安徽省泗县第二中学2015-2016学年高二数学上学期期末考试试题
安徽省泗县―高二数学上学期期末测试新人教版

泗县二中2011―2012学年上学期高二年级期末测试数学试卷(考试时间:120分钟 总分:160分)一、填空题:本大题共14小题,每题5分,共70分.请把答案填写在答题纸相应位置上................ 1.抛物线24y x =的准线方程是 . 2.命题“01,2>+∈∀x R x ”的否定是 .3.在平面直角坐标系xOy 中,已知双曲线C :2221x y a-=(0a >)的一条渐近线与直线l :210x y -+=垂直,则实数=a .4.在等差数列}{n a 中,已知13,2321=+=a a a ,则=++654a a a .5.若△ABC 的内角C B A ,,所对的边c b a ,,满足4)(22=-+c b a ,且角C=60°,则ab 的值为 .6.原命题:“设2,,ac b a R c b a 则若、、>∈>bc 2”则它的逆命题的真假为 .7.若方程22171x y k k +=--表示焦点在y 轴上的椭圆,则k 的取值范围是 . 8.在数列}{n a 中,Bn An a a a n a n n +=+++-=221,254 ,*N n ∈,其中B A ,为常数,则B A ,的积AB 等于 .9.在各边长均为1的平行六面体1111D C B A ABCD —中,M 为上底面1111D C B A 的中心,且AB AD AA ,,1每两条的夹角都是60º,则向量的长=|| .10.已知023:)(2>++x ax x P ,若)(,x P R x ∈∀是真命题,则实数a 的取值范围是___.11.椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F ,其右准线与x 轴的交点为A .在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .12.在算式“1×口+4×口=30”的两个口中,分别填入两个自然数,使它们的倒数之和最小,则这两个数的和为________.13.给出下列四个命题:①若a >b >0,则1a >1b ;②若a >b >0,则a -1a >b -1b;③若a >b >0,则2a +b a +2b >a b ;④若a >0,b >0,且2a +b =1,则2a +1b 的最小值为9.其中正确命题的序号是______.(把你认为正确命题的序号都填上)14.将n 个正整数1, 2, 3, …,n (n ∈N *)分成两组,使得每组中没有两个数的和是一个完全平方数,且这两组数中没有相同的数. 那么n 的最大值是 .二、解答题:(本大题共6小题,计90分.请把答案填写在答题纸相应位置上..............., .解答应写....出必要的文字说明、证明过程或演算步骤..................) 15.(本题满分14分)已知公比为3的等比数列{}n b 与数列{}n a 满足*,3N n b n an ∈=,且11=a ,(1)判断{}n a 是何种数列,并给出证明; (2)若11+=n n n a a C ,求数列{}n C 的前n 项和16.(本题满分14分)已知△ABC 中,D 在边BC 上,且60,1,2=∠==B DC BD o ,150=∠ADC o.(1)求AC 的长;(2)求△ABC 的面积.17.(本题满分14分)如图,正三棱锥ABC —A 1B 1C 1的底面边长为a,M 是A 1B 1的中点.(I )求证:1MC 是平面ABB 1A 1的一个法向量; (II )求AC 1与侧面ABB 1A 1所成的角.18.(本题满分16分)已知椭圆C :x 2 a 2 +y 2 b 2 =1(a >b >0)的离心率为1 2 ,且经过点P (1,32)。
安徽省宿州市泗县双语中学高二数学上学期期末考试试题 新人教A版

数学试卷第Ⅰ卷(选择题 共50分)一、选择题:(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的).1.数列1,23,35,47,59,…的一个通项公式a n 是( )A.n 2n +1B.n 2n -1C.n2n -3D.n2n +32.经过两点A (4,2y +1),B (2,-3)的直线的倾斜角为3π4,则y =( ).A .-1B .0C .-3D .2 3.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ).A .1B .2C .3D .44.设集合A ={x |x 2-2x -3<0},B ={x |1≤x ≤4},则A ∩B = ( )A .{x |1≤x <3}B .{x |1≤x ≤3}C .{x |3<x ≤4}D .{x |3≤x ≤4}5.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( ).A .58B .88C .143D .1766.已知n m ,为异面直线,⊥m 平面α,⊥n 平面β.直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则( ) A .βα//,且α//lB .βα⊥,且β⊥lC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l7.