复变函数与积分变换论文
北京林业大学复变函数与积分变换结课论文

复变函数与积分变换结课论文题目:拉普拉斯变换及其在解微分方程(组)中的应用指导老师:学号:姓名:班级:学院:拉普拉斯变换及其在解微分方程(组)中的应用摘要拉普拉斯变换是一种用来解线性微分方程的较简单的工具。
它在电学、力学、控制论等很多工程技术与科学领域有着广泛的应用,由于它对像原函数f(t)要求的条件比傅氏变换要弱,故研究拉氏变换有极重要的意义。
本文将简单介绍拉普拉斯变换的定义以及其性质,并对其在解微分方程(组)中的应用做了简单的归纳总结。
关键词:拉普拉斯变换,性质,微分方程一、拉普拉斯变换的概念及其性质1.1问题的提出我们知道,一个函数当它除了满足狄氏条件外,还在(—∞,+∞)内满足绝对可积的条件时,就一定存在古典意义下的傅里叶变换。
但绝对可积的条件是比较强的,许多函数(如单位阶跃函数、正弦、余弦函数等)都不满足这个条件;其次,可以进行傅里叶变换的函数必须在整个是数轴上有定义,但在物理、无线电技术等实际应用中,许多以时间t 作为自变量的函数往往在t<0时是无意义的或者不用考虑的,想这些函数都不能取傅里叶变换。
虽然在引入δ函数后,傅里叶变换的适用范围被拓宽了许多,使得“缓增”函数也能进行傅氏变换,但仍然无法解决以指数级增长的函数。
[1]对于任意一个函数φ(t ),若用单位阶跃函数u (t )乘φ(t ),则可以使积分区间由(—∞,+∞)换成[0,+∞),用指数衰减函数tβ-e(β>0)乘φ(t )就有可能使其变得绝对可积,因此只要β选的恰当,一般来说,任意函数φ(t )的傅氏变换是存在的,这样就产生了拉普拉斯变换。
1.2拉普拉斯变换的定义当函数)(t f 满足条件:(1)当t<0时,)(t f =0;(2)当0≥t 时,函数)(t f 连续;(3)当∞→t 时,)(t f 的增长速度不超过某个指数函数,即存在常数M 及α,使得t Me t f α≤|)(|,则含参数s 的无穷积分 收敛。
复变函数与积分变换论文 电子信息

(3)求方程的全解
Y(0)=A+B+1/3=1
解得A=5/2,B=-11/6
拉氏变换方法
由本例题可以看出经典方法和拉氏变换方法都能解决连续信号系统的零输入响应、零状态响应、完全响应方面的问题。经典方法做题,思路比较简单,容易想出办法,但是计算比较繁琐,容易出错。用拉氏变换方法思路上稍显麻烦,但是计算要简单得多,减少了错误发生的概率。如果微分方程右边激励项较复杂,用经典方法就难以处理,用拉氏变换方法将数学模型转化为代数式,做起来就显得容易很多,既明了又简洁。如果激励信号发生变化,用经典方法做,就需要全部重新求解,相对与拉氏变换就麻烦得多。如果初始信号发生变化,用经典方法做题要全部重新求解,相当复杂。经典方法是一种纯数学的方法,无法突出系统响应的物理概念。拉氏变换相对的能够突出系统响应的物理概念。具体用哪种方法做题还得依题而论,如果题目比较简单,激励信号不发生变化,初始条件不发生变化,就用经典方法做题,因为经典方法思路比较简单,方法比较好想,减少了做题的时间,如果题目比较复杂,或者激励信号,初始条件发生变化,就用拉氏变换方法,做题步骤简单,节省时间,又减少了错误发生的概率。
由于篇幅有限,本文介绍的复变函数与积分变换中与解决本专业的问题只是冰山一角。在复变函数和积分变换的学习中,我们得到的不仅要作为科学创新基础的数学原理,还有一些创新思想方法,如解析函数高阶导数和积分变换中导数公式的归纳法思想、复数几何意义的直观性在初等几何中的应用思想、保形变换和积分变换中,对称思维、两类积分变换应用的同中求异和理论中的异中求同、复势应用中的猜想与证明,观察与实验等等都体现了创新思维的火花。我们在学习中掌握了这些方法,有利于在今后的工作和生活中发挥巨大的作用,因此,复变函数与积分变换课程的学习,有助于我们创新思维能力的训练和培养,培养我们运用基本理论和方法,解决实际问题的意识,兴趣和能力,尤其是解析函数在平面向量场中的应用,留数理论的应用,积分变化换在解微分方程中的应用和求广义积分,培养我们打破思维定势,打破常规惯例,用新的眼光看复变函数和积分变换,就是说变量从实数到复数,积分从直线到曲线,尤其是封闭曲线。
