荧光光谱分析
荧光光谱分析实验报告

一、实验目的1. 熟悉荧光光谱分析的基本原理和方法;2. 掌握荧光光谱仪的使用和操作;3. 通过实验,学会分析荧光光谱图,了解荧光物质的结构和性质;4. 培养实验操作技能和数据分析能力。
二、实验原理荧光光谱分析是利用荧光物质在特定波长激发光照射下,产生特定波长的荧光现象进行分析的一种方法。
荧光光谱分析的基本原理是:荧光物质分子吸收激发光能量后,从基态跃迁到激发态,随后以发射荧光的形式释放出能量,从而产生荧光。
荧光光谱分析主要包括激发光谱、发射光谱和荧光强度分析。
三、实验仪器与试剂1. 仪器:荧光光谱仪、紫外可见分光光度计、荧光比色皿、样品池、光源、计算机等;2. 试剂:荧光物质标准溶液、溶剂、缓冲液等。
四、实验步骤1. 标准曲线的制作(1)取一系列已知浓度的荧光物质标准溶液,分别注入荧光比色皿中;(2)打开荧光光谱仪,设置激发光波长和扫描范围;(3)依次测量各溶液的荧光强度;(4)以荧光强度为纵坐标,浓度为横坐标,绘制标准曲线。
2. 未知样品的测定(1)取未知样品溶液,注入荧光比色皿中;(2)按照标准曲线的制作方法,测量未知样品的荧光强度;(3)根据标准曲线,计算未知样品的浓度。
3. 数据处理与分析(1)将实验数据输入计算机,进行数据处理;(2)分析荧光光谱图,了解荧光物质的结构和性质;(3)比较实验结果与理论值,验证实验方法的准确性。
五、实验结果与分析1. 标准曲线的制作通过实验,成功绘制了荧光物质的标准曲线。
标准曲线呈现良好的线性关系,相关系数R²接近1,说明实验方法准确可靠。
2. 未知样品的测定根据标准曲线,成功测定了未知样品的浓度。
实验结果与理论值基本一致,说明实验方法具有较高的准确度。
3. 数据处理与分析通过对荧光光谱图的分析,发现荧光物质具有明显的荧光峰,表明其结构中含有特定的官能团。
实验结果与文献报道相符,验证了实验方法的正确性。
六、讨论与心得1. 实验过程中,要注意控制实验条件,如激发光波长、扫描范围等,以保证实验结果的准确性;2. 荧光光谱分析具有灵敏度高、选择性好、快速简便等优点,在物质结构分析、定量测定等方面具有广泛的应用;3. 通过本次实验,掌握了荧光光谱分析的基本原理和操作方法,提高了自己的实验技能和数据分析能力。
荧光分析技术的原理和方法

荧光分析技术的原理和方法荧光分析技术是一种分析和检测物质的方法,它不仅具有灵敏度高、特异性强等优点,而且还可以使用相对简单、易操作的设备和方法进行分析。
本文将探讨荧光分析技术的原理和方法,以及其在实际应用中的优缺点。
一. 荧光分析技术的原理荧光分析的基本原理是物质吸收能量后,由激发态自发辐射发出荧光。
荧光发射的波长与物质的结构和环境密切相关,因此可以根据荧光发射的波长来分析物质的成分和性质。
二. 荧光分析技术的方法荧光分析技术主要有荧光光谱分析、荧光显微镜、荧光免疫分析等几种。
1. 荧光光谱分析荧光光谱分析是一种利用荧光发射波长来分析物质的方法。
它通过激发样品,测量样品发出的荧光光谱来确定物质的化学成分和性质。
荧光光谱分析在生物医学领域有着非常重要的应用,比如用于检测蛋白质和动物细胞等生物分子。
2. 荧光显微镜荧光显微镜是一种利用荧光物质在显微镜下展现的亮度和颜色来观察样品的方法。
它可以将荧光染料标记在生物样品中,从而实现对生物分子和细胞的可视化。
荧光显微镜已经成为生物医学领域中最重要的观测手段之一,也是生物光学、光子学研究领域的必备工具。
3. 荧光免疫分析荧光免疫分析是一种利用荧光标记的抗体来检测分子的方法。
它通过将荧光标记的抗体与特定的分子结合,在荧光显微镜下观察荧光信号以检测分子。
荧光免疫分析主要用于医学诊断中的分子检测和细胞成像。
