACB=90°,在Rt△ABC和Rt△BAD中,∵,∴Rt△ABC≌Rt△BAD(HL),∴BC=AD,(2)∵Rt△ABC≌Rt△BAD,∴∠CAB=∠DBA,∴OA=OB,∴△OAB是等腰三角形.24.如图,直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,抛物线y=﹣x2+bx+c 过A、B两点.(1)求直线和抛物线的解析式;(2)设N(x、y)是(1)所得抛物线上的一个动点,过点N作直线MN垂直x轴交直线AB 于点M,若点N在第一象限内.试问:线段MN的长度是否存在最大值?若存在,求出它的最大值及此时x的值;若不存在,请说明理由;(3)在(2)的情况下,以A、M、N、D为顶点作平行四边形,求第四个顶点D的坐标.【考点】二次函数综合题.【分析】(1)由直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,抛物线y=﹣x2+bx+c过A、B两点,利用待定系数法即可求得直线和抛物线的解析式;(2)假设x=t时,线段MN的长度是否存在最大值,可得M(t,﹣t+2),N(t,﹣t2+t+2),则可得MN=(﹣t2+t+2)﹣(﹣t+2)=﹣t2+4t=﹣(t﹣2)2+4,然后由二次函数的最值问题,求得答案;(3)根据平行四边形的性质求解即可求得答案.【解答】解:(1)∵直线y=kx+b分别交y轴、x 轴于A(0、2)、B(4、0))两点,∴,解得:.∴直线为:y=﹣x+2,…将x=0,y=2代入y=﹣x2+bx+c得:c=2,…将x=4,y=0代入y=﹣x2+bx+2,得:0=﹣16+4b+2,解得:b=,∴抛物线的解析式为:y=﹣x2+x+2;…(2)存在.假设x=t时,线段MN的长度是否存在最大值,由题意易得:M(t,﹣t+2),N(t,﹣t2+t+2),…∴MN=(﹣t2+t+2)﹣(﹣t+2)=﹣t2+4t=﹣(t﹣2)2+4,…∴当t=2时,MN有最大值4;…6 分(3)由题意可知,D的可能位置有如图三种情形.…当D在y轴上时,设D的坐标为(0,a)由AD=MN得|a﹣2|=4,解得a1=6,a2=﹣2,∴D为(0,6)或D(0,﹣2);…当D不在y轴上时,由图可知D为D1N与D2M的交点,∵直线D1N的解析式为:y=﹣x+6,直线D2M的解析式为:y=x﹣2,由两方程联立解得D为(4,4).…综上可得:所求的D为(0,6),(0,﹣2)或(4,4).。

2021年湖南省长沙市中考数学模拟试卷(一)(含解析)

2021年湖南省长沙市中考数学模拟试卷(一)(含解析)

2021年湖南省长沙市中考数学模拟试卷(一)一、选择题(共12小题).1.计算的结果等于()A.±2B.2C.﹣2D.42.在平面直角坐标系中,点(4,﹣3)所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.下列计算正确的是()A.B.(a﹣b)2=a2﹣b2C.3m•m=6m D.(﹣n3)2=n64.某正方体的每个面上都有一个汉字.它的一种平面展开图如图所示,那么在原正方体中,与“筑”字所在面相对的面上的汉字是()A.抗B.疫C.长D.城5.疫情期间,口罩的原材料提价,因而厂家决定对口罩进行提价,现有三种方案:(1)第一次提价5%,第二次提价10%;(2)第一次提价10%,第二次提价5%;(3)第一、二次提价均为7.5%,三种方案哪种提价最多,下列说法正确的是()A.方案(1)B.方案(2)C.方案(3)D.三种方案相同6.下列尺规作图,能确定AD是△ABC的中线的是()A.B.C.D.7.下列说法正确的是()A.为了解湖南省中学生的心理健康情况,宜采用普查的方式B.商场抽奖促销,中一等奖的概率是1%,则做100次这样的游戏一定会中一等奖C.一组数据1,3,3,3,4,8的中位数和众数都是3D.若甲、乙两个射击选手的平均成绩相同,且s甲2=0.01,s乙2=0.1,则应该选乙参赛8.关于x的方程x2+5x+m=0的一个根为﹣2,则另一个根是()A.﹣6B.﹣3C.3D.69.如图,已知AB是⊙O的切线,切点为A,OA=3,,则扇形OAC的面积为()A.B.3πC.πD.10.如图,一块等腰直角三角形板如图摆放,点E,G分别在AB,CD上,且AB∥CD,如果∠AEF=25°,那么∠CGF的大小为()A.25°B.65°C.30°D.45°11.《九章算术》中有一问题,“今有善行者一百步,不善行者六十步.