若a ,b ∈R ,且ab >0,则下列不等式恒成立的是( ).A .a 2+b 2>2abB .a +b ≥2abC.1a +1b>2abD.b a +ab≥28.圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( )A .2B .1+ 2C .2+22D .1+2 29.已知集合A ={(x ,y )|x ,y 为实数,且x 2+y 2=1},B ={(x ,y )|x ,y 为实数,且x +y =1},则A ∩B 的元素个数为( ).A .4B .3C .2D .110.(文)若1()2f x x x =+-(2)x >在x n =处取得最小值,则n =( ) A.52 B. 3C.72D. 4 (理).已知a >0,b >0,a +b =2,则y =1a +4b的最小值是 ( )A.72B .4 C.92D .5二、填空题:本大题共5小题,每小题5分,共25分.11.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为 12.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2等于 13.不等式(x+5)(3-2x )≥6的解集是14.若实数x ,y 满足224x y +=,求xy 的最大值15.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2+2x ,若f (2-a 2)>f (a ),则实数a 的取值范围是 .三、解答题:本大题共6题,共75分,写出文字说明、证明过程或演算步骤。
2015-2016学年高二数学期末试卷及答案

2015—2016学年第一学期期末测试高二理科数学复习题必修3,选修2-3,选修2-1简易逻辑、圆锥曲线参考公式:用最小二乘法求线性回归方程y bx a =+的系数公式:121()()()niii ni i x x y y b x x ==--=-∑∑,a y bx =-,其中x ,y 是数据的平均数.第♊卷(本卷共 分)一、选择题:(本大题共 题,每小题 分,共 分,在每小题给出的四个选项中,只有一项是符合题目要求的).从一副扑克牌☎ 张✆中抽取一张牌,抽到牌❽❾的概率是☎ ✆✌ 154 127 118 227.设随机变量~(0,1)N ξ,若()1P pξ>=,则()10P ξ-<<= ☎ ✆✌ 2p 1p - 12p - 12p -.如图 所示的程序框图的功能是求♊、♋两处应分别填写图✌.5?i <,2S S =+.5?i ≤,2S S =.5?i <,2S S =+ .5?i ≤,2S S =.将参加夏令营的 名学生编号为: ,⑤, ,采用系统抽样方法抽取一个容量为 的样本,且随机抽得的号码为 这 名学生分住在三个营区,从 到 在第♊营区,从 到 在第♋营区,从 到 在第♌营区.三个营区被抽中的人数依次为 ☎ ✆✌. . . . .如图 ,分别以正方形ABCD 的四条边为直径画半圆,重叠部分如图中阴影区域,若向该正方形内随机投一点,则该点落在阴影区域的概率为 ☎ ✆✌24π- 22-π 44π- 42-π(82x 展开式中不含..4x 项的系数的和为 ☎ ✆✌. . . ..学校体育组新买2颗同样篮球,3颗同样排球,从中取出 颗发放给高一 个班,每班1颗,则不同的发放方法共☎ ✆✌. 种 . 种 . 种. 种.容量为100的样本数据,按从小到大的顺序分为8组,如下表:第三组的频数和频率分别是☎ ✆✌.14和0.14 .0.14和14 .141和0.14 . 31和141.“2012”含有数字0, 1, 2,且恰有两个数字 .则含有数字0, 1, 2,且恰有两个相同数字的四位数的个数为☎ ✆✌.18 .24 .27 .36一射手对靶射击,直到第一次命中为止每次命中的概率为 ,现有 颗子弹,命中后的剩余子弹数目ξ的期望为☎ ✆✌ 经回归分析可得⍓与⌧线性相关,并由最小二乘法求得回归直线方程为ˆ 1.1y x a =+,则♋= ☎ ✆✌、 、 、 、 设随机变量ξ~ ☎☐✆η~ ☎☐✆若95)1(=≥ξp ,则)2(≥ηp 的值为 ☎ ✆☎✌✆8132 ☎✆ 2711 ☎✆ 8165 ☎✆ 8116第♋卷(本卷共计 分)二、填空题:(本大题共 小题,每小题 分,共 分).甲从学校乘车回家,途中有 个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是52,则甲回家途中遇红灯次数的期望为 。
安徽省泗县第二中学2015-2016学年高二上学期期末考试数学试题 含答案

泗县二中2015—2016学年高二上学期期末考试数 学分量:150分 时量:120分钟一、选择题(每小题5分,共50分) 1。
若i x x x )23()1(22+++-是纯虚数,则实数x 的值是 ( )A.1 B 。
1- C 。
1± D.1- 或22。
过不共面的4点中的3个点的平面共有( )A.0个B 。
3个C 。
4个D.无数个3. 把3个不同的球放入3个不同的盒子里,那么没有空盒的概率是( ) A 。
31 B 。
61 C.91 D 。
924。
