【高考数学】夺取2020年高考数学高分宝典(重点推荐)
2020年高考数学满分秘籍

1
(2)在解答集合问题时,要注意集合的性质“确定性、无序性、互异性”特别是互异性对集合元素的限制。 有时需要进行检验求解的结果是满足集合中元素的这个性质,此外,解题过程中要注意集合语言(数学语
言)和自然语言之间的转化如: A x, y | x2 y2 4 ,
为三角最值求解。
x2 y2
【练 2】(05 高考重庆卷)若动点(x,y)在曲线 1 4 b2
b0
上变化,则 x2 2 y 的最大值为
()
(A)
b2 4
40
2b b 4
b
4 (B)
b2
40
4
2b b 2
b
2 (C)
b2 4
再求
1 x
y f 1 x 1 的反函数得 g x 2 x 。正确答案:B
1 x
【知识点提升】函数 y f 1 x 1 与函数 y f x 1 并不互为反函数,他只是表示 f 1 x 中 x
用 x-1 替代后的反函数值。这是因为由求反函数的过程来看:设 y f x 1 则 f 1 y x 1,
4 (D) 2b
答案:A
【满分秘籍 3】时刻铭记:求函数的反函数不忘定义域,就是原函数的值域。
例3、
f
x
a2x 1 1 2x
是R
上的奇函数,(1)求 a
的值(2)求的反函数
f
1
x
【易错点分析】求解已知函数的反函数时,易忽略求解反函数的定义域即原函数的值域而出错。
解析:(1)利用 f x f x 0 (或 f 0 0 )求得 a=1.
2020年高考数学(理)抢分秘籍01 集合与常用逻辑用语带解析

秘籍01 集合与常用逻辑用语1.已知集合A={(x ,y )|22x +y 3≤,x ∈Z ,y ∈Z },则A 中元素的个数为( ) A .9 B .8C .5D .4【答案】A【解答】解:当x=﹣1时,得y=﹣1,0,1,当x=0时,得y=﹣1,0,1,当x=1时,得y=﹣1,0,1, 即集合A 中元素有9个,故选:A .2.已知集合{}220A x x x =-->,则R C A =( )A .{x|﹣1<x <2}B .{x|﹣1≤x ≤2}C .{x|x <﹣1}∪{x|x >2}D .{x|x ≤﹣1}∪{x|x ≥2}【答案】B【解答】解:集合{}220A x x x =-->,可得A={x|x <﹣1或x >2},则:R C A ={x|﹣1≤x ≤2}. 故选:B .集合间的基本关系在高考中时有出现,常考查求子集、真子集的个数及利用集合关系求参数的值或取值范围问题,主要以选择题的形式出现,且主要有以下两种命题角度:(1)求集合的子集:若集合A 中含有n 个元素,则其子集的个数为2n 个,真子集的个数为21n -个,非空真子集的个数为22n -个.(2)根据两集合关系求参数的值或取值范围:已知两集合的关系求参数时,关键是将两集合的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析,而且经常要对参数进行讨论.注意区间端点的取舍.注意:空集是任何集合的子集,是任何非空集合的真子集,在涉及集合关系时,必须优先考虑空集的情况,否则会造成漏解.3.已知命题p :0x ∃∈R,2010x +<,则A .p ⌝:x ∀∈R ,B .p ⌝:x ∃∈R ,210x +> C .p ⌝:x ∀∈R ,210x +≥ D .p ⌝:x ∃∈R ,210x +≥【答案】C【解析】因为特称命题的否定是全称命题, 所以,命题p :0x ∃∈R,2010x +<的否定是p ⌝:x ∀∈R ,210x +≥.故选C .全称命题与特称命题的否定与命题的否定有一定的区别,否定全称命题和特称命题时,一是要改写量词,全称量词改写为存在量词,存在量词改写为全称量词;二是要否定结论,而一般命题的否定只需直接否定结论即可.4.若命题0:p x R ∃∈,20010x x -+…,命题:0q x ∀<,||x x >.则下列命题中是真命题的是( )A .p q ∧B .()p q ∧⌝C .()p q ⌝∧D .()()p q ⌝∧⌝【答案】C【解答】解:Q △1430=-=-<,x R ∴∀∈,210x x -+>恒成立,故命题p 是假命题,0x ∀<Q ,||x x >恒成立,即命题q 是真命题,则()p q ⌝∧是真命题,其余为假命题,故选:C .210x +>1.判断含逻辑联结词命题真假的方法与步骤(1)判断含有逻辑联结词的命题的真假的关键是对逻辑联结词“或”“且”“非”的含义的理解,应根据组成各个命题的语句中所出现的逻辑联结词进行命题结构与真假的判断. (2)判断命题真假的步骤:2.含逻辑联结词命题真假的等价关系(1)p ∨q 真⇔p ,q 至少一个真⇔(⌝p )∧(⌝q )假. (2)p ∨q 假⇔p ,q 均假⇔(⌝p )∧(⌝q )真. (3)p ∧q 真⇔p ,q 均真⇔(⌝p )∨(⌝q )假. (4)p ∧q 假⇔p ,q 至少一个假⇔(⌝p )∨(⌝q )真. (5)⌝p 真⇔p 假;⌝p 假⇔p 真.1.对于复数a ,b ,c ,d ,若集合S ={a ,b ,c ,d }具有性质“对任意x ,y ∈S ,必有xy ∈S ”,则当2211a b c b =⎧⎪=⎨⎪=⎩时,b +c +d 等于 A .1 B .1- C .0 D .i【答案】B【解析】∵S ={a ,b ,c ,d },∴由集合中元素的互异性可知当a =1时,b =1-,则c 2=1-,∴c =±i ,由“对任意x ,y ∈S ,必有xy ∈S ”知±i ∈S ,∴c =i ,d =-i 或c =-i ,d =i ,∴b +c +d =(1-)+0=1-.故选B.1.利用集合元素的限制条件求参数的值或确定集合中的元素的个数时,要注意检验集合是否满足元素的互异性.2.解决集合创新型问题的方法:(1)紧扣新定义:首先分析新定义的特点,把新定义所叙述的问题的本质弄清楚,并能够应用到具体的解题过程之中,这是破解新定义型集合问题的关键所在.(2)用好集合的性质:集合的性质(概念、元素的性质、运算性质等)是破解新定义型集合问题的基础,也是突破口,在解题时要善于从试题中发现可以使用集合性质的一些因素,在关键之处用好集合的性质.2.已知集合2{|}A x ax x ==,{0B =,1,2},若A B ⊆,则实数a 的值为( ) A .1或2 B .0或1 C .0或2 D .0或1或2【答案】D【解答】解:依题意,当0a =时,{0}A =,满足A B ⊆.当0a ≠时,若A B ⊆,则1A ∈,或者2A ∈,若1A ∈,则211a ⨯=,得1a =;若2A ∈,则222a =得2a =,综上:0a =,1或2a =.故选:D .在进行集合的交、并、补运算中可依据元素的不同属性采用不同的方法求解: (1)离散型数集或抽象集合间的运算,常借助Venn 图或交、并、补的定义求解; (2)点集的运算常利用数形结合的思想或联立方程进行求解;(3)连续型数集的运算,常借助数轴求解.3.已知命题“如果1a ≤,那么关于x 的不等式22(4)(2)10a x a x -++-≥的解集为∅”.它的逆命题、否命题、逆否命题及原命题中是假命题的共有( ) A .0个B .2个C .3个D .4个【答案】:B四种命题及其相互关系:用p 、q 表示一个命题的条件和结论,p ⌝和q ⌝分别表示条件和结论的否定,那么若原命题:若p 则q ;则逆命题:若q 则p ;否命题:若p ⌝则q ⌝;逆否命题:若q ⌝则p ⌝. 四种命题间的关系如下:4.设x 是实数,则“|1|2x -<”是“|2|1x -<”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件 【答案】:B【解答】解:设x 是实数,若“|1|2x -<”则:212x -<-<, 即:321x -<-<,不能推出“|2|1x -<”若:“|2|1x -<”则:121x -<-<,即:012x <-<,能推出“|1|2x -<”由充要条件的定义可知:x 是实数,则“|1|2x -<”是“|2|1x -<”的必要不充分条件; 故选:B .充分、必要条件的判断方法(1)命题判断法设“若p ,则q ”为原命题,那么:①若原命题为真,逆命题为假时,则p 是q 的充分不必要条件; ②若原命题为假,逆命题为真时,则p 是q 的必要不充分条件; ③若原命题与逆命题都为真时,则p 是q 的充要条件;④若原命题与逆命题都为假时,则p 是q 的既不充分也不必要条件.(2)集合判断法从集合的观点看,建立命题p ,q 相应的集合:p :A ={x |p (x )成立},q :B ={x |q (x )成立},那么:①若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;②若A B ⊇,则p 是q 的必要不充分条件,或q 是p 的充分不必要条件; ③若A =B ,则p 是q 的充要条件; ④若AB ,且A ⊉B ,则p 是q 的既不充分也不必要条件.(3)等价转化法利用p ⇒q 与q p ⌝⇒⌝,q ⇒p 与p q ⌝⇒⌝,p ⇔q 与q p ⌝⇔⌝的等价关系.1.已知集合{1A =,2},2{|(1)0B x x a x a =-++=,}a R ∈,若A B =,则(a = ) A .1 B .2C .1-D .2-2已知命题0:p x R ∃∈,20010x x -+>;命题q :若a b <,则11a b >,则下列为真命题的是( ) A .p q ∧ B .p q ∧⌝ C .p q ⌝∧ D .p q ⌝∧⌝3.已知集合2{|2}A x x x =<+,{|}B x x a =<,若A B ⊆,则实数a 的取值范围为( ) A .(-∞,1]- B .(-∞,2] C .[2,)+∞ D .[1-,)+∞4.在等比数列{}n a 中,“4a ,12a 是方程2310x x ++=的两根”是“81a =-”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.已知全集3|04x U x x +⎧⎫=∈≤⎨⎬-⎩⎭Z ,集合{}|211A x x =∈+≤Z ,{}2|20B x x x *=∈--≤N ,则()U A B U ð中元素的个数是A . 0B . 1C . 2D . 36.已知集合{|}A x x a =≤,()21221{|log 4log }5B x x x =-≥,若A B =∅I ,则实数a 的取值范围为A .()1,5-B .[]0,4 C .(],1-∞-D .(),1-∞-7.在ABC ∆中,“tan tan 1A B <”是“ABC ∆为钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件8.集合{|0}A x x a =+<,,若A B B =I ,则实数a 的取值范围为( ) A .(,2)-∞- B .(-∞,2]- C .(0,)+∞ D .(2,)+∞9.已知命题“0[1x ∃∈-,1],20030x x a -++>”为真命题,则实数a 的取值范围是( ) A .9(4-,)+∞B .(4,)+∞C .(2,4)-D .(2,)-+∞2{|20}B x x x =-≤10.设α、β为两个不同的平面,l 、m 为两条不同的直线,且l α⊂,m β⊥,有如下的两个命题p :若//αβ,则l m ⊥;命题q :若//l m ,则αβ⊥.那么( )A .p q ∧⌝是真命题B .p q ∨⌝是假命题C .p q ∧是真命题D .p q ∨是假命题11.已知命题p:A ={x|x−21−x≤0},命题q:B ={x|x −a <0},若命题p 是命题q 的必要不充分条件,则实数a 的取值范围是( ) A .(2,+∞) B .[2,+∞) C .(−∞,1)D .(−∞,1]12.“01x <<”是“2log (1)1x +<”的 条件(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”).1.【答案】B【解答】解:{1A =Q ,2},2{|(1)0B x x a x a =-++=,}a R ∈, 若A B =,则1,2是方程2|(1)0x a x a -++=得两根, 则12112a a +=+⎧⎨⨯=⎩,即2a =.故选:B . 2.【答案】B【解答】解:220001331()0244x x x -+=-+>>Q ,∴命题0:p x R ∃∈,20010x x -+>是真命题,32-<Q ,1132-<,∴命题:q a b <,则11a b>是假命题, p q ∴∧是假命题,p q ∧⌝是真命题,p q ⌝∧是假命题,p q ⌝∧⌝是假命题,故选:B .3.