2011年中考数学试卷分类汇编:06_不等式(组)
北京中考数学试题分类汇编

目录北京中考数学试题分类汇编 ............................................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................北京中考数学试题分类汇编(答案) ............................................................................................一、实数(共18小题)..................................................................................................................二、代数式(共2小题)................................................................................................................三、整式与分式(共14小题)......................................................................................................四、方程与方程组(共11小题)..................................................................................................五、不等式与不等式组(共6小题) ............................................................................................六、图形与坐标(共4小题)........................................................................................................七、一次函数(共11小题)..........................................................................................................八、反比例函数(共5小题)........................................................................................................九、二次函数(共10小题)..........................................................................................................一十、图形的认识(共11小题)..................................................................................................一十一、图形与证明(共33小题) ..............................................................................................一十二、图形与变换(共12小题) ..............................................................................................一十三、统计(共15小题)..........................................................................................................一十四、概率(共6小题)............................................................................................................2011-2016年北京中考数学试题分类汇编本套试卷汇编了11-16年北京市中考数学试题真题,将真题按照知识点内容重新进行编排,通过试卷可看出北京中考数学学科各知识点所占整套试卷的百分比,知识点所对应的出题类型。
2011全国中考数学模拟汇编一13.一元一次不等式(组)的应用

一元一次不等式(组)的应用一、选择题1.(河北省中考模拟试卷)某商场的老板销售一种商品,他要以不低于进价20% 的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价.若你想买下标价为360元的这种商品,最多可降价( ) A .80元 B .100元 C .120元D .160元答案:C2.(2011广东南塘二模)已知ab >15,且a =-5,则b 的取值范围是 ( ) A 、b >3 B 、b <3 C 、b >-3 D 、b <-3 答案:D二、填空题1、(2011山西阳泉盂县月考)如果点P (x,y )关于原点的对称点为(-2,3)则x+y= . 【答案】x+y=2+(—3)=-1三、解答题1. (2011年浙江省杭州市高桥初中中考数学模拟试卷)杭州国际动漫节开幕前,某动漫公司预测某种动漫玩具能够畅销,就用32000元购进了一批这种玩具,上市后很快脱销,动漫公司又用68000元购进第二批这种玩具,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该动漫公司两次共购进这种玩具多少套?(2)如果这两批玩具每套的售价相同,且全部售完后总利润率不低于20%,那么每套售价至少是多少元? 答案:(1)设动漫公司第一次购进x 套玩具,由题意得:6800032000102x x-= 解这个方程,得200x =经检验,200x =是所列方程的根. 22200200600x x +=⨯+=.所以动漫公司两次共购进这种玩具600套 (2)设每套玩具的售价为y 元,由题意得:600320006800020%3200068000y --+≥,解这个不等式,得200y ≥,所以每套玩具的售价至少是200元.2、(2011年北京四中模拟26)某航运公司年初用120万元购进一艘运输船,在投入运输后,每一年的总收入为72万元,需要支出的各种费用为40万元.问:(1)该船运输几年后开始盈利(盈利即指总收入减去购船费及所有支出费用之差为正值?)(2)若该船运输满15年要报废,报废时旧船卖出可收回20万元,求这15年平均盈利额(精确0.1万元)答案:(1)设该船厂运输X年后开始盈利,72X-(120+40X)﹥0,X﹥154,因而该船运输4年后开始盈利(2)()()157********25.315⨯---≈(万元)[来源:Z*xx*]3、(2011年浙江省杭州市模拟)为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造A、B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积、使用农户数及造价见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程.(2)通过计算判断,哪种建造方案最省钱.解: (1) 设建造A型沼气池x 个,则建造B型沼气池(20-x )个………1分依题意得:()()⎩⎨⎧≥-+≤-+492203018365202015xxxx…………………………………………3分解得:7≤ x≤ 9 ………………………………………………………………4分∵x为整数∴ x = 7,8 ,9 ,∴满足条件的方案有三种.. ……………5分(2)设建造A型沼气池x个时,总费用为y万元,则:y = 2x + 3( 20-x) = -x+60 ………………………………………………6分∵-1< 0,∴y随x 增大而减小,当x=9 时,y的值最小,此时y= 51( 万元) …………………………………7分∴此时方案为:建造A型沼气池9个,建造B型沼气池11个.……………8分解法②:由(1)知共有三种方案,其费用分别为:方案一: 建造A型沼气池7个,建造B型沼气池13个,总费用为:7×2 + 13×3 = 53( 万元 ) ……………………………6分 方案二: 建造A 型沼气池8个, 建造B 型沼气池12个, 总费用为:8×2 + 12×3 = 52( 万元 ) ……………………………7分 方案三: 建造A 型沼气池9个, 建造B 型沼气池11个, 总费用为:9×2 + 11×3 = 51( 万元 ) ∴方案三最省钱. …………………………………………… 8分4. (2011武汉调考模拟)已知△ABC 在平面直角坐标系中的位置如图所示.点A 和点C 坐标;②画出△ABC 绕点C 按顺时针方向旋转90°后的△A′B ′C ,并写出点A ③求点A 旋转到点A ′所经过的路线长.(结果保留π).【答案】.解:(1)A(0,4),C(3,1) (2)图略,A ′ (6,4) (3)lAA ′=223π5(北京四中模拟)解不等式组:⎩⎨⎧-≥->+.410)35(3,425x x x x 并把解集在数轴上表示出来.解: 解不等式x x 425>+,得2->x .解不等式x x 410)35(3-≥-,得1≤x 把不等式的解集在数轴上表示出来.12≤<-∴x6 (2011湖北省天门市一模)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。