复变函数与积分变换

复变函数与积分变换复变函数是数学中的一个重要概念,它涉及到实部和虚部的函数关系。
而积分变换则是将一个函数转化为另一个函数的方法。
本文将围绕复变函数和积分变换展开讨论。
一、复变函数复变函数是指具有复数域上的定义域和值域的函数。
它的定义域可以是复数集,也可以是复平面上的一个区域。
复变函数常用的表示形式是f(z),其中z为复数。
如f(z) = u(x, y) + iv(x, y),其中u(x, y)表示实部,v(x, y)表示虚部。
复变函数的性质与实变函数有很多相似之处,如连续性、可导性等。
它还具有一些特殊的性质,如解析性和调和性。
解析函数是指具有导数的复变函数,它在一个区域内处处可导。
而调和函数是指实部和虚部都是调和函数的复变函数。
复变函数的应用十分广泛,例如在电磁学、流体力学和信号处理等领域都有重要的应用。
通过复变函数的分析与运算,可以解决实变函数所无法解决的问题,并且有时可以简化问题的求解过程。
二、积分变换积分变换是将一个函数转化为另一个函数的方法,常用的积分变换有拉普拉斯变换和傅里叶变换。
积分变换在信号处理、控制理论等领域有广泛的应用。
1. 拉普拉斯变换拉普拉斯变换是将一个函数f(t)变换为复平面上的一个函数F(s)的方法。
其中s为复数,定义域为复平面上的一条直线。
拉普拉斯变换的公式表示为:F(s) = L{f(t)} = ∫[0, +∞] e^(-st) f(t) dt通过拉普拉斯变换,可以将时域中的函数转化为复频域中的函数。
它具有线性性质、位移性质和尺度性质等重要性质,可以简化信号的分析与处理。
2. 傅里叶变换傅里叶变换是将一个函数f(x)变换为另一个函数F(k)的方法。
其中k为实数,定义域为实数轴上的一条直线。
傅里叶变换的公式表示为:F(k) = ∫[-∞, +∞] e^(-ikx) f(x) dx傅里叶变换是时域与频域之间的转换工具,它将一个函数分解成不同频率的基函数。
傅里叶变换具有线性性质、位移性质和尺度性质等重要性质,可以对信号进行频谱分析和滤波处理。
复变函数论文

复变函数论文复变函数与积分变换在自动控制原理中的应用姓名:何缘鸽学号:092410101 学院(系):电气与电子工程系专业:自动化指导教师:秦志新评阅人:复变函数与积分变换在自动控制原理中的应用【摘要】:复变函数与积分变换的理论和方法在数学、自然科学和工程技术中有着广泛的应用,是解决诸如流体力学、电磁学、热学、弹性理论中的平面问题的有力工具。
而自然科学和生产技术的发展又极大地推动了复变函数的发展,丰富了它的内容。
我们在学习的过程中,要正确理解和掌握复变函数中的数学概念和方法,逐步培养利用这些概念和方法解决实际问题的能力。
文中简单地介绍了该门课程在自动控制理论中的应用。
【关键词】:线性系统 Z变换卷积拉普拉斯变换【正文】:提出问题:众所周知,复变函数中的许多概念、理论和方法是实变函数在复数领域内的推广和发展,因而它们之间有许多相似之处。
但由于其自身的一些特殊的性质而显得不同,特别是当它引进了taylor级数展开laplace变换和fourier变换后而使其显得更加重要了。
随着教育事业的不断发展与更新,一些新的处理数据的方法越来越多的应用于我们的日常专业学习中。
当然复变函数在自动控制原理方面的应用也更大的加快了自动化的发展,自动控制与信号处理也更加离不开一套有效的处理方法。
但是常规的Fourier变换的运算的范围还是有限的,如何去解决一些不能展开成Fourier级数的信号成了我们的首要问题。
分析问题:虽然常规的Fourier 变换的运算的范围是有限的,,但Laplace 变换、Z 变换等填补了Fourier 变换的不足之处,究竟其有什么好处呢?下面就介绍一些例子,从中就能看出。
例1: 如图1所示电路,原处于稳态,开关S 于t=0时由1端转向2端,R=10Ω,L=1H,C=0.004F,求换路后电流i(t)。