三. 荧光分析技术的应用荧光分析技术在许多领域中都有着广泛的应用。
主要涉及到生物医学、环境监测、食品安全检测、工业生产等方面。
1. 生物医学荧光分析在生物医学中的应用较为广泛,包括荧光显微镜观察生物结构、荧光免疫分析检测各种分子等。
2. 环境监测荧光分析技术可以将其应用于环境监测和环境污染控制。
比如用于污染物的快速检测、废水污染的监测、空气污染的监测等。
3. 食品安全检测荧光分析也可以用于食品安全检测,比如寻找食品中有害物质如农药、污染、病原体等。
4. 工业生产荧光分析技术也可以应用于工业生产,如半导体晶片生产、光学元器件制造等。
荧光光谱分析

百泰派克生物科技
荧光光谱分析
荧光光谱法(又称荧光分析法或分光荧光测定)是一种电磁光谱法,可以测量样品吸收光子后发出的光子强度。
实际上,大多数荧光分子是芳香族的,如蛋白质/肽中的色氨酸。
光学技术,如UV-Vis、圆二色谱(CD)、傅立叶变换红外(FTIR)和荧光光谱,都被用于获取被测化合物的结构、相互作用和动力学信息。
荧光光谱是研究溶液状态和显微镜下蛋白质/肽的实时结构和动力学的重要研究工具。
荧光光谱分析。
生物制药,特别是蛋白质和多肽类药物,在整个研发过程中都面临着独特的挑战。
在成功批准和上市之前,需要对治疗性蛋白质/肽的生物物理、生化特性和3D结构有透彻的了解,因为产品的活性、稳定性、毒性、功效和保质期会因结构-活性关系而受到影响。
与小分子不同,这些大分子需要多种分析方法结合进行分析。
荧光光谱法可应用于:1,通过改变荧光强度来探测结构变化或两个分子的结合;2,通过色氨酸荧光的波长定位色氨酸残基(在蛋白质表面或深埋在蛋白质内部);3,通过荧光偏振和各向异性研究荧光团迁移率。
荧光光谱分析技术概述

荧光光谱分析技术概述1荧光光谱分析原理 (1)2荧光分析法 (4)2.1定性分析法 (4)2.2定量分析法 (4)1荧光光谱分析原理光学分析法分为光谱法和非光谱法,光谱法是辐射能与物质组成和结构的相互作用,以光谱的出来为基础,非光谱法不包含物质内能的变化,不涉及能级跃迁,而是辐射方向和物理性质的改变。
光学分析方法分类表1分析法特征具体方法光谱法光的发射原子发射光谱、原子荧光光谱、X射线荧光光谱、分子荧光光谱、分子磷光光谱、化学发光、电子能谱、俄歇电子能谱光的吸收原子吸收光谱、紫外-可见分光光度法、红外光谱、X射线吸收光谱、核磁共振光谱、电子自旋共振光谱、光声光谱光的散射拉曼光谱非光谱法光的散射比浊法、散射浊度法光的折射折射法、干涉法光的衍射X射线衍射、电子衍射光的转动旋光色散法、偏振法、圆二向色法荧光发光机理可按量子理论通俗解释: 光具有波动、粒子二重性, 光波愈短, 其光子能量愈强; 反之波长愈长其能量则弱。
当某些物质受到紫外线或较短波长光照射, 吸收了全部或部分光能量, 使其分子的能级升高而处于亚稳定状态, 当恢复到稳定的基态时, 这些分子就会立即释放多余的能量, 其中一部分化为热量而消失。
但对某些物质而言, 向基态跃迁时是以“光”形式释放, 因为有部分能量被消耗, 所以重新发出的光能量总比吸收的能量要小。
由于能量愈小, 光波愈长, 所以物质所激发的荧光总比照射它的光波要长。
磷光的能量较荧光还要小, 所以它的波长比荧光要长, 寿命可达数小时之久, 这就是两者的区别。
如果物质的分子吸收了紫外和可见区电磁辐射后,它的电子能跃迁至激发态,然后以热能的形式将这一部分能量释放出来,本身又回复到基态如果吸收辐射能后处于电子激发态的分子以发射辐射的方式释放这一部分能量,再发射的波长可以同分子所吸收的波长相同,也可以不同,这一现象称为光致发光。
最常见的两种光致发光现象是荧光和磷光。
这两种光致发光的机理不同,荧光发光过程在激发光停止后10s内停止发光,而磷光则往往能延续10-3s-10s的时间间隔。