中考数学试题分类分析汇编专题3:方程(组)和不定式(组)

中考数学试题分类分析汇编(12专题) 专题3:方程(组)和不定式(组)一.选择题1. (2001年福建福州4分)随着计算机技术的迅猛发展,电脑价格不断降低。
某品牌电脑按原售价降低m 元后,又降价20%,现售价为n 元,那么该电脑的原售价为【 】 A. 4(n m )5+元B. 5(n m )4+元 C. (5m n)+元D. (5n m)+元【答案】B 。
【考点】一元一次方程的应用。
【分析】设电脑的原售价为x 元,则()()x m 120%n --=,∴x=5n m 4+。
故选B 。
2. (2003年福建福州4分)不等式组2x 4x 30≥⎧⎨+>⎩的解集是【 】(A ) x>-3 (B )x≥2 (C )-3<x≤2 (D ) x<-3 【答案】B 。
【考点】解一元一次不等式组。
【分析】解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解)。
因此,2x 4x 2x 2x 30x 2≥≥⎧⎧⇒⇒≥⎨⎨+>>-⎩⎩。
故选B 。
3.(2003年福建福州4分)已知α、β满足α+β=5,且αβ=6,则以α、β为两根的一元二次方程是【 】(A )2x 5x 60++= (B )2x 5x 60-+= (C )2x 5x 60--= (D )2x 5x 60+-=【答案】B 。
【考点】一元二次方程根与系数的关系。
【分析】∵所求一元二次方程的两根是α、β,且α、β满足α+β=5、αβ=6,∴这个方程的系数应满足两根之和是b 5a-=,两根之积是c 6a =。
当二次项系数a=1时,一次项系数b=-5,常数项c=6。
故选B 。
4. (2005年福建福州大纲卷3分)如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为【 】A 、x+y=180x=y+10⎧⎨⎩错误!未找到引用源。
2011年全国中考数学模拟汇编二12一元一次不等式(组)

12.一元一次不等式(组)A 组一 选择题1.(南京市建邺区2011年中考一模)如图,不等式组⎩⎨⎧x +1>0,x -1≤0的解集在数轴上表示正确的是( ▲ ).答案:B2.(南京市鼓楼区2011年中考一模)若关于x 的不等式⎩⎨⎧x -m <0,5-2x ≤1整数解共有2个,则m 的取值范围是 A .3<m <4B .3≤m <4C .3<m ≤4D .3≤m ≤4答案:C3、(2011广东化州二模) 已知2343221x y k x y k +=⎧⎨+=+⎩,,且10x y -<-<,则k 的取值范围为( )A .112k -<<- B .102k <<C .01k <<D .112k <<考查内容: 答案:D4、(2011平顶山二模) 不等式组( )A.1个B.2个C.3个D.4个 考查内容: 答案:C5. (2011年从化市综合测试)不等式组10,2x x ->⎧⎨<⎩的解集是( * )A .x >1B .x <2C .1<x <2D .0<x <2 答案:C6.(2011番禺区综合训练)不等式组3030x x ì+>ïïíï- ïî 的解集是(※). (A )3x >- (B )3x ³ (C )33x -< (D )33x -?答案:B7.(2010海珠区调研)不等式组⎩⎨⎧>≤-62,31x x 的解集为( )-1 1 .-11 B .-10 1 C .-11 .– 2 x <03 – x ≥0的正整数解有A .x >3B .x ≤4C .3<x <4D .3<x ≤4 答案:D8. (2011增城市综合测试)将不等式组⎩⎨⎧x +2≥02-x >0的解集在数轴上表示,正确的是( )答案:A二 填空题 1.(2011上海市杨浦区中考模拟)如果一个关于x 的一元一次不等式组的解集在数轴上的表示如图所示,那么该不等式组的解集是 . 【答案】x >1;2.(2011上海市杨浦区中考模拟)如果点P (m ,1-2m )在第四象限,那么m 的取值 范围是 . 【答案】12m;3、(2011双柏县中考模拟)在函数xy 265-=中,自变量x 的取值范围是 。
中考数学专题测试5:不等式(组)(含答案)

中考数学分类汇编专题测试——不等式(组)一、选择题1.(08山东省日照市)在平面直角坐标系中,若点P (m -3,m +1)在第二象限,则m 的取值范围为( )A .-1<m <3B .m >3C .m <-1D .m >-12.(2008浙江义乌)不等式组312840x x ->⎧⎨-⎩,≤的解集在数轴上表示为( )3.(2008山东烟台) 关于不等式22x a -+≥的解集如图所示,a 的值是( )A 、0B 、2C 、-2D 、-44.(2008年山东省临沂市)若不等式组⎩⎨⎧->+<+1472,03x x a x 的解集为0<x ,则a 的取值范围为( )A . a >0B . a =0C . a >4D . a =45.(2008年辽宁省十二市)不等式组2133x x +⎧⎨>-⎩≤的解集在数轴上表示正确的是( )6.(2008年天津市)若440-=m ,则估计m 的值所在的范围是( ) A .21<<m B .32<<mC .43<<mD .54<<m7.(2008年四川巴中市)点(213)P m -,在第二象限,则m 的取值范围是( ) A .12m > B .12m ≥C .12m <D .12m ≤-31 0 A .-31 0 B .-31 0 C .-31 0 D .1 02 A . 1 0 2 B . 1 0 2 C . 1 0 2 D .8.(2008年成都市)在函数中,自变量x 的取值范围是( );(A )x ≥ - 3(B )x ≤ - 3(C )x ≥ 3(D )x ≤ 39.(2008年乐山市)函数12y x =-的自变量x 的取值范围为( ) A 、x ≥-2 B 、x >-2且x ≠2 C 、x ≥0且≠2 D 、x ≥-2且≠210.(2008年大庆市)使分式21xx -有意义...的x 的取值范围是( ) A .12x ≥ B .12x ≤C .12x >D .12x ≠11.(2008年大庆市)已知关于x 的一元二次方程220x x m --=有两个不相等的实数根,则实数m 的取值范围是( ) A .0m < B .2m <- C .0m ≥D .1m >-12.(2008广州市)四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图3所示,则他们的体重大小关系是( )A P R S Q >>>B Q S P R >>>C S P Q R >>>D S P R Q >>>13.(2008广东肇庆市)下列式子正确的是( )A .2a >0 B .2a ≥0 C .a+1>1 D .a ―1>114.(2008云南省)不等式组233x x +⎧⎨-⎩≤≤ 的解集是( )A .3x -≥B .3x ≥图3C .1x ≤D .31x -≤≤15.(08厦门市)在四川抗震救灾中,某抢险地段需实行爆破.操作人员点燃导火线后,要在炸药爆炸前跑到400米以外的安全区域.已知导火线的燃烧速度是1.2厘米/秒,操作人员跑步的速度是5米/秒.为了保证操作人员的安全,导火线的长度要超过( ) A .66厘米 B .76厘米 C .86厘米 D .96厘米16.(08绵阳市)以下所给的数值中,为不等式-2x + 3<0的解的是( ).A .-2B .-1C .23D .2 17.(2008年陕西省)把不等式组3156x x -<-⎧⎨-<⎩,的解集表示在数轴上正确的是( )18.(2008年江苏省无锡市)不等式112x ->的解集是( ) A.12x >- B.2x >- C.2x <-D.12x <-19.(2008年云南省双柏县)不等式组⎩⎨⎧>->-03042x x 的解集为( )A .x >2B .x <3C .x >2或 x <-3D .2<x <320.(2008湖北黄石)若不等式组5300x x m -⎧⎨-⎩≥≥有实数解,则实数m 的取值范围是( )A .B .C .D .A .53m ≤B .53m <C .53m >D .53m ≥21.(2008湖北黄石)若23132a b a b +->+,则a b ,的大小关系为( ) A .a b < B .a b > C .a b = D .不能确定22. (2008 河南)不等式—x —5≤0的解集在数轴上表示正确的是 ( )23.