【答案】C【解答】集合2{|2}A x x x =<+,解得集合{|12}A x x =-<<, 若A B ⊆,则B 集合应含有集合A 中的所有元素, 则由数形结合可知:需B 集合的端点a 满足:, 故选:C . 4.【答案】A【解答】解:4a Q ,12a 是方程2310x x ++=的两根, 4123a a ∴+=-,4121a a =g ,4a ∴和12a 均为负值,由等比数列的性质可知8a 为负值,且284121a a a ==g ,81a ∴=-, 反之,由28841211a a a a =-⇒==g ,但是412a a +不一定等于3-,即4a ,12a 不一定是方程2310x x ++=的两根.故“4a ,12a 是方程2310x x ++=的两根”是“81a =-”的充分不必要条件, 故选A. 5.【答案】D【解析】全集}{}3{|03,2,1,0,1,2,34x U x x +=∈≤=----Z , 集合}}{}={|211{|10=1,0A x x x x ∈+≤=∈-≤≤-Z Z , 集合}}{}2{ |20{|121,2B x x x x x **=∈--≤=∈-≤≤=N N ,则(){}3,2,3U A B =--U ð,故集合()U A B U ð中元素的个数为3.选D . 6.【答案】D【解析】由224045x x x x ⎧->⎪⎨-≤⎪⎩得10x -≤<或45x <≤,则()21221}{|log 4log {104}|55B x x x x x x ==-≥-≤<<≤或,又{|}A x x a =≤,A B =∅I ,所以 1.a <- 故答案为D . 7.【答案】Ca 2≥【解答】:sin sin cos()tan tan 1100cos cos cos 0cos cos cos cos A B A B A B A B C ABC A B A B+<⇔->⇔>⇔<⇔∆为钝角三角形.∴在ABC ∆中,“tan tan 1A B <”是“ABC ∆为钝角三角形”的充要条件.故选:C .8【答案】A【解答】解:{|}A x x a =<-,; A B B =Q I ,B A ∴⊆,2a ∴->,2a ∴<-,a ∴的取值范围为(,2)-∞-.故选:A .9.【答案】D【解答】解:命题“0[1x ∃∈-,1],2030x x a -++>”为真命题 等价于23a x x >-在[1x ∈-,1]上有解, 令2()3f x x x =-,[1x ∈-,1],则等价于()min a f x f >=(1)2=-,2a ∴>-,故选:D . 10.【答案】C【解答】解:由//αβ,m β⊥知,m α⊥,又l α⊂,则l m ⊥,从而命题p 是真命题; 由//l m ,m β⊥知,l β⊥,又l α⊂,所以αβ⊥,故命题q 也为真命题. 则p q ∧是真命题,其余为假命题,故选:C . 11.【答案】D【解析】∵A ={x|x−21−x ≤0}={x|(x −2)(x −1)≥0且x ≠1}={x|x <1或x ≥2},B ={x|x −a <0}={x|x <a },又命题p 是命题q 的必要不充分条件,∴B ⊂≠A ,则a ≤1.故选D . 12.【解答】解:22log (1)1log 2x +<=Q , ∴1012x x +>⎧⎨+<⎩,11x ∴-<<,∴ “01x <<”是“2log (1)1x +<”的充分不必要条件,故答案为:充分不必要.2{|20}B x x x =-≤。
2020高考数学必胜秘诀(八)圆锥曲线

焦点在y 轴上的椭圆,那么 m 的取值范畴是—〔答:(°(谆〕2020高考数学必胜秘诀(八)圆锥曲线――概念、方法、题型、易误点及应试技巧总结八、圆锥曲线1.圆锥曲线的两个定义:〔1〕第一定义中要重视”括号〃内的限制条件 :椭圆中,与两个定点F ,, F 2的距离的和等于常数 2a ,■ ■ ■J"J- -1-■ ■ ■." ~—- -^-1" ■- ■■■且此常数2a 一定要大于 RF 2,当常数等于FT ?时,轨迹是线段卩汗2,当常数小于FT ?时,无轨迹; 双曲线中,与两定点F 1, F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2I ,定义中的”绝对值'’与2a v |F 1F 2 |不可忽视。
假设2a = |F 1F 2|,那么轨迹是以 F 1, F 2为端点的两条射线, 假设2a > |F 1F 2|,那么轨迹不存在。
假设去掉定义中的绝对值那么轨迹仅表示双曲线的一支。
女口〔 1〕定点F 1( 3,0)也(3,0),在满 足以下 条件的平 面上动点P 的轨迹中 是椭圆的是A . PF j |PF 242 2B • |PF ^ |PF 2| 6C • PF 1PF 2 10 D • PF 1 PF 2 12 〔答:C 〕;_匚2〕.方程J (x 6)2 y 2 J (x 6)2 y 2 8表示的曲线是 _________________〔答:双曲线的左支〕〔2〕第二定义中要注意定点和定直线是相应的焦点和准线,且”点点距为分子、点线距为分母",其商即是离心率e 。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的 2关系,要善于 运用第二定义对它们进行相互转化。
如点Q(2.. 2,0)及抛物线y — 上一动点P 〔x,y 〕,那4么y+|PQ|的最小值是 ______ 〔答:2〕2.圆锥曲线的标准方程 〔标准方程是指中心〔顶点〕在原点,坐标轴为对称轴时的标准位置的方程〕1 I I 12 2 2 2(3, 3)U ( -,2)〕;〔2〕假设x, y R ,且3x 2y 6,那么x y 的最大值是 _____________________ , x y 的最小值是—〔答:后2〕、x 2y 2y 2x 2〔2丨双曲线:焦点在x 轴上:—J=1,焦点在 y 轴上: 土—= 1〔 a 0,b 0〕。
2020年高考数学(理)抢分秘籍04 立体几何附解析

秘籍04 立体几何1.如图,网格纸上正方形小格的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.20π B.24πC.28π D.32π【答案】C【解答】解:由三视图还原原几何体如图,该几何体为组合体,上半部分为圆柱,下半部分为圆锥,圆柱的底面半径为1,高为2,圆锥底面半径均为3,高均为4,则其表面积:S=π×32+π×3×5+2π×1×2=28π.故选:C.对于体积或表面积问题,一般先根据三视图准确还原几何体,再利用常规的几何体的体积公式或表面积公式求解.2.某几何体的三视图如图所示,则该几何体的体积为()A.163B.203C.169D.209【答案】B【解答】解:由题意可知几何体是组合体,左侧是四棱锥右侧是三棱柱,如图:棱锥的高为2,底面正方形的边长为2,三棱柱的底面等腰三角形的底边长为2,高为2.所以几何体的体积为:13×2×2×2+12×2×2×2=203.故选:B.求解几何体的表面积或体积的方法:(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解.对于某些三棱锥,有时可采用等体积转换法求解.(3)求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形的应用.3.已知正四棱锥的侧棱与底面的边长都为2√2,则这个四棱锥的外接球的体积为( ) A .16π3B .32π3C .16πD .32π【答案】B【解答】解:如图,设正四棱锥底面的中心为O ,则在直角三角形ABC 中,AC=√2×AB=4, ∴AO=CO=2,在直角三角形PAO 中,PO=√PA 2−AO 2=√(2√2)2−22=2, ∴正四棱锥的各个顶点到它的底面的中心的距离都为2, ∴正四棱锥外接球的球心在它的底面的中心,且球半径r=2, 球的体积V=43πr 3=323π.故选:B .解决与球有关的“切”“接”问题,一般要过球心及多面体中的特殊点或过线作截面,把空间问题转化为平面问题,从而寻找几何体各元素之间的关系.4.如图所示的几何体是由以等边三角形ABC 为底面的棱柱被平面DEF 所截而得,已知FA ⊥平面ABC ,AB=2,AF=2,CE=3,O 为BC 的中点,AO ∥面EFD . (1)求BD 的长;(2)求证:面EFD ⊥面BCED ;(3)求平面DEF 与平面ACEF 相交所成锐角二面角的余弦值.【解答】解:(1)取ED 的中点P ,连接PO ,PF ,则PO 为梯形BCED 的中位线, PO=BD+CE 2=BD+32,又PO ∥BD ,AF ∥BD ,所以PO ∥AF ,所以A ,O ,P ,F 四点共面, 因为AO ∥面EFD ,且面AOPF ∩面EFD=PF , 所以AO ∥PF ,所以四边形AOPF 为平行四边形, PO=AF=2,所以BD=1.证明:(2)由题意可知平面ABC ⊥面BCED ,又AO ⊥BC ,且AO ⊂平面ABC ,所以AO ⊥面BCED , 因为AO ∥PF ,所以PF ⊥面BCED ,又PF ⊂面EFD , 所以面EFD ⊥面BCED .解:(3)以O 为原点,OC ,OA ,OP 所在直线分别为x ,y ,z 轴,建立空间直角坐标系,A (0,√3,0),B (﹣1,0,0),C (1,0,0).P (0,0,2),E (1,0,3),F (0,√3,2).设Q 为AC 的中点,则Q (12,√32,0),由题意得BQ ⊥平面ACEF ,平面ACEF 的法向量为BQ →=(32,√32,0).设平面DEF 的法向量为n →=(x ,y ,z ), PE →=(1,0,1),PF →=(0,√3,0),则{n →⋅PF →=√3y =0n →⋅PE →=x +z =0,取x=﹣1,得n →=(﹣1,0,1), 所以cos <BQ →,n →>=BQ →⋅n→|BQ →|⋅|n →|=﹣√64,所以平面DEF 与平面ACEF 相交所成锐角二面角的余弦值为√64.利用向量求二面角求二面角最常用的方法就是分别求出二面角的两个面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角是锐角还是钝角.注意:两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.运用空间向量坐标运算求空间角的一般步骤(1)建立恰当的空间直角坐标系;(2)求出相关点的坐标;(3)写出向量坐标;(4)结合公式进行论证、计算;(5)转化为几何结论.平面与平面的夹角计算公式设平面α,β的法向量分别为μ=(a3,b3,c3),v=(a4,b4,c4),平面α,β的夹角为θ(0≤θ≤π),则|cos θ|=|μ·v| |μ||v|=|cos〈μ,v〉|.1.若一个空间几何体的三视图如图所示,且已知该几何体的体积为4√33π,则其表面积为()A.6π+4√3 B.6πC.34π+2√3 D.34π+√3【答案】A【解答】解:几何体是半圆锥,底面半径为r,高为:√3r,该几何体的体积为4√33π,可得:12×13×r2×√3rπ=4√33π,解得r=2,半圆锥的表面积为:12×22×π+12×4×2√3+12×124π×4=6π+4√3.故选:A.此类问题对考生的空间想象能力要求较高,会根据三视图作出空间几何体的直观图,然后根据条件结合表面积公式求得空间几何体的表面积,①画三视图的原则:长对正、高平齐、宽相等.②圆锥的表面积2ππS rl r =+.2.已知三棱锥P ﹣ABC 所有顶点都在球O 的球面上,底面△ABC 是以C 为直角顶点的直角三角形,AB=2√2,PA=PB=PC=√3,则球O 的表面积为( ) A .9π B .9π4C .4πD .π【答案】A【解答】解析:设AB 中点为D ,则D 为△ABC 的外心,因为PA=PB=PC=√3,易证PD ⊥面ABC , 所以球心O 在直线PD 上, 又PA=√3,AB=2√2,算得PD=1,设球半径为R ,则△AOD 中,(R ﹣1)2+2=R 2,可得:R=32. 则球O 的表面积S=4πR 2=9π, 故选:A .对于空间几何体的外接球问题,首先根据几何体的结构特征利用勾股定理求得球的半径,然后利用公式求解,球的表面积公式24πS R =,体积公式34π3V R =.3.如图,已知多面体ABC-A 1B 1C 1,A 1A ,B 1B ,C 1C 均垂直于平面ABC ,∠ABC=120°,A 1A=4,C 1C=l ,AB=BC=B 1B=2.