化学反应的荧光光谱分析

化学反应的荧光光谱分析荧光光谱分析是一种重要的分析方法,广泛应用于化学领域。
通过测量化学物质在激发后发射的荧光光谱,可以得到物质的组成、结构、性质等信息。
本文将介绍荧光光谱的原理、应用以及相关的实验技术。
一、荧光光谱的原理荧光现象是指当原子、分子或离子在吸收了光能后,由高能级的激发态退回到低能级的基态时,会发射出具有特定波长的电磁辐射。
而荧光光谱分析正是基于这一原理进行的。
荧光光谱的基本元素是荧光发射光谱和荧光激发光谱。
荧光发射光谱是指在特定波长激发下,测量物质发射出来的荧光光谱。
荧光激发光谱则是指在特定波长测量物质吸收的光谱。
在荧光光谱分析中,我们通常会选择一个特定的激发波长,以测量样品所发出的荧光光谱。
荧光光谱可以反映样品的荧光强度和发射的波长,进而用于研究样品的物理、化学性质。
二、荧光光谱分析的应用荧光光谱分析在生物医学、环境监测、食品安全等领域得到了广泛应用。
1. 生物医学领域荧光光谱分析在生物医学领域中起到了重要作用。
例如,通过荧光标记的抗体可以用于检测特定疾病标记物或者分析蛋白质相互作用。
此外,荧光探针也被广泛用于细胞成像、生物传感和药物筛选等方面。
2. 环境监测荧光光谱分析在环境监测中可以用于检测有机物、无机物以及微量金属离子等。
例如,利用荧光染料对水中的有机物进行分析,可以达到较高的灵敏度和选择性。
3. 食品安全荧光光谱分析在食品安全领域也有着广泛的应用。
例如,可以利用荧光探针对食品中的农药残留、重金属污染等进行检测。
荧光光谱分析方法具有简便、快速、灵敏度高的特点,已经成为食品安全检测的重要手段之一。
三、荧光光谱分析的实验技术荧光光谱分析的实验技术主要包括激发光源、荧光检测系统以及数据处理等方面。
1. 激发光源荧光光谱实验需要一个激发光源,通常使用的是氙灯、汞灯或激光器等。
激发光源的选择要根据样品的特点和所需的激发波长来确定。
2. 荧光检测系统荧光光谱的测量需要一个荧光检测系统,包括光栅、光电倍增管和光谱仪等。
荧光光谱分析法课件

通过观察化学反应过程中荧光强度的变化,可以了解反应过程中各组分的浓度变化,从而推算出反应速率常数和 反应机理等信息。
利用荧光光谱法研究化学反应的动力学过程
2. 在不同时间点测量荧光 光谱并记录数据。
1. 选择适当的荧光标记的 化学反应体系。
实验步骤
01
03 02
利用荧光光谱法研究化学反应的动力学过程
总结词
荧光光谱法可用于研究生物大分子间的相互作用,如蛋白质蛋白质、DNA-蛋白质等相互作用。
详细描述
荧光光谱法通过观察荧光标记的生物大分子在相互作用前后 的光谱变化,可以了解生物大分子间的结合方式、亲和力以 及作用机制等信息。
利用荧光光谱法研究生物大分子的相互作用
实验步骤
1
2
1. 将荧光标记的生物大分子进行纯化和制备。
荧光光谱分析法课件
目录 CONTENT
• 荧光光谱分析法概述 • 荧光光谱分析法的基本原理 • 荧光光谱分析法的实验技术 • 荧光光谱分析法的数据处理与分
析 • 荧光光谱分析法的实验案例 • 荧光光谱分析法的展望与未来发
展
01
荧光光谱分析法概述
定义与原理
定义
荧光光谱分析法是一种基于物质吸收 光能后发射荧光特性进行物质成分和 结构分析的方法。
激发态的衰变
电子从激发态返回基态时,以辐射或非辐射方式释放能量,产生荧 光光谱。
荧光光谱的产生机制
荧光光谱是由分子吸收光能后,通过内部转换、振动弛豫和辐射跃 迁等过程产生的。
荧光光谱的组成与特征
荧光光谱的组成
荧光光谱由发射峰、激发峰和斯托克斯位移组成。
荧光光谱的特征
荧光光谱的特征与分子结构、环境因素和激发波长等有关,可用于分析分子的 结构和性质。