(2008 四川 泸州)不等式组310x x >⎧⎨+>⎩的解集是( )A .1x >-B .3x >C .1x <-D .13x -<<24.(2008 湖南 怀化)不等式53-x <x +3的正整数解有( ) (A )1个 (B )2个 (C )3个 (D )4个25.(2008 重庆)不等式042≥-x 的解集在数轴上表示正确的是( )A B C D26.(2008 湖北 恩施)如果a<b<0,下列不等式中错误..的是( ) A. ab >0 B. a+b<0 C.ba<1 D. a-b<027.(2008 河北)把某不等式组中两个不等式的解集表示在数轴上,如图所示, 则这个不等式组可能是( ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,28.(2008 江西南昌)不等式组2131x x -<⎧⎨>-⎩,的解集是( )A .2x <B .1x >-C .12x -<<D .无解0-202-220 429.不等式组23124x x -->-⎧⎨-+⎩≤的解集在数轴上可表示为( )A B C D30.(2008湖北武汉)不等式3x <的解集在数轴上表示为( ). A. B.C. D.31.(2008江苏盐城)实数a 在数轴上对应的点如图所示,则a ,a -,1的大小 关系正确的是( ) A .1a a -<< B .1a a <-< C .1a a <-< D .1a a <<-32.(2008永州市) 如图,a 、b 、c 分别表示苹果、梨、桃子的质量.同类水果质量相等,则下列关系正确的是( )A .a >c >bB .b >a >cC .a >b >cD .c >a >b33. (2008永州市)下列判断正确的是( )A .23<3<2 B . 2<2+3<3 C . 1<5-3<2D . 4<3·5<534.(2008 台湾)解不等式32x +1≤92x +31,得其解的范围为何?( ) (A) x ≥ 23 (B) x ≥32 (C) x ≤ -23 (D) x ≤ -32.35.(2008 台湾)某段隧道全长9公里,有一辆汽车以每小时60公里到80公里之间的速率通过该隧道.下列何者可能是该车通过隧道所用的时间?( ) (A) 6分钟 (B) 8分钟 (C) 10分钟 (D) 12分钟二、填空题1.(2008年山东省潍坊市)已知3x+4≤6+2(x-2),则1x + 的最小值等于________.32 1 03 2 1 0 3 2 1 0 a 第2题图2(2008年浙江省绍兴市)如图,已知函数y x b =+和3y ax =+的图象交点为P ,则不等式3x b ax +>+的解集为 .3.(2008年天津市)不等式组322(1)841x x x x +>-⎧⎨+>-⎩,的解集为 .4.(2008年沈阳市)不等式26x x -<-的解集为 .5.(2008年大庆市)不等式组253(2)123x x x x ++⎧⎪-⎨<⎪⎩≤的整数解的个数为 .6.(2008山东聊城)已知关于x 的不等式组010x a x ->⎧⎨->⎩,的整数解共有3个,则a 的取值范围是 .7.(2008湖北孝感)不等式组84113422x x x x +-⎧⎪⎨≥-⎪⎩的解集是 .8.(2008山东泰安)不等式组210353x x x x >-⎧⎨+⎩,≥的解集为9.(2008年江苏省连云港市)不等式组2494x xx x-<⎧⎨+>⎩的解集是 .10.(2008湖北咸宁)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k x k x b >+的解集为 .Oxy 1 P y=x+by=ax+311.(08厦门市)不等式组2430x x >-⎧⎨-<⎩的解集是 .12.(2008泰安)不等式组210353x x x x>-⎧⎨+⎩,≥的解集为 .13.(2008年上海市)不等式30x -<的解集是 .三、简答题1.(2008年四川省宜宾市)某学校准备添置一些“中国结”挂在教室.若到商店去批量购买,每个“中国结”需要10元;若组织一些同学自己制作,每个“中国结”的成本是4元,无论制作多少,另外还需共付场地租金200元.亲爱的同学,请你帮该学校出个主意,用哪种方式添置“中国结”的费用较节省?2.(2008年浙江省衢州市)1月底,某公司还有11000千克椪柑库存,这些椪柑的销售期最多还有60天,60天后库存的椪柑不能再销售,需要当垃圾处理,处理费为0.05元/吨.经测算,椪柑的销售价格定为2元/千克时,平均每天可售出100千克,销售价格降低,销售量可增加,每降低0.1元/千克,每天可多售出50千克.(1)如果按2元/千克的价格销售,能否在60天内售完这些椪柑?按此价格销售,获得的总毛利润是多少元(库存处理费销售总收入总毛利润-=)?(2)设椪柑销售价格定为x )2x 0(≤<元/千克时,平均每天能售出y 千克,求y 关于x 的函数解析式;如果要在2月份售完这些椪柑(2月份按28天计算),那么销售价格最高可定为多少元/千克(精确到0.1元/千克)?3.(08浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:(第12题图)(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?4、(2008淅江金华)解不等式:5x- 3 < 1- 3x5、(2008浙江宁波) 解不等式组3(2)41 1.2x x x ++⎧⎪⎨-<⎪⎩≥,6.(2008湖南益阳)乘坐益阳市某种出租汽车.当行驶 路程小于2千米时,乘车费用都是4元(即起步价4元);当行驶路程大于或等于2千米时,超过2千米部分每千米收费1.5元.(1)请你求出x ≥2时乘车费用y (元)与行驶路程x (千米)之间的函数关系式;(2)按常规,乘车付费时按计费器上显示的金额进行“四舍五入”后取整(如记费器上的数字显示范围大于或等于9.5而小于10.5时,应付车费10元),小红一次乘车后付了车费8元,请你确定小红这次乘车路程x 的范围.7.(2008年山东省潍坊市)为了美化校园环境,建设绿色校园,某学校准备对校园中30亩空地进行绿化..绿化采用种植草皮与种植树木两种方式,要求种植草皮与种植树木的面积都不少于10亩,并且种植草皮面积不少于种植树木面积的32.已知种植草皮与种植树木每亩的费用分别为8000元与12000元.(1) 种植草皮的最小面积是多少?(2) 种植草皮的面积为多少时绿化总费用最低?最低费用为多少?8.(2008年成都市)解不等式组⎪⎩⎪⎨⎧+-≤>+,232,01x x x 并写出该不等式组的最大整数解. 9.(2008年乐山市)若不等式组 231x +<1(3)2x x >- 的整数解是关于x 的方程24x ax -=的根,求a 的值10. 解方程|1||2|5x x -++=.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图(17)可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x=2或x=-3参考阅读材料,解答下列问题:(1)方程|3|4x +=的解为 (2)解不等式|3||4|x x -++≥9;(3)若|3||4|x x --+≤a 对任意的x 都成立,求a 的取值范围11.(2008浙江金华))解不等式:5x- 3 < 1- 3x12.(2008湖北黄冈)解不等式组255432x x x x -<⎧⎨-+⎩≥,.13.(2008湖南株洲)22.2008年北京奥运会的比赛门票开始接受公众预定.下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格,某球迷准备用12000元预定15张下表中球类比赛的门票:(1)若全部资金用来预定男篮门票和乒乓球门票,问这个球迷可以预订男篮门票和乒乓球门票各多少张?(3) 若在准备资金允许的范围内和总票数不变的前提下,这个球迷想预定上表中三种球类门票,其中足球门票与乒乓球门票数相同,且足球门票的费用不超过...男篮门票的费用,问可以预订这三种球类门票各多少张?比赛项目 票价(元/场)男 篮 1000 足 球 800 乒乓球50014. (2008黑龙江哈尔滨)荣昌公司要将本公司100吨货物运往某地销售,经与春晨运输公4 0 2 -2 1 1司协商,计划租用甲、乙两种型号的汽车共6辆,用这6辆汽车一次将货物全部运走,其中每辆甲型汽车最多能装该种货物16吨,每辆乙型汽车最多能装该种货物18吨.已知租用1辆甲型汽车和2辆乙型汽车共需费用2500元;租用2辆甲型汽车和1辆乙型汽车共需费用2450元,且同一种型号汽车每辆租车费用相同.(1)求租用一辆甲型汽车、一辆乙型汽车的费用分别是多少元? (2)若荣昌公司计划此次租车费用不超过5000元.通过计算求出该公司有几种租车方案?请你设计出来,并求出最低的租车费用.15.(2008年山东省青岛市)2008年8月,北京奥运会帆船比赛将在青岛国际帆船中心举行.观看帆船比赛的船票分为两种:A 种船票600元/张,B 种船票120元/张.