已知异面直线a 、b 分别在平面α、β内,若l =βα ,则直线l 与直线a 、b 的位置关系是 ( )A.与a 、b 都相交B.至少与a 、b 中的一条相交C.与a 、b 都不相交D 。
至多与a 、b 中的一条相交5。
长方体1111D C B A ABCD -中,31=AA,4=AD ,5=AB ,则直线1BD 与平面ABCD 所成的角的正弦值是( )A.54B 。
1023C 。
343 D.3456. 若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是 ( ) A 。
2 B.22 C 。
34 D.2-7。
在200743)1()1()1(x x x ++++++ 的展开式中,3x 的系数等于( )A.42007CB 。
32007CC.42008CD 。
32008C8。
在北纬45°圈上有甲、乙两地,它们分别在东经50°与东经140°圈上,则甲、乙两地的球面距离是(其中R 为地球半径) ( ) A.R π21B.R π31C 。
R π41D.R π229。
若)(x f y =在),(∞+-∞可导,且13)()2(lim=∆-∆+→∆xa f x a f x ,则=')(a f( )A 。
32 B 。
2 C 。
3 D 。
2310.有编号为1,2,3,4,5的五个茶杯和编号为1,2,3,4,5的五个杯盖,将五个杯盖分别盖在五个茶杯上,至少有两个杯盖的编号与所盖茶杯的编号相同,这样的盖法有 ( )A.36种B.32种C 。
【英语】安徽省泗县第二中学2015-2016学年高二上学期期末考试试题

泗县二中2015-2016学年度高二上学期期末考试英语试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
第Ⅰ卷(选择题共115分)第一部分:听力( 共20小题,满分30分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在答题卷的相应位置。
听每段对话后,你将有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What will the man be doing at 8:00 ?A. Talking on the phone.B. Having dinner.C. Doing his homework.2.Why does the woman can’t use a credit card?A. Because she hasn’t got a card with her.B. Because there is no money in her card.C. Because th book price is too low to use a card.3.What does the man mean?A. There is something wrong with his car.B. Matt will use the car this week..C. The woman can use the car tomorrow.4.Which color does the man advise the woman to choose?A. Blue .B. White.C. Pink.5.Why does the woman come to the man’s office?A. She wants to invite him to lunch.B. She wants to talk to him about her paper.C. She wants to talk to him about his work..第二节听下面5段对话或独白。
2015-2016第一学期高二期末考试理科数学试题及答案

2016学年度第一学期高二年级期末教学质量检测理科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分。
考试时间120分钟。
注意事项:1、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名、班级和考号填写在答题卷上。
2、必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
第Ⅰ卷 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.“0x >”是0>”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件 2.抛物线24y x =的焦点坐标是A .(1,0)B .(0,1)C .1(,0)16 D .1(0,)163.与圆8)3()3(22=-+-y x 相切,且在y x 、轴上截距相等的直线有A .4条B .3条C .2条D .1条 4.设l 是直线,,αβ是两个不同的平面,则下列结论正确的是A .若l ∥α,l ∥β,则//αβB .若//l α,l ⊥β,则α⊥βC .若α⊥β,l ⊥α,则l ⊥βD .若α⊥β, //l α,则l ⊥β 5.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则⌝p 是A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<06.