解:因换路前电路已达稳态,故可知()=-0i 0, ()V u c 20=- 换路后,电路的微分方程为()()()+++-0c u dtt di Lt Ri ⎰-td i C0)(1ττ=10)(t ε对上式进行拉普拉斯变换,得()()()[]+-+-0i s sI L s RI sCs I su c )()0(+-=s10解得 ()s I =sCsL R s u Li sc 1)0()0(10++-+--代入已知数据得()s I =ss s s25010210++-=2501082++s s =2215)5(15158++⨯s用查表法可求得上式的拉普拉斯反变换为()At t et i t)(15sin 1585ε⋅=-例2: 如图2所示为常用的二阶有源系统的电路模型,设Ω=1R 、C=1F 。
复变函数与积分变换结业论文

基于matlab对复变函数与积分变量的研究姓名:徐庆学号:101044113单位:北京林业大学工学院自动化10-1内容摘要:《复变函数与积分变量》这门课程作为自动化专业的专业基础课程,对于后继课程有着极其重要的意义,但在学习过程中,很多量的求解需要繁琐的计算步骤与复杂的计算过程。
同时,作为一种抽象的函数,复变函数一般来说很难用具体图像来描绘其信息。
Matlab作为一款功能强大的科学计算软件,利用一些编程语句可以很轻松的解决上述问题。
例如,利用matlab可以对一个复常数进行基本的求模,求幅角,求实部、虚部的运算。
更进一步地,还可以求复数的指数、对数,对复数进行三角运算。
在对于复变函数的研究中,可以求解复变函数的留数,并用来求复变函数的积分,对复变函数进行泰勒级数展开。
在积分变换方面,可以对函数进行傅里叶变换、逆变换,进行拉普拉斯变换、逆变换。
在编程化的语句中,可以对同一类的问题进行统一的解决。
关键字:复变函数积分变量matlab语句运算结果目录1 matlab在复常数中的应用 (4)1.1 Matlab中对单个复常数的简单运算 (4)1.2 Matlab中对于单个复常数进行复杂的运算 (5)1.3Matlab中对于两个复常数之间进行乘法、除法运算 (7)2.利用matlab对函数进行泰勒级数展开 (8)3 matlab在留数和积分中的应用 (9)3.1利用matlab计算复变函数的留数 (9)3.2在matlab中,利用留数定理求解复变函数的积分 (10)4 利用matlab对信号做傅氏、拉氏变换 (11)4.1 利用matlab对信号做傅里叶变换 (11)4.2 利用matlab对信号做拉普拉斯变换 (13)5 利用matlab绘制复变函数 (14)1 matlab在复常数中的应用1.1 Matlab中对单个复常数的简单运算在matlab中,生成复数的形式分为两种:代数形式(如z=x+y*i)与指数形式(如z=r*exp(theta i),其中r为模长,theta为幅角的弧度值)。
复变函数论文(DOC)

复变函数论文《复变函数与积分变换》与《信号系统》的相互联系和运用系别:专业名称:学号:姓名:指导老师:年月日《复变函数与积分变换》与《信号系统》的相互联系和运用摘录:随着现代科学技术理论的发展,学课间的联系越来越紧密,通过相互协助,使复杂的问题能够利用较简单的方法方便,快捷的解决。
由于复变函数与积分变换的运算是实变函数运算的一种延伸,且由于其自身的一些特殊的性质而显得不同,特别是当它引进了“留数”的概念,以及Taylor级数展开,Laplace变换和Fourier变换之后而使其显得更为重要,因此学习复变函数与积分变换对学习信号与系统具有很大的促进作用。
文章主要介绍了:1,Fourier变换是怎样在信号系统的频域分析中进行运用的;2,怎样利用复变函数中的“留数定理”对Laplace反变换进行计算; 3,复变函数中的Z变换是怎样解决信号系统中离散信号与系统复频域问题分析的;4,复变函数与积分变换中的各种运算是怎样通过信号系统中的MATLAB来实现的。
关键词:留数,Laplace变换,Z变换, Fourier变换,Taylor级数,MATLAB。
1,Fourier变换是怎样在信号系统的频域分析中进行运用的;当对一个信号系统进行分析和研究时,首先应该知道该信号系统的数学模型,即建立该信号系统的数学表达式,例如:根据Fourier 级数的理论,连续时间周期信号的频域分析的数学表达式即为无限项虚指数序列的线性叠加;而且信号的Fourier 变换建立了信号的时域与频域之间的一一对应的关系,并揭示了其在时域域频域之间的内在联系,因此为信号和系统的分析提供了一种新的方法和途径。