今不善行者先行一百步,善行者追之.问:几何步几之?”其意思是:有一个善于走路的人和一个不善于走路的人.善于走路的人走100的同时,不善于走路的人只能走60步.现在不善于走路的人先走100步,善于走路的人追他,需要走多少步才能追上他?根据题意,可以求得答案为()A.250步B.200步C.160步D.320步12.如图,已知△ABC的三个顶点A(a,0)、B(b,0)、C(0,2a)(b>a>0),作△ABC关于直线AC的对称图形△AB′C,若点B′恰好落在y轴上,则的值为()A.B.C.D.二、填空题(共4个小题,每小题3分,共12分)13.分解因式:3ab2﹣3a=.14.某地区中考,将学生的初二的生物中考卷面成绩(满分100分)乘40%,加上初三的物理、化学卷面成绩(满分200分)乘80%作为该生的最后理科综合最终成绩.某学生生物成绩为90分,若该生理科综合最终成绩想不低于160分,则该生物理、化学卷面成绩至少是分.15.如图,在Rt△ABC,∠B=90°,∠ACB=50°.将Rt△ABC在平面内绕点A逆时针旋转到△AB'C'的位置,连接CC'.若AB∥CC',则旋转角的度数为°.16.如图,已知△ABC是等边三角形,点D,E,F分别是AB,AC,BC边上的点,∠EDF =120°,设.(1)若n=1,则=;(2)若,则n=.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年湖南省长沙市中考数学模拟试卷(一)一、选择题(每题3分)1.给出四个数:0,,,1,其中最大的是()A.0 B.C.D.﹣12.下列各图中,∠1与∠2互为余角的是()A. B.C.D.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.平行四边形B.矩形 C.正方形D.圆4.据统计,2015年长沙市的常住人口约为7500000人,将数据7500000用科学记数法表示为()A.7.5×106B.0.75×107 C.7.5×107D.75×1055.已知关于x的不等式ax﹣3x+2>5的一个解是﹣2,则a的取值范围为()A.a<B.a>C.a>﹣D.a<﹣6.下列说法中,正确的是()A.任何一个数都有平方根 B.任何正数都有两个平方根C.算术平方根一定大于0 D.一个数不一定有立方根7.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,908.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条9.如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.AC+BD=BC+CD D.CD=AB10.如图,已知A是反比例函数y=图象上的一点,过点A向x轴作垂线交x轴于点B,在点A从左往右移动的过程中,△ABO的面积将()A.越来越大 B.越来越小C.先变大,后变小D.不变11.如图,扇形AOB是圆锥的侧面展开图,已知圆锥的底面半径为2,母线长为6,则阴影部分的面积为()A.12π﹣B.4π﹣C.12π﹣9D.4π﹣912.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线m,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.二、填空题(每题3d分)13.分解因式:2x2﹣8=______.14.如图所示,在▱ABCD中,∠BAD的角平分线AE交BC于点E,AB=4,AD=6,则EC=______.15.化简: +2=______.16.一个不透明的口袋中共放有3个红球和11个黄球,这两种球除颜色外没有其他任何区别,若从口袋中随机取出一个球,则取到黄球的概率是______.17.如图所示,在⊙O中,AB为⊙O的直径,AC=8,sinD=,则BC=______.18.规定一种新的运算:a⊗b=,则1⊗2=______.三、解答题19.计算:2cos30°﹣|﹣2|﹣+1.20.先化简,再求值:(2a﹣b)2﹣b(b﹣2a)﹣a2,其中3a=2b.21.长沙市中考体育分值已经提高到了60分,其中的必考项目就有男子引体向上和女子一分钟仰卧起坐,各校为此加强了对体育训练的重视.