荧光光谱分析

第十七章荧光光谱分析当紫外线照射到某些物质的时候,这些物质会发射出各种颜色和不同强度的可见光,而当紫外线停止照射时,所发射的光线也随之很快地消失,这种光线被称为荧光。
西班牙的内科医生和植物学家N。
Monardes于1575年第一次记录了荧光现象.17世纪,Boyle 和Newton等著名科学家再次观察到荧光现象。
17世纪和18世纪,又陆续发现了其它一些发荧光的材料和溶液,但是在荧光现象的解释方面却没有什么进展。
1852年,Stokes在考察奎宁和叶绿素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍长,才判明这种现象是这些物质在吸收光能后重新发射不同波长的光,而不是由光的漫射所引起的,从而导入了荧光是光发射的概念。
同时,他由发荧光的矿物“萤石”推演而提出“荧光”这一术语。
1867年,Coppelsroder 进行了历史上首次的荧光分析工作,应用铝-桑色素配合物的荧光进行铝的测定.1880年,Liebeman提出了最早的关于荧光与化学结构关系的经验法则.到19世纪末,人们已经知道了600种以上的荧光化合物。
20世纪以来,荧光现象被研究得更多了。
例如,1905年Wood发现了共振荧光;1914年Frank和Hertz利用电子冲击发光进行定量研究;1922年Frank和Cario发现了增感应光;1924年Wawillow进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等。
荧光分析方法的发展离不开仪器应用的发展.19世纪以前,荧光的观察是靠肉眼进行的,直到1928年,才由Jette和West研制出第一台光电荧光计。
早期的光电荧光计的灵敏度是有限的,1939年Zworykin和Rajchman发明光电倍增管以后,在增加灵敏度和容许使用分辨率更高的单色器等方面,是一个非常重要的阶段。
1943年Dutton和Bailey提出了一种荧光光谱的手工校正步骤,1948年由Studer推出了第一台自动光谱校正装置,到1952年才出现商品化的校正光谱仪器。
化学分析中的荧光光谱技术

化学分析中的荧光光谱技术荧光分析一直是化学分析的一项重要技术,它通过研究分子在吸收光子后再向外发射的发光现象,来揭示化学体系的信息。
荧光光谱技术一般用于有机分析中,如药物分析、环境分析、食品分析等领域。
在这篇文章中,将介绍荧光光谱技术的原理及应用。
荧光光谱技术的原理荧光光谱技术基于分子在吸收能量后产生的电子激发态和荧光态之间跃迁的规律。
当分子吸收能量,如电子、光子等,使电子从基态跃迁到激发态时,分子处于高能态,此时在分子内储存的能量随之增加,因此分子变得不稳定。
从激发态到基态的跃迁有很多种方式,如非辐射跃迁、振动耗散跃迁等,其中一个重要的跃迁方式是通过荧光,即分子从激发态到基态时,通过向外辐射光子的方式释放能量。
荧光光谱技术就是通过研究这种发光现象来分析样品中的物质的。
荧光光谱技术的应用荧光光谱技术在分析领域有着广泛的应用。
在农业领域中,荧光光谱技术可以用来快速检测农产品中的农药残留。
药物分析中,荧光光谱技术可以用来检测药物分子结构和含量。
在环境分析中,荧光光谱技术可以用来检测空气、水、土壤中的污染物。
在生物分析中,荧光光谱技术可以用来检测生物分子中的分子结构和含量。
荧光光谱技术能够快速、精确地检测出样品中目标物质存在的数量,并可以定量分析目标物质的浓度,这就为实际的生产和实验提供了极大的便利。
荧光光谱技术的应用举例荧光光谱技术的应用非常广泛,下面介绍两个应用实例:首先,荧光光谱技术在食品分析中的应用。
食品中常含有色素、添加剂等有害物质,在食品的生产及加工过程中,这些物质会产生不同程度的残留。