某旅行社要为一个旅行团代购部分船票,在购票费不超过5000元的情况下,购买A ,B 两种船票共15张,要求A 种船票的数量不少于B 种船票数量的一半.若设购买A 种船票x 张,请你解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程; (2)根据计算判断:哪种购票方案更省钱?16.(2008年江苏省苏州市)解不等式组:302(1)33.x x x +>⎧⎨-+⎩,≥并判断32x =是否满足该不等式组.17.(2008年云南省双柏县)我县农业结构调整取得了巨大成功,今年水果又喜获丰收,某乡组织30辆汽车装运A 、B 、C 三种水果共64吨到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B 种水果的重量不超过装运的A 、C 两种水果重量之和.(1)设用x 辆汽车装运A 种水果,用y 辆汽车装运B 种水果,根据下表提供的信息,求y 与x 之间的函数关系式并写出自变量的取值范围.水果品种 A B C 每辆汽车运装量(吨) 2.2 2.1 2 每吨水果获利(百元)685(2)设此次外销活动的利润为Q (万元),求Q 与x 之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.18.(2008湖南郴州)解不等式组:718532x x x +<⎧⎨>-⎩①②19.(2008江苏南京)(6分)解不等式组. 并把解集在数轴上表示出来.0x -2>54-5-4-3-2-132120.(2008山东济南)解不等式组⎩⎨⎧<+>+6342xx,并把解集在数轴上表示出来.21.(2008湖北黄石)某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A B,型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?22.(2008 河南)某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品,经过了解得知,该超市的A,B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的32,但又不少于B种笔记本数量的31,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?23.(2008 湖南长沙)解不等式组:⎪⎩⎪⎨⎧-<-≤-xxx1434121,并将其解集在数轴上表示出来.0 1 2 3-1-2-3-4-5-624.(2008 湖南怀化)5.12四川地震后,怀化市立即组织医护工作人员赶赴四川灾区参加伤员抢救工作.拟派30名医护人员,携带20件行李(药品、器械),租用甲、乙两种型号的汽车共8辆,日夜兼程赶赴灾区.经了解,甲种汽车每辆最多能载4人和3件行李,乙种汽车每辆最多能载2人和8件行李.(1)设租用甲种汽车x辆,请你设计所有可能的租车方案;(2)如果甲、乙两种汽车的租车费用每辆分别为8000元、6000元,请你选择最省钱的租车方案.25.(2008北京)解不等式5122(43)x x--≤,并把它的解集在数轴上表示出来.26.(2008安徽)解不等式组31422xx x->-⎧⎨<+⎩①②,并将解集在数轴上表示出来.27.(2008湖北鄂州)为了更好治理洋澜湖水质,保护环境,市治污公司决定购买10台污水处理设备.现有A B,两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a b,的值.(2)经预算:市治污公司购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案.(3)在(2)问的条件下,若每月要求处理洋澜湖的污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.28.(2008湖北咸宁)“5·12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;总计 240吨260吨 500吨设A、B 两个蔬菜基地的总运费为元,写出与之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B 地到C 处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m >0),其余线路的运费不变,试讨论总运费最小的调运方案.29. (2008永州市)某物流公司,要将300吨物资运往某地,现有A 、B 两种型号的车可供调用,已知A 型车每辆可装20吨,B 型车每辆可装15吨,在每辆车不超载的条件下,把300吨物资装运完,问:在已确定调用5辆A 型车的前提下至少还需调用B 型车多少辆?30.(2008 广东)解不等式x x <-64,并将不等式的解集表示在数轴上.31.(2008 河南实验区)解不等式组()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 并把解集在已画好的数轴上表示出来.32.(2008广东)解不等式x x <-64,并将不等式的解集表示在数轴上.33.(2008山西太原)解不等式组:()2532213x x x x +≤+⎧⎪⎨-⎪⎩34.(2008湖北襄樊)“六一”儿童节前夕,某消防队官兵了解到汶川地震灾区一帐篷小学的小朋友喜欢奥运福娃,就特意买了一些,送给这个小学的西欧啊朋友做为节日礼物.如果每班分10套,那么欲5套;如果前面的每个班级分13套,那么最后一个班级虽然分有福娃,但不足4套.问:该小学有多少个班级?奥运福娃共有多少套?35.(2008浙江湖州)解不等式组:⎩⎨⎧>++>-1013112x x x36.(2008湖南常德市)解不等式组 ()⎪⎩⎪⎨⎧->+≤-.214,121x x x① ②37.(2008湖北宜昌市)解不等式:2(x +21)-1≤-x +938.(2008桂林市)某单位要印刷一批北京奥运会宣传资料,在需要支付制版费600元和每份资料0.3元印刷费的前提下,甲、乙两个印刷厂分别提出了不同的优惠条件,甲印刷厂提出:凡印刷数量超过2000份的,超过部分的印刷费可按9折收费,乙印刷厂提出:凡印刷数量超过3000份的,超过部分印刷费可按8折收费.(1)如果该单位要印刷2400份,那么甲印刷厂的费用是 ,乙印刷厂费的用是 .(2)根据印刷数量大小,请讨论该单位到哪家印刷厂印刷资料可获得更大优惠?39.(2008广东肇庆市) 解不等式:)20(310x x --≥70.40.(2008江苏淮安)解不等式3x-2<7,将解集在数轴上表示出来,并写出它的正整数解.41. (2008浙江温州)一次奥运知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题.(1(2)若小明同学的竞赛成绩超过100分,则他至少答对几道题?42. (2008新疆乌鲁木齐市)解不等式组2392593x x x x ++⎧⎨+>-⎩≥43.(2008黑龙江黑河)某工厂计划为震区生产A B ,两种型号的学生桌椅500套,以解决1250名学生的学习问题,一套A 型桌椅(一桌两椅)需木料30.5m ,一套B 型桌椅(一桌三椅)需木料30.7m ,工厂现有库存木料3302m .(1)有多少种生产方案?(2)现要把生产的全部桌椅运往震区,已知每套A 型桌椅的生产成本为100元,运费2元;每套B 型桌椅的生产成本为120元,运费4元,求总费用y (元)与生产A 型桌椅x (套)之间的关系式,并确定总费用最少的方案和最少的总费用.(总费用=生产成本+运费)(3)按(2)的方案计算,有没有剩余木料?如果有,请直接写出用剩余木料再生产以上两种型号的桌椅,最多还可以为多少名学生提供桌椅;如果没有,请说明理由.不等式(组)答案一.选择题1. A2. A3.A4. B5.A6.B7. C8. C9. D 10.D 11.D 12. D 13. B 14. D 15.D 16.C 17.C 18.C19.D 20.A 21.A 22.B 23.B 24.C 25.C 26.C 27.B 28.C 29.D 30.B 31.D 32.C 33.A 34.C 35.B二.填空题1. 12. 1x >3. 34<<-x4. 4x >5. 46.32a -<-≤7. 3x8.52x 2≤9. 3x < 10. x <-1 11. 23x -<< 12. 2<x ≤52 13. 3x < 三.解答题1. 解:设需要中国结x 个,则直接购买需4x+200元,自制需10x 元分两种情况: (1)若10x<4x+200,得2333x <,即少于33个时,到商店购买更便宜 (2)若10x>4x+200,得2333x >即少于33个时,自已制作更便宜. 2. 解:(1))(600060100千克=⨯,所以不能在60天内售完这些椪柑,5000600011000=-(千克)即60天后还有库存5000千克,总毛利润为W=元1175005.0500026000=⨯-⨯;(2))2x 0(1100x 500501.0x 2100y ≤<+-=⨯-+= 要在2月份售完这些椪柑,售价x 必须满足不等式11000)1100x 500(28≥+-解得414.17099x ≈≤ 所以要在2月份售完这些椪柑,销售价最高可定为1.4元/千克.3. 