设(2,1,3)a x = ,(1,2,9)b y =-,若a 与b 为共线向量,则A .1x =,1y =B .12x =,12y =- C .16x =,32y =- D .16x =-,32y =7.已知椭圆2215x y m +=的离心率5e =,则m 的值为 A .3 BCD .253或38.如图,在正方体1111ABCD A BC D -中,,,M N P 分别是111,,B B B C CD 的中点,则MN 与1D P 所成角的余弦值为 A.5-B.5CD .9.如图,G 是ABC ∆的重心,,,OA a OB b OC c ===,则OG =A .122333a b c ++B .221333a b c ++C .222333a b c ++D .111333a b c ++10.已知双曲线22214x yb-=的右焦点与抛物线y 2=12x 的焦 点重合,则该双曲线的焦点到其渐近线的距离等于A. BC .3D .5 二、填空题:本大题共4小题,每小题5分,满分20分11.若直线x +a y+2=0和2x+3y+1=0互相垂直,则a =12.若一个圆锥的侧面展开图是面积为π2的半圆面,则该圆锥的体积为 。
2015-2016学年高二上学期期末考试数学(理)试题及答案

N D 1C 1B 1A 12015-2016学年第一学期高二年级期末质量抽测数 学 试 卷(理科)(满分150分,考试时间 120分钟)2016.1考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。
2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。
3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。
请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。
4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。
保持答题卡整洁,不要折叠、折皱、破损。
不得在答题卡上做任何标记。
5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。
第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)抛物线210y x =的焦点到准线的距离为(A )52(C )5 (C )10 (D )20 (2)过点(2,1)-且倾斜角为060的直线方程为(A) 10y --=( B) 330y --=( C)10y -+=( D) 330y -+=(3)若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是(A)p q ∧ (B )()p q ⌝∨ (C)()p q ⌝∧ (D )()()p q ⌝∨⌝(4)已知平面α和直线,a b ,若//a α,则“b a ⊥”是“b α⊥”的(A)充分而不必要条件 ( B )必要而不充分条件 ( C)充分必要条件 (D)既不充分也不必要条件 (5)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线111A B B D 与的中点,若1,,,DA DC DD === a b c 则MN =CA 1俯视图侧(左)视图正(主)视图(A)1()2+-c b a ( B) 1()2+-a b c ( C) 1()2-a c ( D) 1()2-c a(6)已知双曲线22221(0,0)x y a b a b-=>>(A) y =( B) y x = ( C) 12y x =± ( D) 2y x =±(7)某三棱锥的三视图如图所示,则该三棱锥的表面积是(A )2+( B)2( C)4+( D)4(8)从点(2,1)P -向圆222220x y mx y m +--+=作切线,当切线长最短时m 的值为(A )1- (B )0 (C )1 (D )2(9)已知点12,F F 是椭圆22:14x C y +=的焦点,点M 在椭圆C上且满足12MF MF +=uuu r uuu u r 则12MF F ∆的面积为(A)(B) (C ) 1 (D) 2 (10) 如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足11BC BM ⋅= ,则1BC 与BM的夹角的最大值为(A) 30︒ ( B) 45︒ ( C ) 60︒ ( D) 75︒P D 1C 1B 1A 1D C BA第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分)(11)若命题2:R,220p x x x ∃∈++>,则:p ⌝ . (12) 已知(1,3,1)=-a ,(1,1,3)=--b ,则-=a b ______________.(13)若直线()110a x y +++=与直线220x ay ++=平行,则a 的值为____ .(14)如图,在长方体ABCD -A 1B 1C 1D 1中,设 11AD AA ==, 2AB =,P 是11C D 的中点,则11BC A P 与所成角的大小为____________, 11BC A P ⋅=___________.