引体向上(男)和一分钟仰卧起坐(女)共16分单位:次数分值16 15 14 13 12 10 8 6 3成绩男(次)8 7 6 5 4 3 2 1 0.5 女(次)45 40 36 32 28 25 22 20 <19注:0.5次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完整完成一次某中学对全校学生这两项运动的成绩进行了统计,规定分值15分及以上为优秀,12分到14分为良好,6分到10分为合格,6分以下不合格,在全校800名初三学生中,随机抽取部分学生进行测试,并将测试成绩绘制成如下两幅不完整的统计图,求:(1)某女生说她得了12分,请问她一分钟做了多少次仰卧起坐;(2)请问一共抽取了多少名学生?并补全条形统计图;(3)根据抽样结果估计,本校项目由多少学生能够得优秀?22.如图,在Rt△PAD中,∠PAD=90°,∠APD的角平分线PO交AD于O点,以O为圆心,OA为半径作⊙O,交AD于点B,过D作DE⊥PO交PO的延长线于点E.(1)求证:PD是⊙O的切线;(2)若PA=6,tan∠PDA=,求半径OA及OE的长.23.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元;(2)甲公司拟向该店购买A、B两种型号的新能源汽车共6辆,购车费不少于130万元,但不超过140万元.则有哪几种购车方案?并写出哪种方案所需的购车费用最低.24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.25.若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=,我们把它们称为根与系数的关系定理,请你参考上述定理,解答下列问题:设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).抛物线的顶点为C,且△ABC为等腰三角形.(1)求A、B两点之间的距离(用字母a、b、c表示)(2)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?26.如图,四边形OABC为直角梯形,OA∥BC,∠AOC=90°,OA=OC=4,BC=3.点M 从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动,当其中一个动点达到终点时,另一个动点也随之停止运动,过点N作NP 垂直OA于点P,连接AC交NP于点Q,连接MQ.(1)当t为何值时,M和P两点重合;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,及当t 为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求NQ的长;若不存在,请说明理由.2016年湖南省长沙市中考数学模拟试卷(一)参考答案与试题解析一、选择题(每题3分)1.给出四个数:0,,,1,其中最大的是()A.0 B.C.D.﹣1【考点】实数大小比较.【分析】根据正数都大于0,负数都小于0,两个负数绝对值大的反而小即可解答.【解答】解:∵>1,∴0<<1<,∴最大的数是,故选;B.2.下列各图中,∠1与∠2互为余角的是()A. B.C.D.【考点】余角和补角.【分析】如果两个角的和等于90°(直角),就说这两个角互为余角.依此定义结合图形即可求解.【解答】解:四个选项中,只有选项C满足∠1+∠2=90°,即选项C中,∠1与∠2互为余角.故选C.3.下列图形中,是中心对称图形但不是轴对称图形的是()A.平行四边形B.矩形 C.正方形D.圆【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、平行四边形是中心对称图形但不是轴对称图形,故本选项正确;B、矩形是中心对称图形也是轴对称图形,故本选项错误;C、正方形是中心对称图形也是轴对称图形,故本选项错误;D、圆是中心对称图形也是轴对称图形,故本选项错误.故选A.4.据统计,2015年长沙市的常住人口约为7500000人,将数据7500000用科学记数法表示为()A.7.5×106B.0.75×107 C.7.5×107D.75×105【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数据7500000用科学记数法表示为7.5×106.故选A.5.已知关于x的不等式ax﹣3x+2>5的一个解是﹣2,则a的取值范围为()A.a<B.a>C.a>﹣D.a<﹣【考点】不等式的解集;解一元一次不等式.