(Ⅰ)证明:AB 1⊥平面A1B1C1;(Ⅱ)求直线AC 1与平面ABB 1所成的角的正弦值.【解答】(I )证明:∵A 1A ⊥平面ABC ,B 1B ⊥平面ABC ,∴AA 1∥BB 1, ∵AA 1=4,BB 1=2,AB=2,∴A 1B 1=√(AB)2+(AA 1−BB 1)2=2√2, 又AB 1=√AB 2+BB 12=2√2,∴21AA =21AB +211A B ,∴AB 1⊥A 1B 1, 同理可得:AB 1⊥B 1C 1,又A 1B 1∩B 1C 1=B 1,∴AB 1⊥平面A 1B 1C 1.(II )解:取AC 中点O ,过O 作平面ABC 的垂线OD ,交A 1C 1于D , ∵AB=BC ,∴OB ⊥OC ,∵AB=BC=2,∠BAC=120°,∴OB=1,OA=OC=√3,以O 为原点,以OB ,OC ,OD 所在直线为坐标轴建立空间直角坐标系如图所示: 则A (0,﹣√3,0),B (1,0,0),B1(1,0,2),C1(0,√3,1), ∴AB →=(1,√3,0),BB 1→=(0,0,2),AC 1→=(0,2√3,1), 设平面ABB1的法向量为n →=(x ,y ,z ),则{n →⋅AB →=0n →⋅BB 1→=0,∴{x +√3y =02z =0,令y=1可得n →=(﹣√3,1,0), ∴cos <n →,AC 1→>=n →⋅AC 1→|n →||AC 1→|=√32×√13=√3913.设直线AC 1与平面ABB 1所成的角为θ,则sinθ=|cos <n →,AC 1→>|=√3913. ∴直线AC 1与平面ABB 1所成的角的正弦值为√3913.直线与平面所成角的向量公式:直线a 的方向向量与平面α的法向量分别为m u r 和n r ,若m u r 与n r的夹角不大于90︒,直线a 与平面α所成的角等于m u r 与n r 夹角的余角,若m u r 与n r 的夹角大于90︒,直线a 与平面所成的角等于m u r 与n r夹角的补角的余角,所以直线a 与平面α所成的角θ的正弦值为m n m n⋅u r r u r r .1.设 m ,n ,l 是三条不同的直线,α 是一个平面,l ⊥m ,则下列说法正确的是 ( ) A. 若 m ⊄α,l ⊥α,则 m ∥α B. 若 l ⊥n ,则 m ⊥nC. 若 l ⊥n ,则 m ∥nD. 若 m ∥n ,n ⊂α,则 l ⊥α2.已知 m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线 l 满足 l ⊥m ,l ⊥n ,l ⊄α,l ⊄β,则 ( ) A. α∥β,且 l ∥αB. α⊥β,且 l ⊥βC. α 与 β 相交,且交线垂直于 lD. α 与 β 相交,且交线平行于 l3.已知直三棱柱ABC −A 1B 1C 1的顶点都在球O 的球面上,AB =AC=2,BC =2√2,若球O 的表面积为72π,则这个直三棱柱的体积是A.16 B.15C.8√2D.834.已知三棱锥P−ABC的高为PO,O为垂足,若P到底面△ABC三边所在的直线的距离相等,则O (假设O在△ABC内部)是△ABC的( )A. 外心B. 内心C. 垂心D. 重心5.在正方体ABCD—A1B1C1D1中,E为棱CD的中点,则( )A. A1E⊥DC1B. A1E⊥BDC. A1E⊥BC1D. A1E⊥AC6.在长方体ABCD−A1B1C1D1中,AB=AD=√2,AA1=2,则异面直线AB1与BC1所成角的余弦值为A.23B.56C 3D67.如图,P为△ABC所在平面α外一点,PB⊥α,PC⊥AC,则△ABC的形状为( )A.锐角三角形B. 直角三角形C. 钝角三角形D. 不确定8.如图,网格纸上正方形小格的边长为1,图中粗线画的是某几何体的三视图,则该几何体最长棱的长度为()A.4 B.3√2 C.2√2 D.2√39.中国古代第一部数学名著《九章算术》中,将一般多面体分为阳马、鳖臑、堑堵三种基本立体图形,其中将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥Q ABC -为鳖臑,QA ⊥平面ABC ,AB BC ⊥, 3QA BC ==, 5AC =,则三棱锥Q ABC -外接球的表面积为A .16πB .20πC .30πD .34π10.如图所示,扇形AOB 的半径为2,圆心角为90︒,若扇形AOB 绕OA 旋转一周,则图中阴影部分绕OA 旋转一周所得几何体的体积为( )A .3πB .5πC .83πD .163π11.用斜二测画法得到一个水平放置的平面图形的直观图为如图所示的直角梯形,其中梯形的上底是下底的12,若原平面图形的面积为32OA 的长为( )A .2B 2C 3.3212.已知四棱锥P −ABCD 的底面ABCD 是边长为2的正方形,侧棱PA ⊥平面ABCD ,PA =2,若在四棱锥P −ABCD 的内部有一个半径为R 的球,则R 的最大值为A .2−√2B .1C .√2−1D .2√313.如图,在以下四个正方体中,直线AB 与平面CDE 垂直的是( )A.①②B.②④ C.①③ D.②③14.如图,AB是Oe的直径,C是圆周上不同于A,B的任意一点,PA⊥平面ABC,则四面体P ABC-的四个面中,直角三角形的个数有()A.4个B.3个C.2个D.1个15.已知球O半径为3√2,设S、A、B、C是球面上四个点,其中∠ABC=90°,AB=BC=4√2,则棱锥S﹣ABC的体积的最大值为()A.64√23 B.64√29C.32√23D.32√2916.已知三棱柱ABC−A1B1C1的侧棱与底面垂直,底面是边长为√3的正三角形,且该三棱柱外接球的表面积为7π,若P为底面A1B1C1的中心,则PA与平面ABC所成角的大小为_________.17.如图,正方形ABCD的边长为3,点E , F分别在边AD , CD上,且AE=DF=2.将此正方形沿BE,BF,EF切割得到四个三角形,现用这四个三角形作为一个三棱锥的四个面,则该三棱锥的内切球的体积为_________.18.如图,在几何体ABC﹣A1B1C1中,点A1,B1,C1在平面ABC内的正投影分别为A,B,C,且AB⊥BC,AA1=BB1=4,AB=BC=CC1=2,E为AB1中点,(Ⅰ)求证;CE∥平面A1B1C1,(Ⅱ)求证:求二面角B1﹣AC1﹣C的大小.19.如图,梯形ABCD中,AD=BC,AB∥CD,AC⊥BD,平面BDEF⊥平面ABCD,EF∥BD,BE⊥BD.(1)求证:平面AFC⊥平面BDFE;(2)若AB=2CD=2√2,BE=EF=2,求BF与平面DFC所成角的正弦值.20.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,平面PAD⊥底面ABCD,E,F分别为PA,BD中点,PA=PD=AD=2.(1)求证:EF∥平面PBC;(2)求二面角F﹣ED﹣P的正弦值;(3)在棱PC上是否存在一点G,使GF⊥平面EDF?若存在,指出点G的位置;若不存在,说明理由.21.如图,在四棱锥P ﹣ABCD 中,底面ABCD 是边长为√2的正方形,PA ⊥BD . (Ⅰ)求证:PB=PD ;(Ⅱ)若E ,F 分别为PC ,AB 的中点,EF ⊥平面PCD ,求点B 到平面PCD 的距离.22.如图①所示,已知四边形SBCD 是由Rt SAB △和直角梯形ABCD 拼接而成的,其中AD DC ⊥,且点A 为线段SD 的中点,21,AD DC AB SD ===,现沿AB 进行翻折,使得二面角S AB C --的大小为90o ,连接,SC SD ,得到的图形如图②所示,点E 、F 分别在线段SB 、SC 上.(1)证明:BD AF ⊥;(2)若三棱锥E ABC -的体积是四棱锥S ABCD -体积的25,求二面角E AC B --的余弦值.1. 【答案】 A 【解析】若l⊥m,l⊥n,则m与n可能平行,也可能相交或异面,即B、C都不正确;由l⊥m,m∥n,可得l⊥n,不一定有l⊥α,即D不正确;对A,可在l上取一点P,过P作mʹ∥m,则mʹ⊥l,mʹ与l确定一个平面β,β∩α=a,由l⊥α,得l⊥a,又mʹ,a,l同在平面β内,则由l⊥mʹ,l⊥a得mʹ∥a,于是m∥a,又m⊄α,所以m∥α.2.【答案】D【解析】由题意作图得故选D.3.【答案】A【解析】设球O的半径为r,由题意知S=4πr2=72π,r=3√2,△为等腰直角三角形,因为AB=AC=2,BC=2√2,易知ABCBC)2=8,故三棱柱的高ℎ=2√r2−(12×2×2×8=16.故这个直三棱柱的体积是V=12故选A.【名师点睛】对于求解球的组合体问题常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径.4.【答案】B【解析】因为P到△ABC三边所在直线的距离相等,所以O点到三边的距离相等,所以O为△ABC的内心.故选B.5.【答案】C【解析】:连B1C,由题意得BC1⊥B1C,因为A1B1⊥平面B1BCC1,且BC1⊂平面B1BCC1,所以A1B1⊥BC1,因为A1B1∩B1C=B1,所以BC1⊥平面A1ECB1,因为A1E⊂平面A1ECB1,所以A1E⊥BC1.故选C6.【答案】A【解析】画出图形,如图所示.连接AD1,B1D1,则AD1//BC1,所以∠B1AD1即为AB1与BC1所成的角或其补角.在∆B1AD1中,AB1=AD1=√6,B1D1=2,所以由余弦定理得cos∠B1AD1=6+6−42×6=23,所以异面直线AB1与BC1所成角的余弦值为23.故选A.7.【答案】B【解析】由 PB ⊥α,AC ⊂α 得 PB ⊥AC ,又 AC ⊥PC ,PC ∩PB =P ,所以 AC ⊥平面PBC ,AC ⊥BC ,故选B . 8【答案】D【解答】解:利用“三线交汇得顶点”的方法,该几何体位四棱锥P ﹣ABCD 如图所示,其中,正方体棱长为2, 所以最长棱为PC=2√3. 故选:D .9.【答案】D【解析】将三棱锥Q ABC -补全为长方体,如图,则外接球的直径为2223534R =+,所以34R =,故外接球的表面积为24π34πR =.【名师点睛】空间几何体与球接、切问题的求解方法:(1)求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.(2)若球面上四点P ,A ,B ,C 构成的三条线段P A ,PB ,PC 两两互相垂直,且P A =a ,PB =b ,PC =c ,一般把有关元素“补形”成为一个球内接长方体,利用4R 2=a 2+b 2+c 2求解.10.【答案】C【解答】解:扇形AOB 的半径为2,圆心角为90︒, 扇形AOB 绕OA 旋转一周,图中阴影部分绕OA 旋转一周所得几何体为:半径为2R =的半球去掉一个底面半径为2r =,高为2h =的圆锥,∴图中阴影部分绕OA 旋转一周所得几何体的体积为:3214182222333V πππ=⨯⨯-⨯⨯⨯=.故选:C . 11.【答案】B【解答】解:由题意,原平面图形与斜二测画法得到的直观图的面积比为2,设OA x =,则直观图的面积为213()224x x x x +=g , 2322324x ∴=∴2x =故选:B .12.【答案】A【解析】根据题意,当满足R 最大时,对应的球是四棱锥的内切球,根据条件可以求得该四棱锥的表面积为S =2×2+2×(12×2×2)+2×(12×2×2√2)=8+4√2, 而该四棱锥的体积为V =13×2×2×2=83,结合13SR =V , 解得R =3×838+4√2=2+√2=2−√2.故选A.【名师点睛】该题考查的是有关几何体的内切球半径的求解问题,在解题的过程中,需要时刻关注各个量之间的关系,最关键的就是等量关系从哪里入手来寻找,即V =13S 表R 是解决该题的根本,注意对题的条件的转化和有效利用. 13.【答案】B【解答】解:在①中,AB 与CE 的夹角为45︒,∴直线AB 与平面CDE 不垂直,故①错误; 在②中,AB BC ⊥,AB CD ⊥,AB ∴⊥平面CDE ,故②正确;在③中,AB 与EC 的夹角为60︒,∴直线AB 与平面CDE 不垂直,故③错误; 在④中,AB DE ⊥,AB CE ⊥,AB ∴⊥平面CDE ,故④正确.故选:B . 14.【答案】A【解答】证明:AB Q 是圆O 的直径90ACB ∴∠=︒即BC AC ⊥,三角形ABC 是直角三角形又PA ⊥Q 圆O 所在平面,PAC ∴∆,PAB ∆是直角三角形.且BC 在这个平面内, PA BC ∴⊥ 因此BC 垂直于平面PAC 中两条相交直线, BC ∴⊥平面PAC ,PBC ∴∆是直角三角形.