解:(1)25x -;5(25)x --(2)根据题意,得105(25)100x x -->解得15x >x ∴的最小正整数解是16x =答:小明同学至少答对16道题4. 5x+3x<1+38x<4 x<21 5. 解:解不等式(1),得1x -≥. ···················· 2分 解不等式(2),得3x <. ························· 4分 ∴原不等式组的解是13x -<≤. ······················ 6分 6..解:(1) 根据题意可知:y =4+1.5(x -2) ,∴ y =1.5x +1(x ≥2) ················ 4分(2)依题意得:7.5≤1.5x +1<8.5 ··················· 6分∴ 313≤x <5 ····················· 8分7. (1)解设种植草皮的面积为x 亩,则种植树木面积为(30-x )亩,则:1030103(30)2x x x x ⎧⎪≥⎪-≥⎨⎪⎪≥-⎩解得1820x ≤≤答:种植草皮的最小面积是18亩.(2)由题意得:y=8000x+12000(30-x)=360000-4000x ,当x=20时y 有最小值280000元8. 解:解不等式x+1>0,得x >-1 ……2分解不等式x ≤223x -+,得x ≤2 ……2分 ∴不等式得解集为-1<x ≤2 ……1分∴该不等式组的最大整数解是2 ……1分9. 解不等式得31x --,则整数解x=-2代入方程得a=410. 解:(1)1或7-. ·························· 3分(2)3和4-的距离为7,因此,满足不等式的解对应的点3与4-的两侧.当x 在3的右边时,如图(2), 易知4x ≥. ··············· 5分 当x 在4-的左边时,如图(2),易知5x -≤. ·············· 7分∴原不等式的解为4x ≥或5x -≤ ····················· 8分(3)原问题转化为: a 大于或等于|3||4|x x --+最大值. ·········· 9分 当1x -≥时,|3||4|0x x --+≤,当41x -<<-,|3||4|21x x x --+=--随x 的增大而减小,当4x -≤时,|3||4|7x x --+=,即|3||4|x x --+的最大值为7. ······················ 11分 故7a ≥. 12分11. 解:(2)5x+3x<1+38x<4 x<21 12. 解:25,543 2.x x x x -<⎧⎨-+⎩≥ 12()()由不等式(1)得:x <5由不等式(2)得:x ≥3所以:5>x ≥313. 解:(1)设预定男篮门票x 张,则乒乓球门票(15x -)张.得:1000x +500(15-x )=12000,解得:x = 9 ∴151596x -=-=(2)设足球门票与乒乓球门票数都预定y 张,则男篮门票数为(15-2y )张,得:8005001000(152)120008001000(152)y y y y y ++-≤⎧⎨≤-⎩, 解得:2545714y ≤≤.由y 为正整数可得y =5. 15-2y =5答:(1)略 (2)略14. 解:(1)设租用一辆甲型汽车的费用是x 元,租用一辆乙型汽车的费用是y 元.由题意得2250022450x y x y +=⎧⎨+=⎩·························· 2分 -4 图(2)7解得800850x y =⎧⎨=⎩ ······························· 1分答:租用一辆甲型汽车的费用是800元,租用一辆乙型汽车的费用是850元.(2)设租用甲型汽车z 辆,则租用乙型汽车(6)z -辆.由题意得1618(6)100800850(6)5000z z z z +-⎧⎨+-⎩≥≤ ····················· 2分 解得24z ≤≤ ······························ 1分 由题意知,z 为整数,2z ∴=或3z =或4z =∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆. ··············· 1分 方案一的费用是800285045000⨯+⨯=(元);方案二的费用是800385034950⨯+⨯=(元);方案三的费用是800485024900⨯+⨯=(元)500049504900>>,所以最低运费是4900元. ··············· 1分 答:共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆.最低运费是4900元.15. 解:(1)解:由题意: 600120(15)50001(15)2x x x x +-≤⎧⎪⎨≥-⎪⎩,………………2分 解得:5≤x ≤203………………3分 ∵x 为整数,∴x =5,6 ………………4分∴共两种购票方案:方案一:A 种船票5张,B 种船票10张方案二:A 种船票6张,B 种船票9张 ………………5分(2)因为B 种船票价格便宜,因此B 种船票越多,总购票费用少.∴第一种方案省钱,为5×600+120×10=4200(元)………………8分前两年第20题知识点分布:2006年考查内容不等式组设计方案,2007年考查内容不等式组设计方案16. 解:原不等式组的解集是:31x -<≤,x =满足该不等式组. 17. 解:(1)由题得到:2.2x +2.1y+2(30-x -y )=64 所以 y = -2x +40又x ≥4,y ≥4,30-x -y ≥4,得到14≤x ≤18-120(2)Q=6x +8y+5(30-x -y )= -5x +170Q 随着x 的减小而增大,又14≤x ≤18,所以当x =14时,Q 取得最大值,即Q= -5x +170=100(百元)=1万元.因此,当x =14时,y = -2x +40=12, 30-x -y=4所以,应这样安排:A 种水果用14辆车,B 种水果用12辆车,C 种水果用4辆车18. 解不等式① 得x < 1 ··············· 2分 解不等式② 得x > -1 ················ 4分 所以这个不等式组的解集为:-1<x <1 ··············· 6分19. 解:解不等式①,得x<2, …………………………………………………2分解不等式②,得x ≥-1. ………………………………………………4分所以,不等式组的解集是-1≤x<2. ……………………………………5分不等式组的解集在数轴上表示如下:………………………………………………………………………………6分20. 解:解①得x>-2……4分解②得x<3……5分所以,这个不等式组的解集是-2<x<3……6分解集在数轴上表示正确.……7分21. 解 依题意,甲店B 型产品有(70)x -件,乙店A 型有(40)x -件,B 型有(10)x -件,则(1)200170(70)160(40)150(10)W x x x x =+-+-+-2016800x =+.由0700400100x x x x ⎧⎪-⎪⎨-⎪⎪-⎩≥≥≥≥,,,.解得1040x ≤≤. ···················· (2分) (2)由201680017560W x =+≥,38x ∴≥.3840x ∴≤≤,38x =,39,40.∴有三种不同的分配方案.①38x =时,甲店A 型38件,B 型32件,乙店A 型2件,B 型28件.②39x =时,甲店A 型39件,B 型31件,乙店A 型1件,B 型29件.③40x =时,甲店A 型40件,B 型30件,乙店A 型0件,B 型30件.(3)依题意:(200)170(70)160(40)150(10)W a x x x x =-+-+-+-(20)16800a x =-+.①当020a <<时,40x =,即甲店A 型40件,B 型30件,乙店A 型0件,B 型30件,能使总利润达到最大.②当20a =时,1040x ≤≤,符合题意的各种方案,使总利润都一样.③当2030a <<时,10x =,即甲店A 型10件,B 型60件,乙店A 型30件,B 型0件,能使总利润达到最大. ························· (8分)22. 解:(1)设能买A 种笔记本x 本,则能买B 种笔记本(30-x )本依题意得:12x+8(30-x)=300,解得x=15.因此,能购买A ,B 两种笔记本各15本 …………………………3分(2)①依题意得:w=12n+8(30-n),即w=4n+240,且n <32(30-n )和n ≥)30(31n - 解得215≤n <12 所以,w (元)关于n (本)的函数关系式为:w=4n+240,自变量n 的取值范围是215≤n <12,n 为整数. ………………7分 ②对于一次函数w=4n+240,∵w 随n 的增大而增大,且215≤n <12,n 为整数, 故当n 为8 时,w 的值最小此时,30-n =30-8=22,w =4×8+240=272(元).