荧光光谱技术可以提供快速、灵敏、准确的检测方法,检测出食品中的上述物质的存在量,并可以对样品中污染物的构成进行分析和比较。
通过荧光光谱技术的分析结果,可以为改进食品生产的环节和保障人体健康提供参考。
其次,荧光光谱技术在药物分析中的应用。
由于药物分子的化学性质较为复杂,利用荧光光谱技术进行药物分析成为了一种重要的手段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十七章荧光光谱分析当紫外线照射到某些物质的时候,这些物质会发射出各种颜色与不同强度的可见光,而当紫外线停止照射时,所发射的光线也随之很快地消失,这种光线被称为荧光。
西班牙的内科医生与植物学家N、Monardes于1575年第一次记录了荧光现象。
17世纪,Boyle与Newton等著名科学家再次观察到荧光现象。
17世纪与18世纪,又陆续发现了其它一些发荧光的材料与溶液,但就是在荧光现象的解释方面却没有什么进展。
1852年,Stokes在考察奎宁与叶绿素的荧光时,用分光计观察到其荧光的波长比入射光的波长稍长,才判明这种现象就是这些物质在吸收光能后重新发射不同波长的光,而不就是由光的漫射所引起的,从而导入了荧光就是光发射的概念。
同时,她由发荧光的矿物“萤石”推演而提出“荧光”这一术语。
1867年,Coppelsroder进行了历史上首次的荧光分析工作,应用铝-桑色素配合物的荧光进行铝的测定。
1880年,Liebeman提出了最早的关于荧光与化学结构关系的经验法则。
到19世纪末,人们已经知道了600种以上的荧光化合物。
20世纪以来,荧光现象被研究得更多了。
例如,1905年Wood发现了共振荧光;1914年Frank与Hertz利用电子冲击发光进行定量研究;1922年Frank与Cario发现了增感应光;1924年Wawillow进行了荧光产率的绝对测定;1926年Gaviola进行了荧光寿命的直接测定等。
荧光分析方法的发展离不开仪器应用的发展。
19世纪以前,荧光的观察就是靠肉眼进行的,直到1928年,才由Jette与West研制出第一台光电荧光计。
早期的光电荧光计的灵敏度就是有限的,1939年Zworykin与Rajchman发明光电倍增管以后,在增加灵敏度与容许使用分辨率更高的单色器等方面,就是一个非常重要的阶段。
1943年Dutton与Bailey提出了一种荧光光谱的手工校正步骤,1948年由Studer 推出了第一台自动光谱校正装置,到1952年才出现商品化的校正光谱仪器。
荧光光谱分析法除了可以用作组分的定性检测与定量测定的手段之外,还被广泛地作为一种表征技术应用于表征所研究体系的物理、化学性质及其变化情况。
例如,在生命科学领域的研究中,人们经常可以利用荧光检测的手段,通过检测某种荧光特定参数(如荧光的波长、强度、偏振与寿命)的变化情况来表征生物大分子在性质与构象上的变化。
很多化合物由于本身具有大的共轭体系与刚性的平面结构,因而具有能发射荧光的内在本质,我们称这些化合物为荧光化合物。
在某些所要研究的体系中,由于体系自身含有这种荧光团而具有内源荧光,人们就可以利用其内源荧光,通过检测某种荧光特性参数的变化,对该体系的某些性质加以研究。
但就是,如果所要研究的体系本身不含有荧光团而不具有内源荧光,或者其内源性质很弱,这时候就必须在体系中外加一种荧光化合物即所谓荧光探针,再通过测量荧光探针的荧光特性的变化来对该体系加以研究。
例如,如果我们要检测体系的极性,便可以将对极性敏感的荧光探针加入到体系中,然后通过对荧光探针的荧光特性的检测,求得体系的极性,或通过探针的荧光特性的变化来表征体系的极性的变化情况。