从而PAB ∆,PAC ∆,ABC ∆,PBC ∆中,直角三角形的个数是:4. 故选:A . 15.【答案】A【解答】解:当S 在经过AC 与球心的连线上时,由于:AC=√(4√2)2+(4√2)2=8,球心到AC 的中点的连线,d=√(3√2)2−42=√2, 所以:锥体的最大高度为:h=3√2+√2=4√2,所以:V=13⋅12⋅4√2⋅4√2⋅4√2=64√23.故选:A .16.【答案】π3【解析】如图所示,P 为正三角形A 1B 1C 1的中心,设O 为ΔABC 的中心,由题意知:PO ⊥平面ABC ,连结OA ,则∠PAO 即为PA 与平面ABC 所成的角.由题易知OP 中点为外接球的球心,设三棱柱外接球的半径为r , ∵7π=4πr 2,∴r 2=74, ∴AO 2+(OP 2)2=74.在正三角形ABC 中,AB =BC =AC =√3, ∴AO =√33×√3=1,∴PO =√3.∴tan∠PAO =POAO =√3, ∴∠PAO =π3.17.【答案】4π81【解析】如图所示,在长、宽、高分别为1,2,3的长方体ABCD −A 1B 1C 1D 1中, 三棱锥B 1−ABC 即为题中所给的四个面组成的三棱锥, 该三棱锥的体积:V =13×(12×1×2)×3=1,在△AB 1C 中,由勾股定理易得AC =√5,AB 1=√13,CB 1=√10, 由余弦定理可得:cos∠B 1CA =25×10=√210, 则sin∠B 1CA =√1−(√210)2=7√210,故S △B 1CA =12×√5×√10×7√210=72,该三棱锥的表面积为:S =12×(1×2+1×3+2×3)+72=9, 设三棱锥B 1−ABC 内切球的半径为R ,则V =13SR ,即:1=13×9×R,∴R =13,该三棱锥B 1−ABC 内切球的体积为V =43πR 3=4π81.【名师点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.18.【解答】(Ⅰ)证明:∵点A 1,B 1,C 1在平面ABC 内的正投影分别为A ,B ,C , ∴AA 1∥BB 1∥CC 1,取A 1B 1中点F ,连接EF ,FC ,则EF ∥12A 1A ,EF=12A 1A , ∵AA 14,CC 1=2,∴CC 1∥12A 1A ,CC 1=12A 1A ,∴CC 1∥EF ,CC 1=EF ,∴四边形EFC 1C 为平行四边形,∴CE ∥C 1F , ∵CE ⊄平面A 1B 1C 1,C 1F ⊂平面A 1B 1C 1, ∴CE ∥平面A 1B 1C 1;(Ⅱ)解:建立如图所示的坐标系,则A (2,0,0),C (0,2,0),B 1(0,0,4),C 1(0,2,2), ∴AC →=(﹣2,2,0),CC 1→=(0,0,2),AB 1→=(﹣2,0,4),B 1C 1→=(0,2,﹣2).设平面ACC 1的法向量为n →=(x ,y ,z ),则{−2x +2y =02z =0,令x=1,则n →=(1,1,0).同理可得平面AB 1C 1的法向量为m →=(2,1,1), ∴cos <n →,m →>=m →⋅n→|m →||n →|=√32.由图可知二面角B 1﹣AC 1﹣C 为钝角, ∴二面角B 1﹣AC 1﹣C 的大小为150°.19.【解答】解:(1)证明:∵平面BDFE ⊥平面ABCD ,平面BDFE ∩平面ABCD=BD ,AC ⊂平面ABCD ,AC ⊥BD ,∴AC ⊥平面BDFE .又AC ⊂平面AFC ,∴平面AFC ⊥平面BDFE .(2)设AC ∩BD=O ,∵四边形ABCD 为等腰梯形,AC ⊥BD ,AB=2CD=2√2,∴OD=OC=1,OB=OA=2, ∵EF ∥OB 且EF=OB ,∴四边形FEBO 为平行四边形, ∴OF ∥BE ,且OF=BE=2,又∵BE ⊥平面ABCD ,∴OF ⊥平面ABCD .以O 为原点,向量OA →,OB →,OF →的方向分别为x 轴,y 轴,z 轴的正方向,建立如图所示的空间直角坐标系,则B (0,2,0),D (0,﹣1,0),F (0,0,2),C (﹣1,0,0), ∴DF →=(0,1,2),CD →=(1,﹣1,0),BF →=(0,﹣2,2),设平面DFC 的一个法向量为n →=(x ,y ,z ),则有{n →⋅DF →=0n →⋅CD →=0,即{y +2z =0x −y =0, 不妨设z=1,得x=y=﹣2.即n →=(﹣2,﹣2,1), 于是cos <n →,BF →>=n →⋅BF→|n →||BF →|=2√2×3=√22. 设BF 与平面DFC 所成角为θ,则sin θ=|cos <n →,BF →>|=√22. ∴BF 与平面DFC 所成角的正弦值为√22.20.【解答】证明:(1)如图,连结AC ,∵四边形ABCD 是正方形, ∴AC 与BD 互相平分,又∵F 是BD 中点,F 是AC 中点, ∴EF ∥PC ,又∵在△PAC 中,E 是PA 中点,F 是AC 中点, ∴EF ∥PC ,又∵EF ⊄平面PBC ,PC ⊂平面PBC , ∴EF ∥平面PBC .解:(2)取AD 中点O ,在△PAD 中, ∵PA=PD ,∴PO ⊥AD ,∵平面PAD ⊥平面ABCD ,且平面PAD ∩平面ABCD=AD , ∴PO ⊥平面ABCD ,∵OF ⊂平面ABCD ,∴PO ⊥OF , ∵F 是AC 的中点,∴OF ⊥AD ,如图,以O 为原点,OA ,OF ,OP 分别为x ,y ,z 轴, |OA →|为单位长度建立空间直角坐标系, ∵PA=PD=AD=2,∴OP=√3,则O (0,0,0),A (1,0,0),B (1,2,0),C (﹣1,2,0),D (﹣1,0,0),P (0,0,√3),E (12,0,√32),F (0,1,0), ∴AB →=(0,2,0),DE →=(32,0,√32),DF →=(1,1,0), ∵OF ⊥平面PAD ,∴OF →=(0,1,0)是平面PAD 的一个法向量, 设平面EFD 的一个法向量是n →=(x ,y ,z ),则{n →⋅DF →=x +y =0n →⋅DE →=32x +√32y =0,取x=1,得n →=(1,﹣1,﹣√3), ∴|cos <DF →,n →>|=|OF →⋅n →||OF →|⋅|n →|=√5=√55,∴二面角F ﹣ED ﹣P 的正弦值为:(√55)=2√55. (3)假设在棱PC 上存在一点G ,使得GF ⊥平面EDF , 设G (x 1,y 1,z 1),则FG →=(x 1,y 1﹣1,z 1),由(2)知平面EDF 的一个法向量n →=(1,﹣1,﹣√3), ∵GF ⊥平面EDF ,∴设FG →=λn →=(λ,−λ,−√3λ),则x 1=λ,y 1=1−λ,z 1=−√3λ, ∵点G 在棱PC 上,∴CG →与PC →共线,∵PC →=(﹣1,2,﹣√3),CG →=(x 1+1,y 1﹣2,z 1), ∴x 1+2−1=y 1−22=1−√3,即1+λ−2=−λ−12=√3λ−√3,无解,∴在棱PC 上不存在一点G ,使得GF ⊥平面EDF .21.【解答】证明:(1)连接AC ,BD 交于点O ,连结PO .解:(1)连接AC ,BD 交于点O ,连结PO . ∵底面ABCD 是正方形,∴AC ⊥BD ,OB=OD .又PA ⊥BD ,PA ⊂平面PAC ,AC ⊂平面PAC ,PA ∩AC=A , ∴BD ⊥平面PAC ,∵PO ⊂平面PAC ,∴BD ⊥PO . 又OB=OD ,∴PB=PD .解:(2)设PD 的中点为Q ,连接AQ ,EQ , 则EQ ∥CD ,EQ=12CD ,又AF ∥CD ,AF=12AB=12CD , ∴EQ ∥AF ,EQ=AF ,∴四边形AQEF 为平行四边形,∴EF ∥AQ , ∵EF ⊥平面PCD ,∴AQ ⊥平面PCD , ∴AQ ⊥PD ,∵Q 是PD 的中点, ∴AP=AD=√2.∵AQ ⊥平面PCD ,∴AQ ⊥CD , 又AD ⊥CD ,AQ ∩AD=A , ∴CD ⊥平面PAD ,∴CD ⊥PA . 又BD ⊥PA ,BD ∩CD=D , ∴PA ⊥平面ABCD .以A 为坐标原点,以AB ,AD ,AP 为坐标轴建立如图所示的空间直角坐标系, 则B (√2,0,0),P (0,0,√2),A (0,0,0),Q (0,√22,√22), ∵AQ ⊥平面PCD ,∴AQ →=(0,√22,√22)为平面PCD 的一个法向量. ∴PB →=(﹣√2,0,√2), ∴点B 到平面PCD 的距离:d=|PB →⋅AQ →||AQ →|=√2+2=1.22.【解析】(1)因为二面角S AB C --的大小为90o ,且SA AB ⊥,平面SAB I 平面ABCD AB =,所以SA ⊥平面ABCD ,又BD ⊂平面ABCD ,所以SA BD ⊥;在直角梯形ABCD 中,90BAD ADC ∠=∠=o ,21AD CD ==,2AB =, 所以1tan tan 2ABD CAD ∠=∠=,即ABD CAD ∠=∠. 又90CAD BAC ∠+∠=o ,所以90ABD BAC ∠+∠=o ,即AC BD ⊥; 又AC SA A =I , 所以BD ⊥平面SAC , 因为AF ⊂平面SAC , 所以BD AF ⊥.(2)如图,分别以,,AD AB AS 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,则(0,0,0)A ,(0,0,1)S ,(0,2,0)B ,1(1,,0)2C ,(1,0,0)D . 设三棱锥E ABC -的高为h ,因为25E ABC S ABCD V V --=,所以511215321122132ABCD S ABCDE ABC ABC S SA V V S h h --⨯⋅⨯===⋅⨯⨯⨯四边形△,故12h =, 故E 为SB 中点,即1(0,1,)2E . 设平面EAC 的法向量为(,,)x y z =m ,又1(1,,0)2AC =u u u r ,1(0,1,)2AE =u u u r ,由0,0,AC AE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u r m m 得10,210,2x y y z ⎧+=⎪⎪⎨⎪+=⎪⎩取2y =-,得平面EAC 的一个法向量为(1,2,4)=-m ,又(0,0,1)AS ==u u u rn 是平面ABCD 的一个法向量,所以421cos ,||||21⋅==⋅m n m n m n , 由图可知二面角E AC B --为锐角, 所以二面角E AC B --的余弦值为42121.。
2020版高分宝典高考数学二轮微专题复习(江苏专用)课件:微专题十六等差、等比数列

(2) 117 解析:解法 1: a1+a2=a11+q=49,
两式相除可得
a3+a4+a5+a6=a1q2+q3+q4+q5=40,
q2+q4=90,即 q2=-10(舍)或 q2=9.又 an>0,所以 q=3,故 a1=19,所以 a7+a8
+a9=a1q6(1+q+q2)=1 053,即a7+a98+a9=117.
(1) 3 解析:由 a8=a6+6a4 得 a2q6=a2q4+6a2q2,则有 q4-q2-6=0,所以 q2
=3(舍负).又 q>0,所以 q= 3,则 a3=a2q= 3.
(2)
3 5
解析:因为 SS2nn=4nn++12,所以令 n=1 可得,SS12=26=13,即2aa1+1 d=13,化
解法 2: 因为aa31+ +aa42=q2,aa51+ +aa62=q4,所以 a3+a4+a5+a6=(q2+q4)(a1+a2)=40. 即 q4+q2=90,解得 q2=9.又 an>0,所以 q=3.又aa71+ +aa82+ +aa93=q6,aa74+ +aa85+ +aa96=q3, 故 a1+a2+…+a6=q16+q13(a7+a8+a9)=40+49,解得 a7+a8+a9=1 053,即 a7+a98+a9=117.
2. 等差数列{an}中,已知 Sn 是其前 n 项和,a1=-9,S99-S77=2,则 S10=________.
0 解析:设公差为 d.因为S99-S77=2,所以9-2 1d-7-2 1d=2, 所以 d=2.因为 a1=-9,所以 S10=10×(-9)+10× 2 9×2=0.
3. 若公比不为 1 的等比数列{an}满足 log2(a1a2…a13)=13,等差数列bn满足 b7=a7, 则 b1+b2+…+b13 的值为________.