因此,当买A 种笔记本8本、B 种笔记本22本时,所花费用最少,为272元23. 解:由11024314x x x ⎧-⎪⎨⎪-<-⎩≤得⎩⎨⎧->≤52x x , 不等式组的解集为-5<x≤2.解集在数轴上表示略.24. 解: (1)因为租用甲种汽车为x 辆,则租用乙种汽车()x -8辆.由题意,得()()42830,38820.x x x x +-⎧⎪⎨+-⎪⎩≥≥ 解之,得.5447≤≤x 即共有两种租车方案:第一种是租用甲种汽车7辆,乙种汽车1辆; 第二种是全部租用甲种汽车8辆(2)第一种租车方案的费用为780001600062000⨯+⨯=元 第二种租车方案的费用为8800064000⨯=元 所以第一种租车方案最省钱25. 解:去括号,得51286x x --≤.移项,得58612x x --+≤.合并,得36x -≤. 系数化为1,得2x -≥.不等式的解集在数轴上表示: 26. [解] 由①得1x >-, 由②得2x <,∴原不等式组的解集是12x -<<.在数轴上表示为:27. 解:(1)2326a b b a -=⎧⎨-=⎩,1210a b =⎧∴⎨=⎩.(2)设购买污水处理设备A 型设备X 台,B 型设备(10)X -台,则:1210(10)105X X +-≤2.5X ∴≤,X 取非负整数,012X ∴=,,,∴有三种购买方案:①A 型设备0台,B 型设备10台;②A 型设备1台,B 型设备9台;③A 型设备2台,B 型设备8台. (3)由题意:240200(10)2040X X +-≥,1X ∴≥,又2.5X ≤,X ∴为1,2.当1X =时,购买资金为:121109102⨯+⨯=(万元) 当2X =时,购买资金为:122108104⨯+⨯=(万元)∴为了节约资金,应选购A 型设备1台,B 型设备9台28. 解:(1)填表依题意得:. 解得:200x = . (2) w 与x 之间的函数关系为:29200w x =+.C DA 200吨 0吨 B40吨260吨依题意得:240040003000x x x x -≥⎧⎪-≥⎪⎨≥⎪⎪-≥⎩,,,.,∴40≤x ≤240在29200w x =+中,∵2>0, ∴w 随x 的增大而增大, 表一: 故当x =40时,总运费最小,此时调运方案为如右表一. (3)由题意知(2)9200w m x =-+C D A0吨200吨B 240吨 60吨∴0<m <2时,( 表二:m =2时,在40≤x ≤240的前提下调运方案的总运费不变; 2<m <15时,x =240总运费最小,其调运方案如右表二 . 29. 解:设还需要B 型车x 辆,根据题意,得:20515300x ⨯+≥ ···························· 3分解得:1133x ≥ ······························ 5分 由于x 是车的数量,应为整数,所以x 的最小值为14. ············· 7分 答:至少需要14台B 型车. ························· 8分 30. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:31. 解:()⎪⎩⎪⎨⎧---+≤②①.323121134x x x x 解不等式1,得x ≤3 解不等式2,得x >1- 把解集在数轴上表示为:∴原不等式组的解集是—1<x ≤3· 32. 解:移项,得 4x-x<6, 合并,得 3x<6,∴不等式的解集为 x<2,其解集在数轴上表示如下:33. 解:解()2532x x +≤+,得1x ≥-,解213x x -,得3x .所以,原不等式组的解集是13x -≤.34. 解;设该小学有x 个班,则奥运福娃共有(10x+5)套. 由题意,得 解之,得146.3x << ∵x 只能整数,∴x=5,此时10x+5=55 答:该小学有5个班,共有奥运福娃55套35.解:由(1)得x>2(2)得x>3所以不等式组的解集为x>336. 解:解不等式①,得 3≤x .………………………………………2分 解不等式②,得 244->+x x , 即 2->x . …4分 ∴原不等式组的解集为32≤<-x . …………………………6分 37. 解:2x +1-1≤-x +92x +x ≤9 3x ≤9 x ≤338. 解:(1)1308,1320;(2)设该单位需要印刷资料x 份,当2000x ≤时,甲印刷厂的费用是600+0.3x ,乙印刷厂的费用是600+0.3x ,两厂的费用相同;当2000<3000x ≤时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,乙印刷厂的费用是600+0.3x ,甲厂的费用较低;当>3000x 时,甲印刷厂的费用是600+0.3×2000+0.3(2000)x -×90%=0.27x +660,。
2011年全国各地中考数学真题分类汇编:第6章不等式

2011年全国各地100份中考数学试卷分类汇编第6章 不等式(组)一、选择题1. (2011湖南永州,15,3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为( ) A .6.0元 B .7.0元 C .8.0元 D .9.0元 【答案】B .二、填空题1. (2011山东临沂,17,3分)有3人携带会议材料乘坐电梯,这3人的体重共210kg ,每捆材料中20kg ,电梯最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆材料. 【答案】422. (2011湖北襄阳,15,3分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5 分.小明参加本次竞赛得分要超过100分,他至少要答对 道题. 【答案】14 3.三、解答题1. (2011广东广州市,21,12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元? (2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算? 【答案】(1)120×0.95=114(元) 所以实际应支付114元.(2)设购买商品的价格为x 元,由题意得:0.8x +168<0.95x解得x>1120所以当购买商品的价格超过1120元时,采用方案一更合算.2. (2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米. ⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计 A x 14B14调入地 水量/万吨调出地总计15 13 28⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x 15-x x-1⑵y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275解不等式1≤x≤14所以x=1时y取得最小值y min=12803. (2011 浙江湖州,23,10)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元?(收益=销售额-成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg,桂鱼每亩需要饲料700kg.根据(2)中的养殖亩数,为了节约运输成本,实际使用的运输车辆每载装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?【答案】解:(1)2011年王大爷的收益为:20.+.⨯⨯(3-24)10(25-2)=17(万元)(2)设养殖甲鱼x亩,则养殖桂鱼(30-x)亩.由题意得2.42(30)70,x x+-≤解得25x≤,又设王大爷可获得收益为y万元,则0.60.5(30)y x x=+-,即11510y x=+.∵函数值y随x的增大而增大,∴当x=25,可获得最大收益.答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料a kg,由(2)得,共需饲料为50025+700516000⨯⨯=(kg),根据题意,得160001600022a a-=,解得4000()a kg=.答:王大爷原定的运输车辆每次可装载饲料4000kg.4. (2011浙江绍兴,22,12分)筹建中的城南中学需720套担任课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.【答案】7206=120÷,∴光明厂平均每天要生产120套单人课桌椅.(2)设x人生产桌子,则(84)x-人生产椅子,则125720,584245720, 4xx⨯⨯≥-⨯⨯≥⎧⎨⎩解得6060,60,8424x x x≤≤∴=-=,∴生产桌子60人,生产椅子24人。
2011年全国各地100份中考数学试卷分类汇编(含答案)