(15)已知P 是抛物线28y x =上的一点,过点P 向其准线作垂线交于点E ,定点(2,5)A ,则PA PE +的最小值为_________;此时点P 的坐标为_________ .(16)已知直线:10l kx y -+=()k ∈R .若存在实数k ,使直线l 与曲线C 交于,A B 两点,且||||AB k =,则称曲线C 具有性质P .给定下列三条曲线方程: ① y x =-; ② 2220x y y +-=; ③ 2(1)y x =+. 其中,具有性质P 的曲线的序号是________________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)已知圆22:2410C x y x y +--+=. (I)求过点(3,1)M 的圆C 的切线方程;(II)若直线:40l ax y -+=与圆C 相交于,A B 两点,且弦AB的长为a 的值.(18)(本小题满分14分)OD 1C 1B 1A 1D CBA N MDCBAP在直平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,60DAB ∠=︒,AC BD O = ,11AB AA ==.(I)求证:111//OC AB D 平面;(II)求证:1111AB D ACC A ⊥平面平面; (III)求三棱锥111A AB D -的体积. (19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b +=>>(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)如果过点3(0,)5B 的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),求证:AMN ∆为直角三角形.(20)(本小题满分14分)如图,在四棱锥P A B C D -中,P A A B C D ⊥底面,底面A B C D 为直角梯形,//,90A D B C B A D ∠=︒22PA AD AB BC ====,过AD 的平面分别交PB PC ,于,M N 两点.(I )求证://MN BC ;(II )若,M N 分别为,PB PC 的中点,①求证:PB DN ⊥;②求二面角P DN A --的余弦值.(21)(本小题满分14分)抛物线22(0)y px p =>与直线1y x =+相切,112212(,),(,)()A x y B x y x x ≠是抛物线上两个动点,F 为抛物线的焦点,且8AF BF +=. (I ) 求p 的值;(II ) 线段AB 的垂直平分线l 与x 轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(III )求直线l 的斜率的取值范围.2015-2016学年第一学期高二年级期末质量抽测数学试卷参考答案及评分标准 (理科) 2016.1一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目二、填空题(本大题共6小题,每小题5分,共30分)(11)2:,220p x x x ⌝∀∈++≤R(12) 6 (13)1或2- (14)60︒;1 (15)5;(2,4) (16)②③ 三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)解:(I )圆C 的方程可化为22(1)(2)4x y -+-=,圆心(1,2)C ,半径是2. …2分①当切线斜率存在时,设切线方程为1(3)y k x -=-,即310kx y k --+=. ……3分因为2d ===,所以34k =. …………6分 ②当切线斜率不存在时,直线方程为3x =,与圆C 相切. ……… 7分所以过点(3,1)M 的圆C 的切线方程为3x =或3450x y --=. ………8分(II )因为弦AB 的长为O 1ABCDA 1B 1C 1D 1O所以点C 到直线l的距离为11d ==. ……10分即11d ==. …………12分所以34a =-. …………14分(18)(本小题满分14分)证明:(I) 如图,在直平行六面体1111ABCD A B C D -中,设11111AC B D O = ,连接1AO .因为1111//AA CC AA CC =且,所以四边形11AAC C 是平行四边形.所以1111//AC AC AC AC =且. ……1分因为底面ABCD 是菱形, 所以1111//O C AO O C AO =且. 所以四边形11AOC O 是平行四边形.所以11//AO OC . ……2分 因为111AO AB D ⊂平面,111OC AB D ⊄平面所以111//OC AB D 平面. ……4分(II)因为11111AA A B C D ⊥平面,111111B D A B C D ⊂平面,所以111B D AA ⊥. ……5分 因为底面ABCD 是棱形,所以1111B D AC ⊥. ……6分因为1111AA AC A = ,所以1111B D ACC A ⊥平面. ……7分 因为1111B D AB D ⊂平面, ……8分 所以1111AB D ACC A ⊥平面平面. ……9分 (III)由题意可知,11111AA A B C D ⊥平面,所以1AA 为三棱锥111A A B D -的高. ……10分因为111111111111111332A AB D A A B D A B D V V S AA --∆==⋅=⨯⨯=.