2020年 名师讲解 高考数学 提分宝典 导数及其应用之第1讲 变化率与导数、导数的计算

[基础题组练]1.已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π解析:选C.因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. 2.(2019·福州模拟)曲线f (x )=x +ln x 在点(1,1)处的切线与坐标轴围成的三角形的面积为( )A .2 B.32 C.12D.14解析:选D.f ′(x )=1+1x ,则f ′(1)=2,故曲线f (x )=x +ln x 在点(1,1)处的切线方程为y -1=2(x -1),即y =2x -1,此切线与两坐标轴的交点坐标分别为(0,-1),⎝⎛⎭⎫12,0,则切线与坐标轴围成的三角形的面积为12×1×12=14,故选D.3.已知曲线y =x 24-3ln x 的一条切线的斜率为12,则切点的横坐标为( )A .3B .2C .1D. 12解析:选A.因为y ′=x 2-3x ,令y ′=12,解得x =3,即切点的横坐标为3.4.如图所示为函数y =f (x ),y =g (x )的导函数的图象,那么y =f (x ),y =g (x )的图象可能是( )解析:选D.由y =f ′(x )的图象知y =f ′(x )在(0,+∞)上单调递减,说明函数y =f (x )的切线的斜率在(0,+∞)上也单调递减,故排除A 、C.又由图象知y =f ′(x )与y =g ′(x )的图象在x =x 0处相交,说明y =f (x )与y =g (x )的图象在x =x 0处的切线的斜率相同,故排除B.5.函数g (x )=x 3+52x 2+3ln x +b (b ∈R )在x =1处的切线过点(0,-5),则b 的值为( )A.72B.52 C.32D.12解析:选B.当x =1时,g (1)=1+52+b =72+b ,又g ′(x )=3x 2+5x +3x,所以切线斜率k =g ′(1)=3+5+3=11, 从而切线方程为y =11x -5,由于点⎝⎛⎭⎫1,72+b 在切线上,所以72+b =11-5, 解得b =52.故选B.6.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=________. 解析:因为f ′(x )=4ax 3-b sin x +7, 所以f ′(-x )=4a (-x )3-b sin(-x )+7 =-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14. 又f ′(2 018)=6,所以f ′(-2 018)=14-6=8. 答案:87.(2019·广州市调研测试)若过点A (a ,0)作曲线C :y =xe x 的切线有且仅有两条,则实数a 的取值范围是________.解析:设切点坐标为(x 0,x 0ex 0),y ′=(x +1)e x ,y ′|x =x 0=(x 0+1)ex 0,所以切线方程为y -x 0ex 0=(x 0+1)ex 0(x -x 0),将点A (a ,0)代入可得-x 0ex 0=(x 0+1)ex 0(a -x 0),化简,得x 20-ax 0-a =0,过点A (a ,0)作曲线C 的切线有且仅有两条,即方程x 20-ax 0-a =0有两个不同的解,则有Δ=a 2+4a >0,解得a >0或a <-4,故实数a 的取值范围是(-∞,-4)∪(0,+∞).答案:(-∞,-4)∪(0,+∞)8.(2019·南昌第一次模拟)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e9.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根, 所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1, 所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8, 所以x 0=-2,所以y 0=(-2)3+(-2)-16=-26, k =3×(-2)2+1=13.所以直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4, 所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.[综合题组练]1.(应用型)在等比数列{a n }中,a 1=2,a 8=4,函数f (x )=x (x -a 1)(x -a 2)·…·(x -a 8),则f ′(0)=( )A .26B .29C .212D .215解析:选C.因为f ′(x )=x ′·[(x -a 1)(x -a 2)·…·(x -a 8)]+[(x -a 1)·(x -a 2)·…·(x -a 8)]′·x =(x -a 1)(x -a 2)·…·(x -a 8)+[(x -a 1)(x -a 2)·…·(x -a 8)]′·x ,所以f ′(0)=(0-a 1)(0-a 2)·…·(0-a 8)+0=a 1a 2·…·a 8.因为数列{a n }为等比数列,所以a 2a 7=a 3a 6=a 4a 5=a 1a 8=8,所以f ′(0)=84=212.故选C. 2.(应用型)(2019·成都第二次诊断检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x (x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x 2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.3.(创新型)(2019·黑龙江伊春质检)曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离是________.解析:设M (x 0,ln(2x 0-1))为曲线上的任意一点,则曲线在M 点处的切线与直线2x -y +8=0平行时,M 点到直线的距离即为曲线y =ln(2x -1)上的点到直线2x -y +8=0的最短距离.因为y ′=22x -1,所以22x 0-1=2,解得x 0=1,所以M (1,0).记点M 到直线2x -y +8=0的距离为d ,则d =|2+8|4+1=2 5.答案:2 54.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)由题意得,y ′=-2x +92.设点P 的坐标为(x 1,y 1),则y 1=kx 1,① y 1=-x 21+92x 1-4,② -2x 1+92=k ,③联立①②③得,x 1=2,x 2=-2(舍去). 所以k =12.(2)过P 点作切线的垂线, 其方程为y =-2x +5.④ 将④代入抛物线方程得, x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9,所以x 2=92,y 2=-4.所以Q 点的坐标为⎝⎛⎭⎫92,-4. 5.(2019·福州质检)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明:曲线y =f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形的面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3.当x =2时,y =12.又f ′(x )=a +bx2,于是⎩⎨⎧2a -b 2=12,a +b 4=74,解得⎩⎪⎨⎪⎧a =1,b =3.故f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线上任一点,由y ′=1+3x 2,知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,从而得切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0. 令y =x ,得y =x =2x 0,从而得切线与直线y =x 的交点坐标为(2x 0,2x 0).所以点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积为S =12⎪⎪⎪⎪-6x 0|2x 0|=6.故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形的面积为定值,且此定值为6.。
2020年高考数学(理)抢分秘籍06 三角函数与解三角形(解析版)

秘籍06 三角函数与解三角形1.已知角α的顶点为坐标原点,始边与x 轴的非负半轴重合,终边在射线4y ,(0)3x x =-<上,则sin2α= A .2425- B .725- C .1625D .85【答案】A【解析】在角终边上取一点()3,4P -,所以43sin ,cos 55αα==-, 所以4324sin22sin cos 25525ααα⎛⎫==⨯⨯-=- ⎪⎝⎭. 所以选A.三角函数定义:设α是一个任意角,它的顶点与原点重合,始边与x 轴非负半轴重合,点(),P x y 是角α的终边上任意一点,P 到原点的距离()0OP r r =>,那么角α的正弦、余弦、正切分别是sin ,cos ,tan y x yr r xααα===. (1)利用三角函数的定义求角的三角函数值,需确定三个量:角的终边上任意一个异于原点的点的横坐标x 、纵坐标y 、该点到原点的距离r .若题目中已知角的终边在一条直线上,此时注意在终边上任取一点有两种情况(点所在象限不同).(2)已知角α的终边所在的直线方程或角α的大小,根据三角函数的定义可求角α终边上某特定点的坐标.2.已知4sin 5α=,并且α是第二象限的角,那么()tan π-α的值等于 A .43- B .34-C .34D .43【答案】D 【解析】∵4sin 5α=,并且α是第二象限的角,3cos 5α∴=-, ∴4tan 3α=-,则()4tan π--tan 3αα==.故选D .【名师点睛】本题主要考查了同角三角函数关系式,诱导公式的应用,熟练掌握基本关系及诱导公式是解题的关键,诱导公式的口诀:“奇变偶不变,符号看象限”.由题设条件可得cos α,再根据同角三角函数关系式可得tan α,然后根据诱导公式即可得解. 3.已知sin (π4+α)=35,则sin (3π4−α)=( ) A .45B .−45C .35D .−35【答案】C【解析】:∵已知sin (π4+α)=35,则sin (3π4−α)=sin[π﹣(π4+α)]=sin (π4+α)=35, 故选:C .【名师点睛】该题考查的是利用和角公式并借助于三角函数值求角的大小的问题,在解题的过程中,需要利用整体思维将角进行配凑求值1.同角三角函数的基本关系式(1)平方关系:22sin +cos 1αα=,可以实现角α的正弦、余弦的互化; 商的关系:sin cos tan ααα=,可以实现角α的弦切互化. (2)sin ,cos αα的齐次式的应用:分式中分子与分母是关于sin ,cos αα的齐次式,或含有22sin ,cos αα及sin cos αα的式子求值时,可将所求式子的分母看作“1”,利用“22sin +cos 1αα=”代换后转化为“切”后求解. 2.诱导公式公式一二三四五六角 2k π+α(k ∈Z ) π+α −α π−α2π−α 2π+α 正弦 sin α −sin α −sin α sin α cos α cos α 余弦 cos α −cos α cos α −cos α sin α −sin α 正切 tan αtan α−tan α−tan α口诀函数名不变,符号看象限 函数名改变,符号看象限应用诱导公式,重点是“函数名称”与“正负号”的正确判断.求任意角的三角函数值的问题,都可以通过诱导公式化为锐角三角函数的求值问题,具体步骤为“负角化正角”→“正角化锐角”→求值. 3.三角恒等变换(1)两角和与差的正弦、余弦、正切公式①cos()αβ±=cos cos sin sin αβαβm ②sin()αβ±=sin cos cos sin αβαβ± ③tan()αβ±=tan tan π(,,π,)1tan tan 2k k αβαβαβαβ±±≠+∈Z m(2)二倍角公式 ①sin2α=2sin cos αα②cos2α=2222cos sin 12sin 2cos 1αααα-=-=- ③tan 2α=22tan πππ(π,)1tan 224k k k αααα≠+≠+∈-Z 且1.已知曲线C 1:y =sinx ,C 2:y =cos(12x −5π6),则下列说法正确的是( )A .把C 1上各点横坐标伸长到原来的2倍,再把得到的曲线向右平移π3,得到曲线C 2B .把C 1上各点横坐标伸长到原来的2倍,再把得到的曲线向右平移2π3,得到曲线C 2C .把C 1向右平移π3,再把得到的曲线上各点横坐标缩短到原来的12,得到曲线C 2D .把C 1向右平移π6,再把得到的曲线上各点横坐标缩短到原来的12,得到曲线C 2【答案】B【解析】:根据曲线C 1:y =sinx ,C 2:y =cos(12x −5π6)=sin (12x ﹣π3),把C 1上各点横坐标伸长到原来的2倍,可得y=sin (12x )的图象;再把得到的曲线向右平移2π3,得到曲线C 2:y=sin (12x ﹣π3) 的图象, 故选:B .函数图象的平移变换解题策略:(1)对函数y =sin x ,y =A sin(ωx +φ)或y =A cos(ωx +φ)的图象,无论是先平移再伸缩,还是先伸缩再平移,只要平移|φ|个单位,都是相应的解析式中的x 变为x ±|φ|,而不是ωx 变为ωx ±|φ|.如下图:(2)注意平移前后两个函数的名称是否一致,若不一致,应用诱导公式化为同名函数再平移.2.函数f (x )=sin (ωx+φ)(ω>0,0<φ<π)的图象中相邻对称轴的距离为π2,若角φ的终边经过点(3,√3),则f(π4)的值为( ) A .√32B .√3C .2D .2√3【答案】A【解析】:由题意相邻对称轴的距离为π2,可得周期T=π,那么ω=2, 角φ的终边经过点(3,√3),在第一象限.