方程的应用一、选择题A 组1、(2011年北京四中中考模拟20)某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x ,则下面所列方程正确的是( )A 、256)x 1(2892=-B 、289)x 1(2562=-C 、256)x 21(289=-D 、289)x 21(256=-答案A2.(2011年浙江仙居)近年来,全国房价不断上涨,某县201 0年4月份的房价平均每平方米为3600元, 比2008年同期的房价平均每平方米上涨了2000元,假设这两年该县房价的平均增长率均为x ,则关于x 的方程为( )A .()212000x +=B .()2200013600x +=C .()()3600200013600x -+=D .()()23600200013600x -+=答案:D3.(浙江省杭州市党山镇中2011年中考数学模拟试卷)某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( )(A ) 18%)201(160400160=+-+x x (B )18%)201(400160=++xx (C ) 18%20160400160=-+xx (D )18%)201(160400400=+-+x x 答案:AB 组1. (2011浙江慈吉 模拟)2010年元旦的到来, 宁波市各大商厦纷纷推出各种优惠以答谢顾客, 其中银泰百货贴出的优惠标语是: 买200元物品, 送100元购物券, 买400元物品送200购物券,……依次类推; 于是小红陪着她的妈妈一起来到大厦买东西, 没过多少时间小红就看中了一件衣服, 一问价钱需要600元. 她心想贵是贵了点,但是能送300元的购物券还是挺划算的, 于是就花600元把这件衣服买了, 同时也得到了300元购物券. 后来小红又用这300元购物券恰好买了一双鞋子, 这时就没有购物券送了. 则下列优惠中, 与小红在这次购物活动中所享受的优惠最接近的是( )A. 5折B. 6折C. 7折D. 8折 答案:C2.(2011湖北省崇阳县城关中学模拟)一种原价均为m 元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是( ▲ )A. 甲或乙或丙B. 乙C. 丙D. 乙或丙答案:B3.(2011湖北武汉调考模拟二)黄陂木兰旅游产业发展良好,2008年为640万元,2010年为1000万元,2011年增长率与2008至2010年年平均增长率相同,则2011年旅游收入为( )A.1200万元B.1250万元C.1500万元D.1000万元答案:B4. (2011湖北武汉调考一模)某县为发展教育事业,加强了对教育经费的投入,2 0019年投入3 000万元,预计2011年投入5000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( )A.3000( l+x )2=5000B.3000x 2=5000C.3000( l+x ﹪ )2=5000D.3000(l+x)+3000( l+x)2=5000答案:A5. (2011年杭州市模拟)如图,矩形的长与宽分别为a 和b ,在矩形中截取两个大小相同的圆作为圆柱的上下底面,剩余的矩形作为圆柱的侧面,刚好能组合成一个没有空隙的圆柱,则a 和b 要满足的数量关系是 A.121+=πb a B.122+=πb a C.221+=πb a D.12+=πb a 答案:D6.(2011灌南县新集中学一模)某超市一月份的营业额为200万元,已知第一季度....的总营业第5题额共1000万元, 如果平均每月增长率为x,则由题意列方程应为【 】A .200(1+x)2=1000 B .200+200×2x=1000C .200+200×3x=1000D .200[1+(1+x)+(1+x)2]=1000答案:D二、填空题 A 组1、(2011重庆市纂江县赶水镇)含有同种果蔬但浓度不同的A 、B 两种饮料,A 种饮料重 40千克,B 种饮料重60千克现从这两种饮料中各倒出一部分,且倒出部分的重量相同,再 将每种饮料所倒出的部分与另一种饮料余下的部分混合,如果混合后的两种饮料所含的果蔬 浓度相同,那么从每种饮料中倒出的相同的重量是_____________千克.答案:242、(重庆一中初2011级10—11学年度下期3月月考)某公司生产一种饮料是由A 、B 两种原料液按一定比例配制而成,其中A 原料液的成本价为15元/千克,B 原料液的成本价为10元/千克,按现行价格销售每千克获得70%的利润率.由于市场竞争,物价上涨,A 原料液上涨20%,B 原料液上涨10%,配制后的总成本增加了12%,公司为了拓展市场,打算再投入现总成本的25%做广告宣传,如果要保证每千克利润不变,则此时这种饮料的利润率是__________.答案:50%3、(2011年北京四中三模)某商场销售一批电视机,一月份每台毛利润是售出价的20% (毛利润=售出价-买入价),二月份该商场将每台售出价调低10%(买入价不变),结 果销售台数比一月份增加120%,那么二月份的毛利润总额与一月份毛利润总额的比 是 .答案:11:124.(淮安市启明外国语学校2010-2011学年度第二学期初三数学期中试卷)某种商品原价是120元,经两次降价后的价格是100元,求平均每次降价的百分率.设平均每次降价的百分率为x ,可列方程为 .答案:100)1(1202=-x5、(2011浙江杭州模拟16)由于人民生活水平的不断提高,购买理财产品成为一个热门话题。
2011届中考数学备考复习课件:2.3《一元一次不等式(组)及其解法》

1.用不等号连接而成的式子叫不等式;只含有一 .用不等号连接而成的式子叫不等式; 个未知数,并且未知数的次数是1, 个未知数,并且未知数的次数是 ,并且两边都是 整式的不等式,叫做一元一次不等式. 整式的不等式,叫做一元一次不等式. 2.不等式的性质: .不等式的性质: (1)不等式的两边都加上(或减去)同一个整式, )不等式的两边都加上(或减去)同一个整式, 不等号方向不变。 不等号方向不变。 2)不等式的两边都乘以(或除以)同一个正数, (2)不等式的两边都乘以(或除以)同一个正数, 不等号方向不变。 不等号方向不变。 (3)不等式的两边都乘以(或除以)同一个负数, )不等式的两边都乘以(或除以)同一个负数, 不等号方向改变。 不等号方向改变。
6.一元一次不等式与一次函数的联系: .一元一次不等式与一次函数的联系: 解一元一次不等式ax + b < 0 或 ax + b > 0 可以看着是求一次函数 y = ax + b 的 图象在x轴上方或下方方自变量 轴上方或下方方自变量x的取值范 图象在 轴上方或下方方自变量 的取值范 围。
【例1】(2010年毕节)解不等式 】 组
1 − 2( x − 1) ≤ 5 3x − 2 1 2 < x+ 2
,
并把解集在数轴上表示出来.
.(09深圳 例2.( 深圳)先阅读理解下面的例题,再按要 .( 深圳)先阅读理解下面的例题, 求解答: 求解答: 2 例题:解一元二次不等式. 例题:解一元二次不等式 x − 9 > 0 x 2 − 9 = ( x + 3)( x − 3) 解:∵ ∴ ( x + 3)( x − 3) > 0 由有理数的乘法法则“两数相乘,同号得正” 由有理数的乘法法则“两数相乘,同号得正”,有 1) 2) (1) x + 3 > 0 (2) x + 3 < 0 解不等式组( ), ),得 解不等式组(1),得, x > 3 解不等式组( ), ),得 解不等式组(2),得, x < −3 x>3 故 ( x + 3)( x − 3) > 0 的解集为 x < −3 2 x > 3 x < −3 x −9 > 0 或, 5x + 1 即一元二次不等式 的解集为 <0 2x − 3 或. 问题: 的解集. 问题:求分式不等式 的解集