所以三棱锥111A AB D -. ……14分(19)(本小题满分14分)解:(Ⅰ)因为椭圆经过点(0,1)A -,e =,所以1b =. ……1分由c e a ===2a =. ……3分 所以椭圆C 的标准方程为2214x y +=. ……4分(Ⅱ)若过点3(0,)5的直线MN 的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件. ……5分若过点3(0,)5的直线MN 的斜率存在,设其斜率为k ,则MN 的方程为35y kx =+,由223514y kx x y ⎧=+⎪⎪⎨⎪+=⎪⎩可得222464(14)0525k x kx ++-=. ……7分设1122(,),(,)M x y N x y ,则122122245(14)64,25(14)0k x x k x x k ⎧+=-⎪+⎪⎪⋅=-⎨+⎪⎪∆>⎪⎩, ……9分 所以1212266()55(14)y y k x x k +=++=+, 221212122391009()52525(14)k y y k x x k x x k -+⋅=⋅+++=+. ……11分因为(0,1)A -,所以1122121212(,1)(,1)()1AM AN x y x y x x y y y y ⋅=+⋅+=++++22264100925(14)25(14)k k k -+=-+++26105(14)k ++=+所以AM AN ⊥,AMN ∆为直角三角形得证. ……14分(20)(本小题满分14分)证明:(I )因为底面ABCD 为直角梯形, 所以//BC AD .因为,,BC ADNM AD ADNM ⊄⊂平面平面所以//BC ADNM 平面. ……2分 因为,BC PBC PBC ADNM MN ⊂= 平面平面平面,所以//MN BC . ……4分 (II )①因为,M N 分别为,PB PC 的中点,PA AB =,所以PB MA ⊥. ……5分 因为90,BAD ∠=︒ 所以DA AB ⊥.因为PA ABCD ⊥底面,所以DA PA ⊥. 因为PA AB A = ,所以DA PAB ⊥平面.所以PB DA ⊥. ……7分 因为AM DA A = ,所以PB ADNM ⊥平面因为DN ADNM ⊂平面,所以PB DN ⊥. ……9分 ②如图,以A 为坐标原点,建立空间直角坐标系A xyz -. ……10分 则(0,0,0),(2,0,0),(2,1,0),(0,2,0),(0,0,2)A B C D P . ……11分由(II )可知,PB ADNM ⊥平面,所以ADNM 平面的法向量为(2,0,2)BP =-. ……12分设平面PDN 的法向量为(,,)x y z =n因为(2,1,2)PC =- ,(0,2,2)PD =-,所以00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n .即220220x y z y z +-=⎧⎨-=⎩. 令2z =,则2y =,1x =. 所以(1,2,2)=n所以cos ,6BP BP BP ⋅〈〉===n n n所以二面角P DN A --……14分(21)(本小题满分14分)解:(I )因为抛物线22(0)y px p =>与直线1y x =+相切,所以由221y px y x ⎧=⎨=+⎩ 得:2220(0)y py p p -+=>有两个相等实根. …2分即2484(2)0p p p p ∆=-=-=得:2p =为所求. ……4分 (II )法一:抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………5分 设直线AB 的垂直平分线l 与x 轴的交点(,0)C m . 由C 在AB 的垂直平分线上,从而AC BC = ………6分即22221122()()x m y x m y -+=-+. 所以22221221()()x m x m y y ---=-.即12122112(2)()444()x x m x x x x x x +--=-=-- ………8分 因为12x x ≠,所以1224x x m +-=-. 又因为126x x +=,所以5m =, 所以点C 的坐标为(5,0).即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 法二:由112212(,),(,)()A x y B x y x x ≠可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+.由24y x y kx m⎧=⎨=+⎩可得222(24)0k x km x m +-+=. ………5分 所以12221224216160km x x k m x x k km -⎧+=⎪⎪⎪⋅=⎨⎪∆=-+>⎪⎪⎩. ………6分因为抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………7分所以232km k +=.设线段AB 的中点为00(,)M x y . 