即tanφ=√33,∴φ=π6故得f (x )=sin (2x+π6)则f(π4)=sin (π2+π6)=cos π6=√32.故选:A . 3.已知函数()1π3sin cos cos 223f x x x x ⎛⎫=-- ⎪⎝⎭.(1)求函数()f x 图象的对称轴方程; (2)将函数()f x 图象向右平移π4个单位长度,所得图象对应的函数为()g x .当π02x ⎡⎤∈⎢⎥⎣⎦,时,求函数()g x 的值域.【解析】(1)()1π313sin cos cos 2sin 2cos 22344f x x x x x x ⎛⎫=--=- ⎪⎝⎭1πsin 226x ⎛⎫=- ⎪⎝⎭.令ππ2π62x k k -=+∈Z ,, 解得ππ32k x =+,k ∈Z . ∴函数()f x 图象的对称轴方程为ππ32k x =+,k ∈Z . (2)易知()12πsin 223g x x ⎛⎫=- ⎪⎝⎭. ∵π02x ⎡⎤∈⎢⎥⎣⎦,,∴2π2ππ2333x ⎡⎤-∈-⎢⎥⎣⎦,, ∴2π3sin 2132x ⎡⎤⎛⎫-∈-⎢⎥ ⎪⎝⎭⎣⎦,, ∴()12π13sin 22324g x x ⎡⎤⎛⎫=-∈-⎢⎥ ⎪⎝⎭⎣⎦,, 即当π02x ⎡⎤∈⎢⎥⎣⎦,时,函数()g x 的值域为1324⎡⎤-⎢⎥⎣⎦,.【名师点睛】对三角函数的考查是近几年高考考查的一大热点问题,一般难度不大,但综合性较强.解答这类问题时,对两角和与差的正余弦公式、诱导公式以及二倍角公式一定要熟练掌握并灵活应用,特别是二倍角公式的各种变化形式要熟记于心.在研究三角函数的图象和性质问题时,一般先运用三角恒等变形,将表达式转化为一个角的三角函数的形式求解.对于本题,(1)利用二倍角的正弦公式、诱导公式以及两角差的正弦公式将函数()f x 化为1π()=sin 226f x x ⎛⎫- ⎪⎝⎭,利用ππ2π62x k k -=+∈Z ,,可解得函数()f x 图象的对称轴方程;(2)将函数()f x 图象向右平移π4个单位长度,可得()g x 的函数解析式,再利用正弦函数的性质结合正弦函数的图象可得函数()g x 的值域.(1)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的定义域均为R ;函数tan()y A x ωϕ=+的定义域均为ππ{|,}2k x x k ϕωωω≠-+∈Z .(2)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的最大值为||A ,最小值为||A -;函数tan()y A x ωϕ=+的值域为R .(3)函数sin()y A x ωϕ=+,cos()y A x ωϕ=+的最小正周期为2πω;函数tan()y A x ωϕ=+的最小正周期为πω.(4)对于()sin y A x ωϕ=+,当且仅当()πk k ϕ=∈Z 时为奇函数,当且仅当()ππ2k k ϕ=+∈Z 时为偶函数;对于()cos y A x ωϕ=+,当且仅当()ππ2k k ϕ=+∈Z 时为奇函数,当且仅当()πk k ϕ=∈Z 时为偶函数;对于()tan y A x ωϕ=+,当且仅当()π2k k ϕ=⋅∈Z 时为奇函数. (5)函数()()sin 0,0y A x A ωϕω=+>>的单调递增区间由不等式ππ2π2π22k x k ωϕ-≤+≤+()k ∈Z 来确定,单调递减区间由不等式()π3π2π2π22k x k k ωϕ+≤+≤+∈Z 来确定;函数()()cos 0,0y A x A ωϕω=+>>的单调递增区间由不等式()2ππ2πk x k k ωϕ-≤+≤∈Z 来确定,单调递减区间由不等式()2π2ππk x k k ωϕ≤+≤+∈Z 来确定;函数()()tan 0,0y A x A ωϕω=+>>的单调递增区间由不等式()ππππ22k x k k ωϕ-<+<+∈Z 来确定.4.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =2,c =2√2,且C =π4,则△ABC 的面积为( ) A .√3+1 B .√3−1C .4D .2【答案】A【解析】:由正弦定理bsinB=c sinC⇒sinB =bsinC c=12,又c >b ,且B ∈(0,π), 所以B =π6, 所以A =7π12,所以S =12bcsinA =12×2×2√2sin 7π12=12×2×2√2×√6+√24=√3+1.故选:A .【名师点睛】解三角形问题,主要是确定选用什么公式:正弦定理、余弦定理、三角形的面积公式,一般可根据已知条件和要求的问题确定.5.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(2a ﹣b )•cosC=c•cosB . (1)求角C 的大小;(2)若c=2,△ABC 的面积为√3,求该三角形的周长. 【解析】:(1)在△ABC 中,由正弦定理知asinA =bsinB =csinC=2R ,又因为(2a ﹣b )•cosC=c•cosB , 所以2sinAcosC=sinBcosC+cosBsinC , 即2sinAcosC=sinA ; ∵0<A <π,∴sinA >0; ∴cosC=12;又0<C <π,∴C=π3;(2)∵S △ABC =12absinC=√34ab=√3,∴ab=4又c 2=a 2+b 2﹣2abcosC=(a+b )2﹣3ab=4, ∴(a+b )2=16, ∴a+b=4; ∴周长为6【名师点睛】该题考查的是有关解三角形的问题,在解题的过程中,注意对正弦定理和余弦定理的正确使用,建立关于边或角所满足的关系,在求角的时候,必须将角的范围写上.1.正弦定理:sin sin sin a b c ==A B C. 常见变形:(1)sin sin sin ,,,sin sin ,sin sin ,sin sin ;sin sin sin A a C c B ba Bb A a Cc A b C c B B b A a C c====== (2);sin sin sin sin sin sin sin sin sin sin sin sin a b c a b a c b c a b cA B C A B A C B C A B C +++++======+++++ (3)::sin :sin :sin ;a b c A B C =(4)正弦定理的推广:===2sin sin sin a b c R A B C,其中R 为ABC △的外接圆的半径. 2.余弦定理:2222222222cos ,2cos 2cos .a b c bc A b a c ac B c a b ab C =+-=+-=+-,常见变形:222222222cos ,cos ,cos 222b c a c a b a b c A B C bc ca ab+-+-+-===. 3.三角形的面积公式:111sin sin sin 222S bc A ac B ab C ===. 4.利用正、余弦定理求边和角的方法:(1)根据题目给出的条件(即边和角)作出相应的图形,并在图形中标出相关的位置.(2)选择正弦定理或余弦定理或二者结合求出待解问题.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.(3)在运算求解过程中注意三角恒等变换与三角形内角和定理的应用.6.已知函数f(x)=√3sin x2cos x2−cos 2x2+12. (1)求函数f (x )的单调递减区间;(2)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,f(A)=12,a =√3,sinB=2sinC ,求c .【解析】:(1)f(x)=√32sinx −12cosx =sin(x −π6), 由π2+2kπ≤x −π6≤3π2+2kπ,k ∈Z ,解得2π3+2kπ≤x ≤5π3+2kπ,k ∈Z ;∴函数f(x)的单调递减区间为[2π3+2kπ,5π3+2kπ],k∈Z;(2)∵f(A)=sin(A−π6)=12,A∈(0,π),∴A=π3;∵sinB=2sinC,∴由正弦定理bsinB =csinC,得b=2c;又由余弦定理a2=b2+c2﹣2bccosA,a=√3,得3=4c2+c2−4c2×12,解得c=1.三角恒等变换与三角函数的图象及性质、解三角形、向量相结合的综合问题比较常见,首先利用向量的坐标运算将其转化为三角函数问题,再利用三角恒等变换及辅助角公式把三角函数关系式转化成y=A sin(ωx +φ)+t或y=A cos(ωx+φ)+t的形式,然后利用其性质进行解题,涉及的解三角形问题常需利用正弦定理把边的关系化成角,因为三个角之和等于π,可以根据此关系把未知量减少,再用三角恒等变换化简求解.1.在直角坐标系中,若角α的终边经过点P(sin2π3,cos2π3),则sin(π﹣α)=()A.12B.√32C.−12D.−√322.已知α为第二象限的角,且tanα=﹣34,则sinα+cosα=()A.﹣75B.﹣34C.﹣15D.153.已知tanα=3,则sin2α1+cos2α=()A.﹣3 B.−1 3C .13D .34.设函数()11πsin 3cos ()222f x x x θθθ⎛⎫⎛⎫=+-+<⎪ ⎪⎝⎭⎝⎭的图象关于原点对称,则θ的值为A .π6- B .π6 C .π3-D .π35.已知cos (π4−θ2)=23,则sinθ=( )A .79B .19C .﹣19D .﹣796.为了得到函数y =2cos2x 的图象,可以将函数y =cos2x −√3sin2x 的图象 A .向左平移π6个单位长度 B .向右平移π6个单位长度 C .向左平移π3个单位长度 D .向右平移π3个单位长度 7.函数f(x)=2sin(ωx +φ)(0<ω<12,|φ|<π2),若f(0)=−√3,且函数f (x )的图象关于直线x =−π12对称,则以下结论正确的是( ) A .函数f (x )的最小正周期为π3B .函数f (x )的图象关于点(7π9,0)对称C .函数f (x )在区间(π4,11π24)上是增函数D .由y=2cos2x 的图象向右平移5π12个单位长度可以得到函数f (x )的图象8.函数f (x )=A cos(ωx +φ)(ω>0,−π<φ<0)的部分图象如图所示,则关于函数g (x )=A sin(ωx −φ)的下列说法正确的是A .图象关于点π03⎛⎫ ⎪⎝⎭,成中心对称 B .图象关于直线π6x =对称 C .图象可由2cos 2y x =的图象向左平移π6个单位长度得到 D .在区间5π0,12⎡⎤⎢⎥⎣⎦上单调递减 9.已知函数f(x)=2sin(ωx +φ)(ω>0,0<φ<π2),f (x 1)=2,f (x 2)=0,若|x 1﹣x 2|的最小值为12,且f(12)=1, 则f (x )的单调递增区间为( ) A .[−16+2k ,56+2k],k ∈Z B .[−56+2k ,16+2k],k ∈ZC .[−56+2kπ,16+2kπ],k ∈ZD .[16+2k ,76+2k],k ∈Z10.将函数f (x )=2√3cos2x ﹣2sinxcosx ﹣√3的图象向左平移t (t >0)个单位,所得图象对应的函数为奇函数,则t 的最小值为( )A .2π3B .π3C .π2D .π611.若将函数y =sin2x +√3cos2x 的图象向左平移π6个单位长度,则平移后图象的对称轴方程为( ) A .x =kπ2−π12(k ∈Z) B .x =kπ2+π2(k ∈Z)C .x =kπ2(k ∈Z) D .x =kπ2+π12(k ∈Z)12.已知sinα−cosα=43,则cos 2(π4−α)=( ) A .19B .29C .49D .5913.已知cos (π﹣α)=13,sin(π2+β)=23(其中,α,β∈(0,π)),则sin (α+β)的值为( )A .4√2+√59B .4√2−√59 C .−4√2+√59D .−4√2−√5914.设α∈(0,π2),β∈(0,π4),且tanα=1+sin2βcos2β,则下列结论中正确的是( )A .2α﹣β=π4 B .2α+β=π4 C .α﹣β=π4 D .α+β=π415.已知△ABC 满足AB →2=AB →⋅AC →+BA →⋅BC →+CA →⋅CB →,则△ABC 是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形16.已知在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cosB b+cosC c=sinA√3sinC,则b 的值为( )A .√3B .2√3C .√32D .√617.在△ABC 中,角A ,B ,C 所对应的边分别是a ,b ,c ,若(a −b)(sinA +sinB)=c(sinC +√3sinB),则角A 等于( )A .π6B .π3C .2π3D .5π618.在△ABC 中,设a ,b ,c 分别是角A ,B ,C 所对边的边长,且直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,则△ABC 一定是( ) A .锐角三角形 B .等腰三角形C .直角三角形D .等腰或直角三角形19.若△ABC 的角A ,B ,C 对边分别为a 、b 、c ,且a=1,∠B=45°,S △ABC =2,则b=( )A .5B .25C .√41D .5√220.在△ABC 中,已知a=14,b=16,A=45°,则此三角形( )A .无解B .只有一解C .有两解D .解的个数不确定21.ΔABC 中,角A 、B 、C 的对边分别为a 、b 、c ,其中b =c ,若m =(a 2,2b 2),n =(1,sinA −1),0⋅=m n ,则A 等于____________.22.在ΔABC 中,边a ,b ,c 所对的角分别为A ,B ,C ,ΔABC 的面积S 满足4√3S =b 2+c 2−a 2,若a =2,则ΔABC 外接圆的面积为___________.23.在△ABC 中,a :b :c=4:5:6,则tanA= .24.