荧光分析法之所以发展如此迅速,应用日益广泛,其原因之一就是荧光分析法具有很高的灵敏度。
在微量分析的各种方法中,应用较为广泛的有比色法与分光光度法。
但在方法的灵敏度方面,荧光分析法的灵敏度一般要比这两种方法高2~3各数量级。
随着现代电子技术的迅速发展,对于微弱光信号检测的灵敏度已大大提高,荧光分析的灵敏度常可达亿分之几,在与毛细管电泳分离技术结合、采用激光诱导荧光检测法时,已能接近或达到单分子检测的水平[1]荧光分析法的另一个优点就是选择性高。
这主要就是对有机化合物的分析而言。
吸光物质由于内在本质的差别,不一定都会发荧光,况且,发荧光的物质彼此之间在激发波长与发射波长方面可能有所差异,因而通过选择适当的激发波长与荧光测定波长,便可能达到选择性测定的目的。
另外,由于荧光的特性参数较多,除量子产率、激发与发射波长之外,还有荧光寿命、荧光偏振等。
因此,还可以通过采用同步扫描、导数光谱、三维光谱、时间分辨与相分辨等一些荧光测定新技术进一步提高测定的选择性。
除灵敏度高与选择性好之外,动态线性范围宽,方法简便,重现性好,取样量少,仪器设备不复杂等等,也就是荧光分析法的优点。
近年来,在其她学科迅速发展的影响下,激光、微处理机、电子学、光导纤维与纳米材料等方面的一些新技术的引入,很大程度上推动了荧光分析法在理论与应用方面的进展,促进了诸如同步荧光测定、倒数荧光测定、时间分辨荧光测定、相分辨荧光测定、荧光偏振测定、荧光免疫测定、低温荧光测定、固体表面荧光测定、近红外荧光分析法、荧光反应速率法、三维荧光光谱技术、荧光显微与成像技术、空间分辨荧光技术、荧光探针技术、单分子荧光检测技术与荧光光纤化学传感器等荧光分析方面的某些新方法、新技术的发展,并且相应地加速了各式各样新型的荧光分析仪器的问世,使荧光分析法不断朝着高效、痕量、微观、实时、原位与自动化的方向发展,方法的灵敏度、准确度与选择性日益提高,方法的应用范围大大扩展,遍及工业、农业、生命科学、环境科学、材料科学、食品科学与公安情报等诸多领域。
如今,荧光分析法已经发展成为一种十分重要且有效地光谱化学分析手段。
17、1 基本原理荧光就是一种光致发光现象,那么,由于分子对光的选择性吸收,不同波长的入射光便具有不同的激发频率。
如果固定荧光的发射波长(即测定波长)而不断改变激发光(即入射光)的波长,并记录相应的荧光强度,所得到的荧光强度对激发波长的谱图称为荧光的激发光谱(简称激发光谱)。
如果使激发光的波长与强度保持不变,而不断改变荧光的测定波长(即发射波长)并记录相应的荧光强度,所得到的荧光强度对发射波长的谱图则称为荧光的发射光谱(简称发射光谱)。
激发光谱反映了在某一固定的发射波长下所测量的荧光强度对激发波长的依赖关系;发射光谱反映了在某一固定的激发波长下所测量的荧光的波长分布。
激发光谱与发射光谱可用以鉴别荧光物质,并可作为进行荧光测定时选择合适的激发波长与测定波长的依据。
荧光测量仪器有各自的特性,如光源的能量分布、单色器的透射率与检测器的敏感度都随波长而改变,因而一般情况下测得的激发光谱与发射光谱,皆为表观的光谱。
同一份荧光化合物的溶液在不同的荧光测量仪上所测得的表观光谱彼此间往往有所差异。
只有对上述仪器特性的波长因素加以校正之后,所获得的校正光谱(或称真就是光谱)才可能就是彼此一致的。
某种化合物的荧光激发光谱的形状,理论上应与其吸收光谱的形状相同,但就是由于上述仪器特性的波长因素,表光激发光谱的形状与吸收光谱的形状大都有所差异,只有校正的激发光谱才与吸收光谱非常接近。
在化合物的浓度足够小,对不同波长激发光的吸收正比于其吸光系数,且荧光的量子产率与激发波长无关的条件下,校正的激发光谱在形状上与吸收光谱相同。
分子的吸收光谱可能含有几个吸收带,但其发射光谱却通常只含有一个发射带。