【分析】先将x=﹣2代入不等式,得到关于a的一元一次不等式,求得a的取值范围即可.【解答】解:∵不等式ax﹣3x+2>5的一个解是﹣2∴﹣2a+6+2>5∴﹣2a>﹣3∴a<故选A.6.下列说法中,正确的是()A.任何一个数都有平方根 B.任何正数都有两个平方根C.算术平方根一定大于0 D.一个数不一定有立方根【考点】立方根;平方根;算术平方根.【分析】根据平方根、算术平方根、立方根,即可解答.【解答】解:A、任何一个数都有平方根,错误,负数没有平方根;B、任何正数都有两个平方根,正确;C、算术平方根一定大于0,错误,0的算术平方根是0;D、任何数都有立方根,故错误;故选:B.7.在以下数据75,80,80,85,90中,众数、中位数分别是()A.75,80 B.80,80 C.80,85 D.80,90【考点】众数;中位数.【分析】首先找出这组数据中出现次数最多的数,则它就是这组数据的众数;然后把这组数据从小到大排列,则中间的数就是这组数据的中位数,据此解答即可.【解答】解:∵数据75,80,80,85,90中,80出现的次数最多,出现了2次,∴这组数据的众数是80;把数据75,80,80,85,90从小到大排列,可得75,80,80,85,90,所以这组数据的中位数是80.故选:B.8.已知一个正n边形的每个内角为120°,则这个多边形的对角线有()A.5条B.6条C.8条D.9条【考点】多边形内角与外角.【分析】多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.【解答】解:∵多边形的每一个内角都等于120°,∴每个外角是60度,则多边形的边数为360°÷60°=6,则该多边形有6个顶点,则此多边形从一个顶点出发的对角线共有6﹣3=3条.∴这个多边形的对角线有(6×3)=9条,故选D.9.如图,C是线段AB的中点,D是线段CB的中点,下列说法错误的是()A.CD=AC﹣BD B.CD=AB﹣BD C.AC+BD=BC+CD D.CD=AB【考点】两点间的距离.【分析】根据线段中点的性质,可得CD、BD与AB、BC的关系,可得答案.【解答】解:由C是线段AB的中点,D是线段CB的中点,得AC=CB,CD=DB.A、CD=CB﹣BD=AC﹣BD,故A正确;B、CD=CB﹣BD=AB﹣BD,故B正确;C、AC+BD=BC+CD,故C正确;D、CD=BC=AB,故D错误;故选:D.10.如图,已知A是反比例函数y=图象上的一点,过点A向x轴作垂线交x轴于点B,在点A从左往右移动的过程中,△ABO的面积将()A.越来越大 B.越来越小C.先变大,后变小D.不变【考点】反比例函数系数k的几何意义.【分析】由点A在反比例函数图象上以及AB⊥x轴于点B,结合反比例函数系数k的几何意义即可得出S△ABO=|k|,由此即可得出结论.【解答】解:∵点A 是反比例函数y=图象上的一点,且AB ⊥x 轴于点B , ∴S △ABO =|k |,∴点A 从左往右移动的过程中,△ABO 的面积不变.故选D .11.如图,扇形AOB 是圆锥的侧面展开图,已知圆锥的底面半径为2,母线长为6,则阴影部分的面积为( )A .12π﹣B .4π﹣C .12π﹣9D .4π﹣9【考点】圆锥的计算.【分析】首先求得展开扇形的圆心角的度数,从而求得圆心到线AB 的长,用扇形的面积减去三角形的面积即可求得阴影部分的面积.【解答】解:由题意知:弧长=圆锥底面周长=2×2π=4πcm ,扇形的圆心角=弧长×180÷母线长÷π=4π×180÷6π=120°.作OC ⊥AB 于点C ,∴OC=OA=3,AB=2AC=2×3=6,∴S 阴影=S 扇形﹣S △AOB =﹣×3×6=12π﹣9,故选C .12.如图,A 点在半径为2的⊙O 上,过线段OA 上的一点P 作直线m ,与⊙O 过A 点的切线交于点B ,且∠APB=60°,设OP=x ,则△PAB 的面积y 关于x 的函数图象大致是( )A.B.C.D.【考点】动点问题的函数图象.【分析】根据已知得出S与x之间的函数关系式,进而得出函数是二次函数,当x=﹣=2时,S取到最小值为:=0,即可得出图象.【解答】解:∵A点在半径为2的⊙O上,过线段OA上的一点P作直线m,与⊙O过A 点的切线交于点B,且∠APB=60°,∴AO=2,OP=x,则AP=2﹣x,∴tan60°==,解得:AB=(2﹣x)=﹣x+2,∴S△ABP=×PA×AB=(2﹣x)••(﹣x+2)=x2﹣2x+2,故此函数为二次函数,∵a=>0,∴当x=﹣=2时,S取到最小值为:=0,根据图象得出只有D符合要求.