例1:已知描述某稳定的连续时间LTI 系统的微分方程为''''()3()2()2()3(),y t y t y t x t x t ++=+系统的输入激励3()()t x t e u t -=,求该系统的零状态响应()zs y t 。
复变函数论文

复变函数论文复变函数论文复变函数的精确之美学习复变的感想对于理科类学科的学习而言,最重要的一点莫过于概念的清晰程度。
因为所有的推导、证明以及应用,归根结底都是在基本概念的基础上衍生而来的。
因此只有将相关概念真正理解同时牢记于心,才可以真正地走进一门学科,真正的领略一门学科的美妙与精华所在。
在我的理解看来,复变函数从某种意义上来说可以看成是大一所学的高等数学的一种延伸与拓展。
在高等数学,也就是我们通常所说的微积分学中,我们所研究讨论的对象都是实函数,也就是函数的定义域与值域所代表的集合都是实数集合。
这样的研究将许多生活中遇到的数学问题用实变函数的微分与积分表达出来,让我们能够很快地了解一些微积分中的基本概念、知识以及应用技巧。
但是同时,实变函数的应用范围十分狭窄。
尤其是电气工程等方面的计算和问题中,实变函数几乎可以算是毫无用武之地。
因此为了能够更好地解决工程中遇到的问题,我们便对现有的实变函数进行了拓展延伸,创建了复变函数体系,并总结发现了一系列复变函数的定义、定理、方法以及技巧。
精确是所有理科研究学科,尤其是数学学科的一个重要特点,这一点在复变函数中也体现的尤为明显。
复变函数是将复数域之间的映射的特点和关系进行全面系统的总结和归纳。
其研究对象就是复数域之间映射的函数关系。
因此在复变函数的研究中基本都是代数运算,没有带数字之后为计算方便而出现约等的情况。
当然复变函数的精确美远远不止表现与这些方面。
为了解决问题的方便,复变函数的研究中总结归纳了许多的定理和方法。
但每一种的定理与方法都有其十分明确的适用范围和使用方法。
这是为了保证它们在被使用于求解相应问题时不出现错用、误用而最终导致结果有偏差甚至完全错误。
比如在我们在计算闭路积分时常运用的留数定理就有其很明确的适用范围。
此外,复变函数在许多相似概念的区分上也做到了精确二字。
如可导、连续以及解析之间的区别,在复变函数中就体现的尤为明显。
作为一门研究数的学科,复变函数对于结果的精确程度是有着相当高的要求的。
复变函数与积分变换论文

复变函数论文复变函数在反馈系统稳定性中的应用姓名:李欢欢学号:0914101 21学院(系):电气与电子工程系专业:电气工程及其自动化指导教师:秦志新评阅人:完成日期:2011年12月25日星期日复变函数在反馈系统稳定性中的应用一、摘要:Laplace变换在分析反馈系统稳定性有着关键作用,求解一些简单的稳定性问题也很方便。
但对于一些较为复杂的反馈系统,用Laplace变换就不方便了。
通过对“辐角定理和奎斯特判据”和Laplace变换及特征方程,根与系数关系劳斯判据,根据三种方法的对比及其不同方法的特点体现出利用辐角定理结合奎斯特判据处理反馈系统问题的优越性。
辐角定理与奈奎斯特判据解法简单易懂便于推广,同时在其他领域也有着广泛的应用。
二、关键词:反馈系统、幅角、奈奎斯特判据、极点、零点三、正文: 【提出问题】:在电气电子工程及其自动化控制过程中,如图所示负反馈放大电路是最为常见的,应用最广泛的电路之一Xi 为输入量,Xi ’为电路中信号净输入量,Xf 为反馈量,“ ”为反馈系统在实际应用中,当输入信号为零即Xi=0时。
由于某种电扰动(如合闸通电或者外来信号干扰)其中含有的信号经过电路的放大,产生输入信号,而输出信号再进过负反馈系统再次进入输入,如此循环下去,电路将产生自激振荡,反馈系统将无法正常工作,处于不稳定状态。
所以如何保持反馈系统稳定工作,不致于产生自激振荡、在实践上和理论上都是一个必须解决的问题。