绝大多数情况下即使分子被激发到S2电子态以上的不用振动能级,但就是由于内转化与振动松弛的速率就是那样的快,以致很快地丧失多余的能量而衰变到S1态的最低振动能级,然后发射荧光,因而其发射光谱通常只含一个发射带,且发射光谱的形状与激发波长无关,只与基态中振动能级的分布情况以及各振动带的跃迁概率有关。
但就是也有例外,例如有些荧光体具有两个电离态,而每个电离态显示不同的吸收与发射光谱,等等。
物质在吸收入射光的过程中,光子的能量传递给了物质分子。
分子被激发后,发生了电子从较低的能级到较高能级的跃迁。
该跃迁过程经历的时间约10-15s。
跃迁所涉及的两个能级间的能量差,等于所吸收光子的能量。
紫外、可见光区的光子能量较高,足以引起分子中的电子发生电子能级间的跃迁。
处于该激发态的分子称为电子激发态分子。
电子激发态的多重态用2S+1表示,S就是电子自旋角动量量子数的代数与,其数值为0或1。
分子中同一轨道里同一轨道里所占据的两个电子必须具有相反的自旋方向,即自选配对。
如果分子中的全部电子都就是自旋配对的,即S=0,该分子便处于单重态(或称单线态),用符号S表示。
大多数有机物分子的基态就是处于单重态的。
如果分子吸收能量后电子在跃迁过程中不发生自旋方向的变化,这时分子处于激发的单重态;倘若电子在跃迁过程中还伴随着自旋方向的改变,这时分子便具有两个自旋不配对的电子,即S=1,分子处于激发的三重态(或称三线态),用符号T表示。
符号S0、S1与S2分别表示分子的基态、第一与第二电子激发单重态,T1与T2则分别表示第一与第二电子激发三重态。
处于激发态的分子不稳定,它可能通过辐射跃迁与非辐射跃迁的衰变过程而返回基态。
另外,激发态分子也可能由于分子间的作用过程而失活。
辐射跃迁的衰变过程伴随着光子的发射,即产生荧光活磷光;非辐射跃迁的衰变过程,包括振动松弛(VR)、内转化(ic)、与系间窜越(isc),这些衰变过程导致激发能转化为热能传递给介质。
振动松弛就是指分子将多余的振动能量传递给介质而衰变到同一电子态的最低振动能级的过程。
内转化指相同多重态的两个电子态间的非辐射跃迁过程(例如S1~S,T2~T1);系间窜越则指不同多重态的两个电子态间的非辐射跃迁过程(例如S1~T1,T1~S)。
图5、6、1为分子内所发生的激发过程以及辐射跃迁与非辐射跃迁过程的示意图。
图5、6、1 分子内的激发与衰变过程A1、A2、吸收;F、荧光;P、磷光;ic、内转化;isc、系间窜越;VR、振动松弛、如果分子被激发到S2以上的某个电子激发单重态的不同振动能级上,处于这种激发态的分子很快(约10-12~10-14s)发生振动松弛而衰变到该电子态的最低振动能级,然后又经由内转化及振动松弛而衰变到S1态的最低振动能级。
接着,有如下几种衰变到基态的途径:①S1→S的辐射跃迁而发射荧光;②S1~S内转化;③S1~T 1系间窜越。
而处于T1态的最低振动能级的分子,则可能发生T1~S的辐射跃迁而发射磷光,也可能同时发生T1~S系间窜越。
从比较荧光与激发光的波长这一角度出发,荧光又可分为斯托克斯(Stokes)荧光、反斯托克斯荧光以及共振荧光。
斯托克斯荧光的波长比激发光源的长,反斯托克斯荧光的波长则比激发光源的短,而共振荧光具有与激发光相同的波长。
在溶液中观察到的通常就是斯托克斯荧光。
由荧光在电磁辐射中所处的波段范围,又有X射线荧光、紫外荧光、可见荧光与红外荧光之分。
17、2基本构成及其工作原理荧光光谱仪由光源、单色器(滤光片或光栅)、狭缝、样品室、信号检测放大系统与信号读出、记录系统组成。
光源用来激发样品,单色器用来分离出所需要的单色光,信号检测放大系统用来把荧光信号转化为电信号,联结于放大装置上的读出装置用来显示或记录荧光信号。