故选:D.二、填空题(每题3d分)13.分解因式:2x2﹣8=2(x+2)(x﹣2).【考点】因式分解-提公因式法.【分析】观察原式,找到公因式2,提出即可得出答案.【解答】解:2x2﹣8=2(x+2)(x﹣2).14.如图所示,在▱ABCD中,∠BAD的角平分线AE交BC于点E,AB=4,AD=6,则EC= 2.【考点】平行四边形的性质.【分析】根据平行四边形的性质得到AD=BC=6,DC=AB=4,AD∥BC,推出∠DAE=∠BEA,根据AE平分∠BAD,能证出∠BAE=∠BEA,根据等腰三角形的判定得到AB=BE=4,根据EC=BC﹣BE,代入即可.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC=6,DC=AB=4,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE=4,∴EC=BC﹣BE=6﹣4=2,故答案为:2.15.化简: +2=.【考点】分式的加减法.【分析】原式通分并利用同分母分式的加法法则计算即可得到结果.【解答】解:原式=+=,故答案为:16.一个不透明的口袋中共放有3个红球和11个黄球,这两种球除颜色外没有其他任何区别,若从口袋中随机取出一个球,则取到黄球的概率是.【考点】概率公式.【分析】用黄球的个数除以球的总个数可得.【解答】解:∵不透明的袋中有除颜色外没有其他任何区别的3个红球和11个黄球,共14个球,其中黄球有11个,∴从口袋中随机取出一个球,则取到黄球的概率是,故答案为:.17.如图所示,在⊙O中,AB为⊙O的直径,AC=8,sinD=,则BC=6.【考点】圆周角定理;解直角三角形.【分析】根据圆周角定理得到∠D=∠A,设BC=3x,根据正弦的定义得到AB=5x,根据勾股定理计算即可.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,由圆周角定理得,∠D=∠A,又sinD=,∴sinA=,即=,设BC=3x,则AB=5x,由勾股定理得,(5x)2﹣(3x)2=82,解得,x=2,则BC=6,故答案为:6.18.规定一种新的运算:a⊗b=,则1⊗2=﹣.【考点】有理数的混合运算.【分析】根据2大于1,利用题中的新定义计算即可得到结果.【解答】解:∵2>1,∴1⊗2=﹣1=﹣,故答案为:﹣三、解答题19.计算:2cos30°﹣|﹣2|﹣+1.【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,绝对值的代数意义,以及二次根式性质计算即可得到结果.【解答】解:原式=2×﹣2+﹣2+1=﹣1.20.先化简,再求值:(2a﹣b)2﹣b(b﹣2a)﹣a2,其中3a=2b.【考点】整式的混合运算—化简求值.【分析】原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,将已知等式代入计算即可求出值.【解答】解:原式=4a2﹣4ab+b2﹣b2+2ab﹣a2=3a2﹣2ab,由3a=2b,得到a=b,则原式=b2﹣b2=0.21.长沙市中考体育分值已经提高到了60分,其中的必考项目就有男子引体向上和女子一分钟仰卧起坐,各校为此加强了对体育训练的重视.引体向上(男)和一分钟仰卧起坐(女)共16分单位:次数分值16 15 14 13 12 10 8 6 3成绩男(次)8 7 6 5 4 3 2 1 0.5 女(次)45 40 36 32 28 25 22 20 <19注:0.5次是指考生从直臂悬垂开始,有正确的引体动作和下杠动作,但未完整完成一次某中学对全校学生这两项运动的成绩进行了统计,规定分值15分及以上为优秀,12分到14分为良好,6分到10分为合格,6分以下不合格,在全校800名初三学生中,随机抽取部分学生进行测试,并将测试成绩绘制成如下两幅不完整的统计图,求:(1)某女生说她得了12分,请问她一分钟做了多少次仰卧起坐;(2)请问一共抽取了多少名学生?并补全条形统计图;(3)根据抽样结果估计,本校项目由多少学生能够得优秀?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由表格即可知答案;(2)根据“优秀”的人数及其占被调查学生的百分比可得总人数,总人数乘以“不合格”的百分比可得对应人数,由个等级人数之和等于总人数可得“良好”的人数,补全条形图;(3)用样本中“优秀”的人数所占百分比乘以全校总人数可得.