【分析问题】:如图所示表示单个回路反馈系统,整个反馈系统的输出Y(s),与输入X(s)之间的 关系为Y(s)=H1(s)[X(s)-H2(s)Y(s)]则闭环传输函数)(s H s H s H s X s Y s H 211)(1)()()()(+==而开环传输函数)()(s H s H s H 21)(='将H (s )进行拉氏反变换得∑∑==--=-==ni ni pit kie pi s kig s H g t h 1111][][)()(式中Pi 为H (s )的极点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复变函数与积分变换论文
题目:阐述复变函数与积分变换对电气自动化专业的作用
阐述复变函数与积分变换对电气自动化专业的作用
复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数。
复变函数论历史悠久,内容丰富,理论十分完美。
它在数学许多分支、力学以及工程技术科学中有着广泛的应用。
复数起源于求代数方程的根。
通过学习《复变函数与积分变换》这门课程,我了解到它既是一门理论性较强的课程,又是解决实际问题的强有力的工具,它的理论和方法在数学、自然科学和工程技术中有着广泛的应用,同时老师也给我们了解到了更多关于复变函数的历史知识,让我更加对这门产生浓厚的学习兴趣。
《复变函数和积分变换》课程本身应该是一种将数学知识如何应用于工程的学科,是培养创新思维的非常重要的课程。
这门课程对于培养创新人才具有特殊作用,而创新能力的基础是创新思维。
复变函数和积分变换作为我们学校的电气工程自动化专业大
学生专业必修课,除了要求我们掌握复变函数和积分变换课程的基础知识、基本方法外,更重要的是要培养创新型的思维能力。
让学生强化应用、重视实践、淡化专业、消灭书呆子,重视创新能力和实践能力的培养。
我们在复变函数和积分变换课程的学习中面对的处处都是创新模式,没有创新就不能学好该课程。
复数域打破了实数域的限制、解析函数突破了二元函数和一元实函数的禁锢、洛朗级数克服了幂级数的局限性、拉普拉斯积分变换是傅里叶积分变换应用方面的创新等等。
在复变函数和积分变换的学习中,我们得到的不仅有作为科学创新基础的数学原理,还有一些创新思想方法,如解析函数高阶导数和积分变换中导数公式的归纳法思想、复数几何意义的直观性在初等几何中的应用思想、保形变换和积分变换中对称思维、两类积分变换应用的同中求异和理论中的异中求同、复势应用中的猜想与证明,观察与实验等等都体现了创新思维的火花。
我们在学习中掌握了这些方法,有利于在今后的工作和生活中发挥巨大的作用。
因此,复变函数和积分变换课程的教学,有助于学生创新思维能力的训练和培养。
培养我们运用基本理论和方法解决实际问题的意识、兴趣和能力,尤其是解析函数在平面向量场中的应用,留数理论的应用,积分变换在解微分方程中的应用和求广义积分,培养我们打破思维定式,打破常规惯例,用新的眼光看复变函数和积分变换,就是说变量从实数到复数,积分从直线到曲线,尤其是封闭曲线。
我们从这门课程上可以学到傅里叶变换是一种对连续时间函数的积分变换。
通过我们专业课的实验学习,深刻了解到傅里叶变换在处理和分析工程实际中的一些问题的重要作用。
通过变换技术,从另一个角度对问题进行处理和分析,使问题的性质更清楚、更便于分析,也使问题的求解更方便,更便于解决。
我以前总认为学这些东西没有用处,只是一些很落后和过时的理论,通过实验学习,我看到了它的重大作用。
在我以后的学习中,也要在掌握基本理论的同时,去挖掘生活中的问题,并努力用所学的知识去解决,那样才能更好的理解和运用。
我还学到积分变换可以把微分方程变换为初等方程,求解方便。
另外求线性系统的响应,用积分变换不用考虑初始状态,非常方便。
可以实现时域和频域的变换,方便对谐波进行分析计算。
使用复频域的状态变量解法可以方便的用计算机对系统进行求解。
通过课程的学习,我们可以了解到,复数可以应用到现实中的数学建模,其在很多运算中都有者不可思议的性质和规律。
复数的引入为人们解决实数域和物理科学提供了许多新的途径,打开了很多原本无法畅通的道路,无论是神奇的留数,还是保角映射,都为人类在解决非复领域上的问题提供了全新的思路与方便。
复变函数给我们一个新的概念,让我们不局限于实数的学习范围,给我们一个创新思维的学习。