函数f (x )=Asin (ωx+φ)(A >0,ω>0,0≤φ<2π)在R 上的部分图象如图所示,则f (2018)的值为 .25.将函数y=5sin (2x+π4)的图象向左平移φ(0<φ<π2)个单位后,所得函数图象关于y 轴对称,则φ= .26.已知函数f (x )=2sinx (sinx+cosx )﹣a 的图象经过点(π2,1),a ∈R . (1)求a 的值,并求函数f (x )的单调递增区间;(2)若当x ∈[0,π2]时,不等式f (x )≥m 恒成立,求实数m 的取值范围.27.已知函数f (x )=2√2sinxcos (x+π4).(△)若在△ABC 中,BC=2,AB=√2,求使f (A ﹣π4)=0的角B .(△)求f (x )在区间[π2,17π24]上的取值范围.28.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(2a ﹣b )•cosC=c•cosB . (1)求角C 的大小;(2)若c=2,△ABC 的面积为√3,求该三角形的周长.29.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知asinB +√3bcosA =0. (1)求A ;(2)若a=√3,求△ABC 面积S 的最大值.30.已知A ,B ,C 为锐角ABC △的三个内角,向量m =(2−2sinA,cosA +sinA),n =(1+sinA,cosA −sinA),且⊥m n . (1)求A 的大小; (2)求y =2sin 2B +cos(2π3−2B)取最大值时角B 的大小.31.已知函数()π4sin cos 6g x x x ⎛⎫=-⎪⎝⎭,将函数()y g x =的图象向左平移π6个单位长度得到()y f x =的图象.(1)求函数()g x 的最小正周期;(2)在ABC △中,内角,,A B C 的对边分别为,,a b c ,若3b =,且()3f B =-,求ABC △面积的最大值.32.已知向量()2sin2,2cos2x x =a ,()πcos ,sin ()2ϕϕϕ=<b ,若()f x =⋅a b ,且函数()f x 的图象关于直线π6x =对称.(1)求()f x 的单调递减区间;(2)在ABC △中,角,,A B C 的对边分别为,,a b c ,若()2f A =,且5b =,23c =,求ABC △外接圆的面积.1.【答案】C【解答】:∵角α的终边经过点P(sin 2π3,cos2π3),可得cosα=sin2π3=√32,sinα=cos2π3=﹣12,∴sin (π﹣α)=sinα=﹣12, 故选:C . 2.【答案】C 【解答】:tanα=sinαcosα=﹣34,①,sin2α+cos2α=1,②,又α为第二象限的角, ∴sinα>0,cosα<0,联立①②,解得sinα=35,cosα=−45, 则sinα+cosα=−15. 故选:C . 3.【答案】D【解答】:∵tan α=3,则sin2α1+cos2α=2sinαcosα1+2cos 2α−1=tan α=3,故选:D .4.【答案】D【解析】因为()111πsin 3cos 2sin 2223f x x x x θθθ⎛⎫⎛⎫⎛⎫=+-+=+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又函数()f x 的图象关于原点对称,所以()ππ3k k θ-=∈Z ,即()ππ3k k θ=+∈Z , 因为π2θ<,所以π3θ=. 故选D. 5.【答案】C【解答】:∵cos (π4−θ2)=23,∴cos (π2﹣θ)=2cos 2(π4−θ2)﹣1=﹣19=sinθ, 即sinθ=﹣19, 故选:C . 6.【答案】B【解析】πcos23sin22cos 23y x x x ⎛⎫=-=+⎪⎝⎭, 为了得到函数2cos2y x =的图象,可以将函数π2cos 23y x ⎛⎫=+ ⎪⎝⎭的图象向右平移π6个单位长度. 故选B . 7.【答案】D【解答】:函数f(x)=2sin(ωx +φ)(0<ω<12,|φ|<π2), ∵f(0)=−√3,即2sin φ=−√3, ∵−π2<φ<π2∴φ=−π3又∵函数f (x )的图象关于直线x =−π12对称, ∴−ω×π12−π3=π2+k π,k ∈Z .可得ω=12k ﹣10, ∵0<ω<12.∴ω=2.∴f (x )的解析式为:f (x )=2sin (2x ﹣π3).最小正周期T=2π2=π,∴A 不对.当x=7π9时,可得y ≠0,∴B 不对.令﹣π2≤2x ﹣π3≤π2,可得−π12≤x ≤5π12,∴C 不对.函数y=2cos2x 的图象向右平移5π12个单位,可得2cos2(x ﹣5π12)=2cos (2x ﹣5π6)=2sin (2x ﹣5π6+π2)=2sin(2x ﹣π3).∴D 项正确. 故选:D . 8.【答案】D【解析】由图象可知π2,,22T A ==故=2ω, 又过点π,23⎛⎫⎪⎝⎭,所以2πcos 13ϕ⎛⎫+= ⎪⎝⎭,且π0ϕ-<<,所以2π=3ϕ-, 因此函数为()2π2cos 23f x x ⎛⎫=- ⎪⎝⎭,()2π2sin 23g x x ⎛⎫=+ ⎪⎝⎭, 显然当5π012x ≤≤时,2π2π3π2332x ≤+≤,所以函数()g x 是减函数. 故选D . 9.【答案】B【解答】:由f (x 1)=2,f (x 2)=0,且|x 1﹣x 2|的最小值为12可知:T 4=12,∴T=2⇒ω=π,又f(12)=1,则φ=±π3+2kπ,k ∈Z ,∵0<φ<π2,∴φ=π3,f (x )=2sin (πx+π3),2k π−π2≤πx+π3≤2k π+π2,k ∈Z ,故可求得f (x )的单调递增区间为:[﹣56+2k ,16+2k],k ∈Z , 故选:B . 10.【答案】D【解答】:将函数f (x )=2√3cos2x ﹣2sinxcosx ﹣√3=√3cos2x ﹣sin2x=2cos (2x+π6)的图象向左平移t (t >0)个单位,可得y=2cos (2x+2t+π6)的图象.由于所得图象对应的函数为奇函数,则2t+π6=kπ+π2,k ∈Z ,则t 的最小为π6,故选:D . 11.【答案】A【解答】:将函数y =sin2x +√3cos2x =2sin (2x+π3)的图象向左平移π6个单位长度,可得y=2sin (2x+π3+π3)=2sin (2x+2π3)的图象,令2x+2π3=kπ+π2,可得x=kπ2﹣π12,k ∈Z ,则平移后图象的对称轴方程为x=kπ2﹣π12,k ∈Z ,故选:A . 12.【答案】A【解答】:由sinα−cosα=43,得sin 2α−2sinαcosα+cos 2α=169,∴sin2α=−79,∴cos 2(π4−α)=1+cos(π2−2α)2=1+sin2α2=1−792=19.故选:A . 13.【答案】B【解答】:由cos (π﹣α)=13,sin(π2+β)=23,得cosα=﹣13,cosβ=23, ∵α,β∈(0,π),∴sinα=2√23,sinβ=√53. ∴sin (α+β)=sinαcosβ+cosαsinβ=2√23×23−13×√53=4√2−√59. 故选:B . 14.【答案】C 【解答】:tanα=1+sin2βcos2β=(sinβ+cosβ)2cos 2β−sin 2β=sinβ+cosβcosβ−sinβ=1+tanβ1−tanβ=tan(β+π4).因为α∈(0,π2),β+π4∈(π4,π2),所以α=β+π4. 故选:C . 15.【答案】C【解答】:∵△ABC 中,AB →2=AB →⋅AC →+BA →⋅BC →+CA →⋅CB →, ∴AB →2=AB →⋅AC →−AB →⋅BC →+CA →⋅CB →=AB →(AC →﹣BC →)+CA →•CB →=AB →•AB →+CA →•CB →即AB →2=AB →2+CA →•CB →,得CA →•CB →=0∴CA →⊥CB →即CA ⊥CB ,可得△ABC 是直角三角形 故选:C . 16.【答案】A 【解答】:△cosB b+cosC c=sinA√3sinC ,△ccosB+bcosC=a√3cbc=ab√3,△由正弦定理可得:sinCcosB+sinBcosC=bsinA √3,可得:sinA=bsinA √3,△A 为锐角,sinA≠0,解得:b=√3. 故选:A . 17.【答案】D【解答】:∵(a −b)(sinA +sinB)=c(sinC +√3sinB), ∴(a ﹣b )(a+b )=c (c+√3b ), ∴a 2﹣c 2﹣b 2=√3bc , 由余弦定理可得cosA=b 2+c 2−a 22bc =﹣√32,∵A 是三角形内角,∴A=5π6.故选:D . 18.【答案】C【解答】:∵直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行, ∴ba =cosA cosB,解得bcosB=acosA ,∴利用余弦定理可得:b ×a 2+c 2−b 22ac=a ×b 2+c 2−a 22bc,整理可得:c 2(b 2﹣a 2)=(b 2+a 2)(b 2﹣a 2),∴解得:c 2=a 2+b 2或b=a ,而当a=b 时,两直线重合,不满足题意; 则△ABC 是直角三角形. 故选:C . 19.【答案】A【解答】:S △ABC =12acsinB=12c ⋅√22=2,c=4√2 ∴b=√a 2+c 2−2accosB =√1+32−2×4√2×√22=5 故选:A . 20.【答案】C【解答】:△ABC 中,a=14,b=16,A=45°, 由正弦定理得,14sin45°=16sinB ,sinB=4√27<1,且b >a ,∴B 可以有两个值,此三角形有两解. 故选:C .21.【答案】π4【解析】在ΔABC 中,由余弦定理可得a 2=b 2+c 2−2bccosA ,因为b =c ,所以a 2=2b 2−2b 2cosA =2b 2(1−cosA),又由()222sin 10a b A ⋅=+-=m n ,解得a 2=2b 2(1−sinA), 所以1−sinA =1−cosA ,则tanA =1,由0<A <π,得A =π4.22.【答案】4π 【解析】由余弦定理得:cosA =b 2+c 2−a 22bc ⇒b 2+c 2−a 2=2bc ⋅cosA , 由面积公式得S =12bc ⋅sinA ,又ΔABC 的面积S 满足4√3S =b 2+c 2−a 2,可得tanA =√33 ,A =π6,即sinA =12, 再由正弦定理得a sinA =2R ⇒R =2,所以外接圆面积S =πR 2=4π.23.【解答】:△ABC 中,a :b :c=4:5:6,设a=4k ,b=5k ,c=6k ,k >0,则cosA=b 2+c 2−a 22bc =25k 2+36k 2−16k 22×5k×6k=34, ∴sinA=√1−cos 2A =√1−(34)2=√74;∴tanA=sinA cosA =√73.故答案为:√73.24.【答案】2【解答】:由函数f (x )=Asin (ωx+φ)的部分图象知,3T 4=11﹣2=9,解得T=12,ω=2πT=π6; 又f (0)=Asin φ=1,∴sin φ=1A ;f (2)=Asin (π6×2+φ)=A ,∴φ=π6,∴1A =sin π6=12,∴A=2,∴f (2018)=f (168×12+2)=f (2)=A=2.故答案为:2.25.【答案】π8【解答】:△y=5sin (2x+π4)的图象向左平移φ(0<φ<π2)个单位后得: g (x )=f (x+φ)=2sin (2x+2φ+π4),△g (x )=2sin (2x+2φ+π4)的图象关于y 轴对称,△g (x )=2sin (2x+2φ+π4)为偶函数,△2φ+π4=kπ+π2,k△Z ,△φ=12kπ+π8,k△Z . △0<φ<π2,△φ=π8.故答案为:π8.26【解答】:(1)函数f (x )=2sinx (sinx+cosx )﹣a 的图象经过点(π2,1), ∴2sin π2(sin π2+cos π2)﹣a=1,即2﹣a=1,解得a=1;∴函数f (x )=2sinx (sinx+cosx )﹣1=2sin2x+2sinxcosx ﹣1=2×1−cos2x 2+sin2x ﹣1=sin2x ﹣cos2x =√2sin (2x ﹣π4);令﹣π2+2kπ≤2x ﹣π4≤π2+2kπ,k ∈Z ,解得﹣π8+kπ≤x ≤3π8+kπ,k ∈Z ;∴f (x )的单调递增区间为[﹣π8+kπ,3π8+kπ],k ∈Z ;(2)当x ∈[0,π2]时,2x ﹣π4∈[﹣π4,3π4],∴√2sin (2x ﹣π4)≥√2×(﹣√22)=﹣1;又不等式f (x )≥m 恒成立,∴实数m 的取值范围是m ≤﹣1.27.【解答】:(I )∵f(A −π4)=2√2sin(A −π4)cosA =0,∴sin(A −π4)=0或cosA =0,∴在三角形中,得A =π4或π2. ∵△ABC 中,BC=2,AB=√2,∴当A=π2时,△ABC 为等腰直角三角形,B=π4; 当A=π4时,由正弦定理可得2sin π4=√2sinC , 求得sinC=12,∴C=π6 或C=5π6(舍去),∴B=π﹣A ﹣C=7π12.综上可得,B=π4 或B=7π12.(II )f(x)=2√2sinx(√22cosx −√22sinx)=2sinxcosx −2sin 2x =sin2x +cos2x −1=√2(√22sin2x +√22cos2x)−1=√2sin(2x +π4)−1,∵π2≤x ≤17π24,∴5π4≤2x +π4≤5π3,∴−√2≤√2sin(2x +π4)≤−1,∴﹣√2﹣1≤sin (2x ﹣π4)≤﹣2. 由正弦函数的性质可知,当2x +π4=3π2,即x =5π8时,f(x)取最小值−√2−1;当2x +π4=5π4,即x =π2时,f(x)取最大值−2.所以,f (x )在区间[π2,17π24]上的取值范围是[−√2−1,−2].28【解答】:(1)在△ABC 中,由正弦定理知a sinA =b sinB =c sinC =2R ,又因为(2a ﹣b )•cosC=c•cosB ,所以2sinAcosC=sinBcosC+cosBsinC ,即2sinAcosC=sinA ;∵0<A <π,∴sinA >0;∴cosC=12;又0<C <π,∴C=π3;(2)∵S △ABC =12absinC=√34ab=√3,∴ab=4,又c 2=a 2+b 2﹣2abcosC=(a+b )2﹣3ab=4, ∴(a+b )2=16,∴a+b=4;∴周长为629.