【解答】解:(1)由表可知,她一分钟做了28次仰卧起坐;(2)一共抽取学生有:10÷20%=50(人),“不合格”的学生有50×10%=5(人),“良好”的学生有50﹣10﹣15﹣5=20(人),补全统计图如图:(3)800×20%=160(人),答:根据抽样结果估计,全校有160名学生能够取得优秀.22.如图,在Rt△PAD中,∠PAD=90°,∠APD的角平分线PO交AD于O点,以O为圆心,OA为半径作⊙O,交AD于点B,过D作DE⊥PO交PO的延长线于点E.(1)求证:PD是⊙O的切线;(2)若PA=6,tan∠PDA=,求半径OA及OE的长.【考点】切线的判定.【分析】(1)作OC⊥PD于C,根据角平分线的性质得出OC=OA,即可判定PD是⊙O的切线;(2)根据已知求得AD,PC,根据勾股定理求得PD,得出CD,设半径为x,则OD=8﹣x,在RT△ODC中,根据勾股定理得出(8﹣x)2=x2+42,解得半径为3,然后根据勾股定理求得OP,进而证得△POA∽△DOE,根据相似三角形的性质即可求得.【解答】(1)证明:作OC⊥PD于C,∵OP是∠APD的角平分线,OA⊥PA,OC⊥PD,∴OC=OA,∴PD是⊙O的切线;(2)解:∵PA=6,tan∠PDA==,∴AD=8,∴PD==10,∵PA⊥OA,∴PA是⊙O的切线,∵PD是⊙O的切线,∴PC=PA=6,∴CD=PD﹣PC=4,设半径为x,则OD=8﹣x,在RT△ODC中,OD2=OC2+CD2,∴(8﹣x)2=x2+42,解得x=3,∴半径OA=3,∴OD=8﹣3=5,在RT△AOP中,OP==3,∵∠PAO=∠E=90°,∠POA=∠DOE,∴△POA∽△DOE,∴=,即=,∴OE=.23.某汽车专卖店销售A、B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元;(2)甲公司拟向该店购买A、B两种型号的新能源汽车共6辆,购车费不少于130万元,但不超过140万元.则有哪几种购车方案?并写出哪种方案所需的购车费用最低.【考点】一元一次不等式组的应用;二元一次方程组的应用.【分析】(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.【解答】解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.方案二:购买3辆A型车和3辆B型车所需的购车费用最低.24.已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数.【考点】全等三角形的判定;等边三角形的性质.【分析】(1)根据SAS判定△AGE和△DAB全等;(2)证明四边形DEFB是平行四边形,△AEF是个等边三角形.【解答】(1)证明:∵△ABC是等边三角形,DG∥BC,∴∠AGD=∠ABC=60°,∠ADG=∠ACB=60°,且∠BAC=60°,∴△AGD是等边三角形,AG=GD=AD,∠AGD=60°.∵DE=DC,∴GE=GD+DE=AD+DC=AC=AB,∴在△AGE与△DAB中,,∴△AGE≌△DAB(SAS);(2)解:由(1)知AE=BD,∠ABD=∠AEG.∵EF∥DB,DG∥BC,∴四边形BFED是平行四边形.∴EF=BD,∴EF=AE.∵∠DBC=∠DEF,∴∠ABD+∠DBC=∠AEG+∠DEF,即∠AEF=∠ABC=60°.∴△AFE是等边三角形,∠AFE=60°.25.若x1、x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1、x2和系数a、b、c有如下关系:x1+x2=﹣,x1•x2=,我们把它们称为根与系数的关系定理,请你参考上述定理,解答下列问题:设二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0).抛物线的顶点为C,且△ABC为等腰三角形.(1)求A、B两点之间的距离(用字母a、b、c表示)(2)当△ABC为等腰直角三角形时,求b2﹣4ac的值;(3)设抛物线y=x2+kx+1与x轴的两个交点为A、B,顶点为C,且∠ACB=90°,试问如何平移此抛物线,才能使∠ACB=60°?【考点】二次函数综合题.