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年中考数学试卷分类汇编:6 不等式(组)一、选择题1.(2011湖南永州,15,3分)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费2.0元,以后每分钟收费1.0元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为5.0元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费4.0元.如果你想给某同学打市话,准备通话10分钟,则你所需要的电话费至少为()A.6.0元B.7.0元C.8.0元D.9.0元【答案】B.二、填空题1.(2011山东临沂,17,3分)有3人携带会议材料乘坐电梯,这3人的体重共210kg,每捆材料中20kg,电梯最大负荷为1050kg,则该电梯在此3人乘坐的情况下最多还能搭载捆材料.【答案】422. (2011湖北襄阳,15,3分)我国从2011年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题.答对一题记10分,答错(或不答)一题记5分.小明参加本次竞赛得分要超过100分,他至少要答对道题.【答案】143.三、解答题1.(2011广东广州市,21,12分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围内时,采用方案一更合算?【答案】(1)120×0.95=114(元)所以实际应支付114元.(2)设购买商品的价格为x元,由题意得:0.8x +168<0.95x解得x>1120所以当购买商品的价格超过1120元时,采用方案一更合算.2. (2011湖北鄂州,20,8分)今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A 、B 两水库各调出14万吨水支援甲、乙两地抗旱.从A 地到甲地50千米,到乙地30千米;从B 地到甲地60千米,到乙地45千米.⑴设从A 水库调往甲地的水量为x 万吨,完成下表甲 乙 总计Ax 14 B14 总计 15 13 28 ⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x 15-x x -1⑵y=50x+(14-x )30+60(15-x )+(x -1)45=5x+1275解不等式1≤x ≤14所以x=1时y 取得最小值y min =12803. (2011 浙江湖州,23,10)我市水产养殖专业户王大爷承包了30亩水塘,分别养殖甲鱼和桂鱼.有关成本、销售额见下表:(1) 2011年,王大爷养殖甲鱼20亩,桂鱼10亩.求王大爷这一年共收益多少万元? (收益=销售额-成本)(2) 2011年,王大爷继续用这30亩水塘全部养殖甲鱼和桂鱼,计划投入成本不超过70万元.若每亩养殖的成本、销售额与2011年相同,要获得最大收益,他应养殖甲鱼和桂鱼各多少亩?(3) 已知甲鱼每亩需要饲料500kg ,桂鱼每亩需要饲料700kg .根据(2)中的养殖亩数,为了调入地 水量/万吨调出地节约运输成本,实际使用的运输车辆每载装载饲料的总量是原计划每次装载总量的2倍,结果运输养殖所需全部饲料比原计划减少了2次.求王大爷原定的运输车辆每次可装载饲料多少kg?【答案】解:(1)2011年王大爷的收益为:20.+.⨯⨯(3-24)10(25-2)=17(万元)(2)设养殖甲鱼x 亩,则养殖桂鱼(30-x )亩.由题意得2.42(30)70,x x +-≤解得25x ≤,又设王大爷可获得收益为y 万元,则0.60.5(30)y x x =+-,即11510y x =+. ∵函数值y 随x 的增大而增大,∴当x =25,可获得最大收益.答:要获得最大收益,应养殖甲鱼25亩,养殖桂鱼5亩.(3)设王大爷原定的运输车辆每次可装载饲料a kg ,由(2)得,共需饲料为50025+700516000⨯⨯=(kg ),根据题意,得160001600022a a-=,解得4000()a kg =. 答:王大爷原定的运输车辆每次可装载饲料4000kg.4. (2011浙江绍兴,22,12分)筹建中的城南中学需720套担任课桌椅(如图),光明厂承担了这项生产任务,该厂生产桌子的必须5人一组,每组每天可生产12张;生产椅子的必须4人一组,每组每天可生产24把.已知学校筹建组要求光明厂6天完成这项生产任务.(1)问光明厂平均每天要生产多少套单人课桌椅?(2)先学校筹建组组要求至少提前1天完成这项生产任务,光明厂生产课桌椅的员工增加到84名,试给出一种分配生产桌子、椅子的员工数的方案.【答案】7206=120÷,∴光明厂平均每天要生产120套单人课桌椅.(2)设x 人生产桌子,则(84)x -人生产椅子, 则125720,584245720,4x x ⨯⨯≥-⨯⨯≥⎧⎨⎩解得6060,60,8424x x x ≤≤∴=-=,∴生产桌子60人,生产椅子24人。
5. (2011浙江温州,23,12分)2011年5月20日是第22个中国学生营养日,某校社会实践小组在这天开展活动,调查快餐营养情况.他们从食品安全监督部门获取了一份快餐的信息(如图).根据信息,解答下列问题.(1)求这份快餐中所含脂肪质量;(2)若碳水化合物占快餐总质量的40%,求这份快餐所含蛋白质的质量;(3)若这份快餐中蛋白质和碳水化合物所占百分比的和不高于...85%,求其中所含碳水化合....物.质量的最大值.【答案】解:(1) 400×5%=20.答:这份快餐中所含脂肪质量为20克.(2)设所含矿物质的质量为x 克,由题意得:x+4x+20+400×40% =400,∴x =44,∴4x =176答:所含蛋白质的质量为176克.(3)解法一:设所含矿物质的质量为y 克,则所含碳水化合物的质量为(380-5y)克, ∴4y+(380-5y)≤400×85%,∴y ≥40,∴380-5y ≤180,∴所含碳水化合物质量的最大值为180克.解法二:设所含矿物质的质量为而克,则n ≥(1-85%-5%)×400∴n ≥40,∴4n ≥160,∴400×85%-4n ≤180,∴所含碳水化合物质量的最大值为180克.6. (2011湖南邵阳,22,8分)为庆祝建党90周年,某学校欲按如下规则组建一个学生合唱团参加我市的唱红歌比赛。
规则一:合唱团的总人数不得少于50人,且不得超过55人。
规则二:合唱团的队员中,九年级学生占合唱团总人数的12,八年级学生占合唱团总人数14,余下的为七年级学生。
请求出该合唱团中七年级学生的人数。
【答案】解:∵八年级学生占合唱团总人数14,∴合唱团的总人数是4的倍数。
又∵合唱团的总人数不得少于50人,且不得超过55人,∴合唱团的人数是52人。
∴七年级的人数是14×52=13人。
7. (2011四川内江,加试6,12分)某电脑经销商计划同时购进一批电脑机箱和液晶显示器,若购进电脑机箱10台和液晶显示器8台,共需要资金7000元;若购进电脑机箱2台和液晶显示器5台,共需要资金4120元.(1)每台电脑机箱、液晶显示器的进价各是多少元?(2)该经销商计划购进这两种商品共50台,而可用于购买这两种商品的资金不超过22240元.根据市场行情,销售电脑机箱、液晶显示器一台分别可获利10元和160元.该经销商希望销售完这两种商品,所获利润不少于4100元.试问:该经销商有哪几种进货方案?哪种方案获利最大?最大利润是多少?【答案】(1)设每台电脑机箱的进价是x 元,液晶显示器的进价是y 元,得1087000254120x y x y +=⎧⎨+=⎩,解得60800x y =⎧⎨=⎩答:每台电脑机箱的进价是60元,液晶显示器的进价是800元(2)设购进电脑机箱z 台,得60800(50)2224010160(50)4100x x x x +-≤⎧⎨+-≥⎩,解得24≤x ≤26 因x 是整数,所以x=24,25,26利润10x+160(50-x)=8000-150x ,可见x 越小利润就越大,故x=24时利润最大为4400元答:该经销商有3种进货方案:①进24台电脑机箱,26台液晶显示器;②进25台电脑机箱,25台液晶显示器;③进26台电脑机箱,24台液晶显示器。
第①种方案利润最大为4400元。
8. (2011重庆綦江,25,10分)为了保护环境,某化工厂一期工程完成后购买了3台甲型和2台乙型污水处理设备,共花费资金54万元,且每台乙型设备的价格是每台甲型设备价格的75%,实际运行中发现,每台甲型设备每月能处理污水200吨,每台乙型设备每月能处理污水160吨,且每年用于每台甲型设备的各种维护费和电费为1万元,每年用于每台乙型设备的各种维护费和电费为1.5万元.今年该厂二期工程即将完成,产生的污水将大大增加,于是该厂决定再购买甲、乙两型设备共8台用于二期工程的污水处理,预算本次购买资金不超过...84万元,预计二期工程完成后每月将产生不少于...1300吨污水.(1)请你计算每台甲型设备和每台乙型设备的价格各是多少元?(2)请你求出用于二期工程的污水处理设备的所有购买方案;(3)若两种设备的使用年限都为10年,请你说明在(2)的所有方案中,哪种购买方案的总费用最少?(总费用=设备购买费+各种维护费和电费)【答案】:25. 解:(1)设一台甲型设备的价格为x 万元,由题54%7523=⨯+x x ,解得x =12,∵ 12×75%=9 ,∴ 一台甲型设备的价格为12万元,一台乙型设备的价格是9万元(2)设二期工程中,购买甲型设备a 台,由题意有⎩⎨⎧≥-+≤-+1300)8(16020084)8(912a a a a ,解得:421≤≤a 由题意a 为正整数,∴a =1,2,3,4 ∴所有购买方案有四种,分别为方案一:甲型1台,乙型7台; 方案二:甲型2台,乙型6台方案三:甲型3台,乙型5台; 方案四:甲型4台,乙型4台(3)设二期工程10年用于治理污水的总费用为W 万元)8(105.1101)8(912a a a a w -⨯+⨯+-+=化简得: =w -2a +192,∵W 随a 的增大而减少 ∴当a =4时, W 最小(逐一验算也可)∴按方案四甲型购买4台,乙型购买4台的总费用最少.9. (2011四川凉山州,24,9分)我州鼓苦荞茶、青花椒、野生蘑菇,为了让这些珍宝走出大山,走向世界,州政府决定组织21辆汽车装运这三种土特产共120吨,参加全国农产品博览会。