【解答】:(1)在△ABC 中,由正弦定理得sinAsinB +√3sinBcosA =0,即sinA +√3cosA =0,故tanA =−√3,又A ∈(0,π)故A =23π(2)在△ABC 中,由余弦定理得a 2=b 2+c 2﹣2bccosA ,又a=√3,所以3=b 2+c 2+bc ≥2bc+bc=3bc ,即bc ≤1,当且仅当b=c=1时,等号成立则S △ABC =12bcsinA =√34bc ≤√34, 所以△ABC 面积S 的最大值为√3430.【解析】(1)∵ m n ,∴(2−2sinA)(1+sinA)+(cosA +sinA)(cosA −sinA)=0,即2(1−sin 2A)=sin 2A −cos 2A ,即2cos 2A =1−2cos 2A ,即cos 2A =14,∵△ABC 是锐角三角形,∴cosA =12,即A =π3.(2)∵△ABC 是锐角三角形,且A =π3,∴π6<B <π2, ∴y =2sin 2B +cos(2π3−2B) =1−cos2B −12cos2B +√32sin2B =√32sin2B −32cos2B +1 =√3sin(2B −π3)+1, 当y 取最大值时,2B −π3=π2,即B =512π.31.【解析】(1)∵()π4sin cos 6g x x x ⎛⎫=- ⎪⎝⎭, ∴()223sin cos 2cos g x x x x =-,∴()π3sin 2cos 212sin 216g x x x x ⎛⎫=--=-- ⎪⎝⎭, ∴()g x 的最小正周期为2ππ2T ==. (2)∵()πππ2sin 212sin 21666f x x x ⎡⎤⎛⎫⎛⎫=+--=+- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ∴()π2sin 2136f B B ⎛⎫=+-=-⇒ ⎪⎝⎭πsin 216B ⎛⎫+=- ⎪⎝⎭, ∵ππ13π2,666B ⎛⎫+∈ ⎪⎝⎭, ∴π3π262B +=⇒2π3B =. 由余弦定理得2222π32cos3a c ac =+-⇒229a c ac ++=, 22923a c ac ac ac ac =++≥+=,即3ac ≤,当且仅当a c =时取等号.∴ABC △的面积12π33sin 234ABC S ac =≤△, ∴ABC △面积的最大值为334. 【名师点睛】本题考查三角函数的图象和解析式,涉及三角函数图象变换,正弦定理,余弦定理以及基本不等式等知识,属于中档题.对于本题,(1)利用二倍角的正弦、余弦公式,两角差的正弦公式化简解析式,得到函数()π2sin 216g x x ⎛⎫=-- ⎪⎝⎭,由周期公式求出f (x )的最小正周期.(2)由题意得()π2sin 216f x x ⎛⎫=+- ⎪⎝⎭,再根据()3f B =-可得πsin 216B ⎛⎫+=- ⎪⎝⎭,从而可得2π3B =.然后由余弦定理得229a c ac ++=,结合基本不等式得到3ac ≤,即可求出ABC △面积的最大值.32.【解析】(1)()2sin2cos f x x ϕ=⋅=a b ()2cos2sin 2sin 2x x ϕϕ+=+,∵函数()f x 的图象关于直线π6x =对称,∴ππ2π62k ϕ⨯+=+,k ∈Z ,∴ππ6k ϕ=+,k ∈Z , 又2πϕ<,∴π6ϕ=.∴()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭. 由ππ3π2π22π,262k x k k +≤+≤+∈Z ,得π2πππ,63k x k k +≤≤+∈Z . ∴()f x 的单调递减区间为π2ππ,π63k k ⎡⎤++⎢⎥⎣⎦,k ∈Z . (2)∵()π2sin 226f A A ⎛⎫=+= ⎪⎝⎭,∴πsin 216A ⎛⎫+= ⎪⎝⎭. ∵()0,πA ∈,∴ππ13π2,666A ⎛⎫+∈ ⎪⎝⎭,∴ππ262A +=,∴π6A =. 在ABC △中,由余弦定理得2222cos a b c bc A =+-π25122523cos 76=+-⨯⨯=,∴7a =. 由正弦定理得2sin a R A =72712==,∴7R =, ∴ABC △外接圆的面积2π7πS R ==.。
2020版高分宝典高考数学二轮微专题复习(江苏专用)讲义:微专题十九函数应用题

微专题十九 函数应用题在近三年的高考题中,实际应用题每年必考,常见的有与经济有关即利润最大化和成本最小化为背景的应用题,也有以平面几何图形、空间几何体为背景的图形应用题.主要涉及的函数模型有分段函数、三次函数、三角函数等,难度为中档题为主.目标1 分段函数及分式函数模型例1 为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的浓度y (单位:mg·m -3)随着时间(单位:天)变化的函数关系式近似为 y =⎩⎨⎧ 168-x -1, 0≤x ≤4,5-12x , 4<x ≤10.若多次喷洒,则某一时刻空气中的净化剂浓度为每次投放的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4 mg·m-3时,它才能起到净化空气的作用. (1) 若一次喷洒4个单位的净化剂,则净化时间可达几天?(2) 若第一次喷洒2个单位的净化剂,6天后再喷洒a (1≤a ≤4)个单位的药剂,要使接下来的4天中能够持续有效净化,试求a 的最小值.(精确到0.1,参考数据:2取1.4)点评:【思维变式题组训练】某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作时间的平均用时,某地上班族S 中的成员仅以自驾或公交方式通勤,分析显示:当S 中x %(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )=⎩⎪⎨⎪⎧30, 0<x ≤30,2x +1 800x -90, 30<x <100(单位:分钟), 而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1) 当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2) 求该地上班族S 的人均通勤时间g (x )的表达式;试讨论g (x )的单调性,并说明其实际意义. 目标2 高次函数模型例2 从旅游景点A 到B 有一条100 km 的水路,某轮船公司开设一个游轮观光项目.已知游轮每小时使用的燃料费用与速度的立方成正比例,其他费用为每小时3 240元,游轮最大时速为50 km/h ,当游轮速度为10 km/h 时,燃料费用为每小时60元,单程票价定为150元/人.(1) 若一艘游轮单程以40 km/h 的速度航行,所载游客为180人,则轮船公司获利是多少?(2) 如果轮船公司要获取最大利润,游轮的航速为多少?点评:【思维变式题组训练】某小微企业日均用工人数a 与日营业利润f (x )(元)、日人均用工成本x (元)之间的函数关系为f (x )=-13x 3+5x 2+30ax -500(x ≥0). (1) 若日均用工人数a =20,求日营业利润f (x )的最大值;(2) 由于政府的减税、降费等一系列惠及小微企业政策的扶持,该企业的日人均用工成本x 的值在区间[10,20]内,求该企业在确保日营业利润f (x )不低于24000元的情况下,该企业平均每天至少可供多少人就业.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、2019年全国卷高考试题分析,把握备 考重难点
2、2020年高考命题趋势分析与命题规律 把握
3、疫情下今年数学精准备考与高效提分 策略
4. 怎样高效做题
5.第二、三轮复习要注意的几个问题
1、2019年全国卷高考试题分 析,把握备考重难点
一、2019年全国1卷双向细目表
理科1卷双向细目表
题型 板块
单选 题
单选 题
单选 题
单选 题
单选 题
单选 题
单选 题
单选 题
题序 情境材料
知识点
能力要求
学科素养
1
集合与不等式
运算求解能力 数学运算
2
复平面与复数的模 抽象概括能力 数学抽象、
3
指、对数函数的性质 推理论证、运 数学运算、
算求解能力 逻辑推理
4 维纳斯的黄金 一元一次不等式 分割之美
点到面距离
运算求解能力
导数综合题
推理论证能力 运算求解能力
圆与直线
运算求解能力
选考
22
选考
23
参数方程极坐标 运算求解能力
柯西基本不等式
推理论证能力 运算求解能力
数据分析
数学运算 直观想象 数学建模 数学运算
数学运算 数学建模 数学运算 数学运算
数学运算
二、近三年高考知识点对比与命题特点
一、理科1卷三年对比
三角函数及向量 11
解析几何
12
不等式、函数与 导数
13
数列
14
不等式、函数与 导数
15
程序框图 双曲线离心率 解三角形 椭圆几何性质 导数切线
推理论证能力 运算求解能力 运算求解能力 推理论证能力 运算求解能力
运算求解能力
等比数列
运算求解能力
复合函数最值问题 推理论证能力
诱导倍角公式
运算求解能力
逻辑推理 数学运算 数学运算 数学建模 数学运算 数学运算 数学运算
维纳斯黄 金分割身 不等式 高估算
运算求解能力
函数图像
推理论证能力
系统抽样
数据处理
特殊角的三角函 数值
运算求解能力
平面向量
运算求解能力
学科素养
数学运算 逻辑推理 数学抽象 数学运算
数学运算
数学运算 数据分析 数学运算 数学运算
题型板块 题序 情境材料 知识点
能力要求
学科素养
算法与推理
9
解析几何
10
运算求解能力、 数学建模、
应用意识
数学运算
5
超越函数的图像,奇 运算求解能力 数学运算
偶性
6 周易的阴阳爻 随机事件的概率
运算求解能力、 数学运算、
应用意识
数据分析
7
平面向量的减法及其 运算求解能力 直观想象、
模
数学运算
8
程序框图
推理论证能力、 逻辑推理、
运算求解能力 数学运算
题型 板块 单选 题 单选 题 单选 题
含指数函
根据指对 分段函数与指 运用数形结 指对幂函数的
幂函数的 对函数综合 合的方法求 性质
性质比较
参数的范围
大小
根据导数讨 含对数函数的 数的性质比较 大小
根据导数证明
数 数的复杂 论函数的单 复杂函数求导 论函数的单 对数函数的复 零点与极值点
函数求导 调性及求参 (大)
导数的几何意义
运算求解能 力
等比数列的通项公式 运算求解能
与求和公式
力
篮球赛中的概率
数据处理能 力、应用意 识
学科素养
数学运算
数学运算、直观 想象 数学抽象、 数学 运算
直观想象、数学 运算
数学运算
数学运算
数学运算、数据 分析
题型板 题 情境材料
块
序
解答题 17
解答题 18
解答题 19
知识点
能力要求
题型板块 题序 情境材料 知识点
能力要求
集合与简易逻 辑复数
1
集合与简易逻 辑复数
2
不等式、函数 与导数
3
不等式、函数 与导数
4
不等式、函数 与导数
5
排列组合二项 式概率统计
6
三角函数及向 量
7
三角函数及向 量
8
复数四则运算 运算求解能力
集合运算
抽象概括能力 运算求解能力
对数指数比大小 运算求解能力
数学运算
立体几何
16
立体几何 点到面距 空间想象能力
离
运算求解能力
直观想象 数学运算
题型板块 题 序 情境材料 知识点
能力要求
学科素养
排列组合二项式 概率统计
17
数列
18
顾客满意度与 男女顾客相关 K方相关性判定 性
等差数列
数据处理 运算求解能力
立体几何
19
不等式、函数与 导数
20
解析几何
21
立体几何 线面平行 空间想象能力
调性及证明 杂函数求导
(大) 数
不等式
(大)
简单的线 由二元一次 简单的线性规 由二元一次 应用一元一次 应用一元一次
性规划 分值 27分
不等式组求 划
二元一次代
数式的最小 27分
值
不等式组求 不等式
二元一次代 数式的最大 27分
值
不等式计算黄 金分割身材的 某人的身高
【规律变化与命题特点】删减了简单的线性规划,因2017年版课程标准删去了简单的线性
单选 题
填空 题 填空 题 填空 题
题序 情境材料 9 10 11
12
13 14 15 7场4胜制篮球
赛
知识点
能力要求
等差数列的通项公式 运算求解能
与求和公式
力
直线与椭圆、椭圆的 运算求解能
定义
力
含绝对值的正弦函数 运算求解能
的性质
力、创新意
识
三棱锥的外接球
空间想象能 力、推理论 证能力、运 算求解能力
2017年
模块 知识点 考察角度 知识点
2018年 考察角度
知识点
2019年 考察角度
函数的奇 综合单调性 函数的奇偶性 根据奇偶性 含三角函数的 根据函数的奇
偶性与单 与奇偶性求 与导数
调性
参数的范围
求参数并求 复杂函数的图 偶性与特殊点
切线方程 像
的函数值判断
函数图像
不等 式、 函数 与导
指对幂函 数的性质
规划;增加了应用一元一次不等式解决黄金分割的身高问题,反映了教育发展应用化、实
践化的大方向,考查点也不仅仅局限在高中阶段的知识。
2017年
模 知识点 块
考察角度 知识点
2018年 考察角度
2019年
知识点
考察角度
等差数列的 给定俩公式 等差数列的通 通项公式与 中的部分项 项公式与求和 求和公式 求公差 公式
导数
求解能力
学运算
离散型随机变量 推理论证能力、运算 逻辑推理、 数
及其分布列、等 求解能力、数据处理 学建模、数学
比数列的定义 能力、应用意识
运算
解答题 22 选做
解答题 23 选做
极坐标与参数方 运算求解能力 程
数学运算
均值不等式
运算求解能力、推理 数学运算、逻
论证能力
辑推理
2019年文科1卷双向细目表
学科素养
正弦定理、余弦 运算求解能力 定理
数学运算、
线面平行、二面 空间想象能力、推理
角、空间直角坐 论证能力、运算求解
标系
能力
逻辑推理、数 学建模、数学 运算、直观想 象
直线与抛物线 运算求解能力
数学运算
解答题 20
解答题 21 小白鼠实验验 证甲乙两种新 药的药效
基本初等函数的 推理论证能力、运算 逻辑推理、 数