【分析】(1)令二次函数解析式中y=0,根据根与系数的关系可得出“x1+x2=﹣,x1•x2=”,利用配方法即可求出|x2﹣x1|的值,由此即可得出结论;(2)利用配方法将二次函数解析式转化成顶点式,由此即可求出点C的坐标,再根据等腰直角三角形的性质可得出2×||=,利用换元解方程即可求出b2﹣4ac的值;(3)由(2)的结论即可得出关于k的方程,解方程即可得出抛物线的解析式,画出函数图象,由此可得出若要使∠ACB=60°,则需把抛物线往下平移,设平移的距离为n(n>0),则平移后的抛物线的解析式为y=x2﹣2x+1﹣n,结合(1)(2)的结论即可得出关于n的一元二次方程,解方程即可得出结论.【解答】解:(1)令y=ax2+bx+c(a≠0)中y=0,则有ax2+bx+c=0,∵二次函数y=ax2+bx+c(a≠0)的图象与x轴的两个交点为A(x1,0),B(x2,0),∴x1+x2=﹣,x1•x2=,∴|x2﹣x1|===.(2)∵二次函数y=ax2+bx+c=a+,∴点C的坐标为(﹣,),∵△ABC为等腰直角三角形,∴2×||=,令=m,则有m2﹣2m=0,解得:m=2,或m=0,∵二次函数与x轴有两个不相同的交点,∴m==2,∴b2﹣4ac=4.(3)∵∠ACB=90°,∴b2﹣4ac=k2﹣4=4,解得:2.选k=﹣2,画出图形,如图所示.若要使∠ACB=60°,则需把抛物线往下平移,设平移的距离为n(n>0),则平移后的抛物线的解析式为y=x2﹣2x+1﹣n,由(1)可知AB==2,由(2)可知点C(﹣,),即(,﹣1﹣n),∵△ABC为等腰三角形,且∠ACB=60°,∴﹣y C=AB,即1+n=,解得:n=﹣1(舍去),或n=2.故将抛物线往下平移2个单位长度,能使∠ACB=60°.26.如图,四边形OABC为直角梯形,OA∥BC,∠AOC=90°,OA=OC=4,BC=3.点M 从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动,当其中一个动点达到终点时,另一个动点也随之停止运动,过点N作NP 垂直OA于点P,连接AC交NP于点Q,连接MQ.(1)当t为何值时,M和P两点重合;(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,及当t 为何值时,S的值最大;(3)是否存在点M,使得△AQM为直角三角形?若存在,求NQ的长;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)用t可表示出BN、OM,则可表示出CN,又由△OAC为等腰直角三角形,MN⊥OA,可得到CN=NQ,AP=PQ,当M、P重合时,则有AM=PQ,可得到关于t的方程,可求得t;(2)由(1)可用t分别表示出AM、PQ,可表示出△AQM的面积,再利用二次函数的性质可求得其最大值;(3)由于∠OAC=45°,故当△AQM为直角三角形只能有QM⊥OA和MQ⊥AQ两种情况,当QM⊥OA时,则M、P重合,由(1)可得到t的值,当MQ⊥AQ时,则有MP=PQ,可得到关于t的方程可,可求得t的值.【解答】解:(1)∵OA=OC=4,∠AOC=90°,∴∠OAC=45°,∵OA∥BC,∴∠BCA=∠OAC=45°,∵NP⊥OA,∴CN=NQ,PQ=AP,当运动t秒时,则有BN=t,OM=2t,且BC=3,∴CN=NQ=BC﹣BN=3﹣t,AP=PQ=PN﹣NQ=4﹣(3﹣t)=t+1,AM=OA﹣OM=4﹣2t,当M和P重合时,则有AM=PQ,即t+1=4﹣2t,解得t=1,∴当t的值为1秒时,M和P两点重合;(2)当运动时间为t秒时,由(1)可知PQ=t+1,AM=4﹣2t,∴S=AM•PQ=(t+1)(4﹣2t)=﹣(t﹣)2+,∵OA=4,∴M点的运动时间最大为2秒,∴0≤t≤2,∴当t=时,S max=,综上可知S=﹣(t﹣)2+(0≤t≤2),当t=时S有最大值;(3)∵∠OAC=45°∴当△AQM为直角三角形只能有QM⊥OA和MQ⊥AQ两种情况,①当QM⊥OA时,则M、P重合,由(1)可得到t=1,此时NQ=3﹣t=2;②当MQ⊥AQ时,则有MP=PQ,由(1)可知AM=4﹣2t,AP=t+1,∴PM=AM﹣AP=(4﹣2t)﹣(t+1)=3﹣3t,又PQ=t+1,∴3﹣3t=t+1,解得t=,此时NQ=3﹣t=;综上当t的值为1秒或秒时,△AQM为直角三角形,NQ的长分别为2或.2016年9月24日。

相关文档
最新文档