则12003,32x x x y k m +===+. 所以(3,3)M k m +. ………8分 所以线段AB 的垂直平分线的方程为13(3)y k m x k--=--. ………9分 令0y =,可得2335x m mk =++=.即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0).………10分 (III )法一:设直线l 的斜率为1k ,由(II )可设直线l 方程为1(5)y k x =-.设AB 的中点00(,)M x y ,由12032x x x +==.可得0(3,)M y .因为直线l 过点0(3,)M y ,所以012y k =-.………11分 又因为点0(3,)M y 在抛物线24y x =的内部,所以2012y <.…12分 即21412k < ,则213k <.因为12x x ≠,则10k ≠. …13分所以1k 的取值范围为( .………14分 法二:设直线l 的斜率为1k ,则11k k =-.由(II )可知223km k =-.因为16160km ∆=-+>,即1km <, …11分所以2231k -<.所以213k >. 即21113k >. 所以2103k <<. …12分 因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为( . ………14分。
2020年安徽省宿州市泗县第二中学高二数学理上学期期末试题含解析

2020年安徽省宿州市泗县第二中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 曲线与所围图形的面积为()A. B. C. D.参考答案:C【分析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数在区间[0,1]上的定积分的值,再用定积分计算公式进行运算即可.【详解】作出两个曲线的图象,由,解得或,则曲线y2=x与y=x2所围图形的面积为S(x2)dx=(x3)()﹣0,故选:C.【点睛】本题考查了曲边图形的面积,着重考查了定积分的几何意义和积分计算公式等知识,属于基础题.2. 若复数=2﹣i其中a,b是实数,则复数a+bi在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限参考答案:C【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、复数相等、几何意义即可得出.【解答】解:复数=2﹣i,其中a,b是实数,∴a+i=(2﹣i)(b﹣i)=2b﹣1﹣(2+b)i,∴,解得b=﹣3,a=﹣7.则复数a+bi在复平面内所对应的点(﹣7,﹣3)位于第三象限.故选:C.3. 已知点(3,1)和(4,6)在直线3x-2y+a=0的两侧,则a的取值范围是A、 B、C、 D、或参考答案:C4. 下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行参考答案:C5. 数列{c n}为等比数列,其中c1=2,c8=4,f(x)=x(x﹣c1)(x﹣c2)…(x﹣c8),f′(x)为函数f(x)的导函数,则f′(0)=( )A.0 B.26 C.29 D.212参考答案:D考点:导数的运算.专题:导数的概念及应用;等差数列与等比数列.分析:由已知求出数列{c n}的通项公式,对函数f(x)求导,求出f′(x),令x=0求值.解答:解:因为数列{c n}为等比数列,其中c1=2,c8=4,所以公比q=,由f(x)=x(x﹣c1)(x﹣c2)…(x﹣c8),得f′(x)=(x﹣c1)(x﹣c2)…(x﹣c8)+x[(x﹣c1)(x﹣c2)…(x﹣c8)]',所以f′(0)=(﹣c1)(﹣c2)…(﹣c8)=c1c2…c8==212;故选D.点评:本题考查了等比数列的通项求法以及导数的运算;解答本题求出等比数列的通项公式以及函数的导数是关键.6. 设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为()A.B.y=±2x C.D.参考答案:C【考点】双曲线的简单性质.【专题】圆锥曲线的定义、性质与方程.【分析】由题意知,因为双曲线的焦点在x轴上,由此可知渐近线方程为.【解答】解:由已知得到,因为双曲线的焦点在x轴上,故渐近线方程为;故选C.【点评】本题主要考查了双曲线的几何性质和运用.考查了同学们的运算能力和推理能力.7. 如图1,图中的程序输出的结果是().A.113 B. 179 C.73 D. 209参考答案:C略8. 已知函数f(x)的导函数为,且,则的值为( )A. B. C. -1 D. -2参考答案:B【分析】对求导,在导函数中取,化简求出的值,再取,即可求出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
泗县二中2015-2016学年高二上学期期末考试数 学分量:150分 时量:120分钟一、选择题(每小题5分,共50分)1. 若i x x x )23()1(22+++-是纯虚数,则实数x 的值是( )A.1B.1-C.1±D.1- 或 2 2. 过不共面的4点中的3个点的平面共有 ( )A.0个B.3个C.4个D.无数个3. 把3个不同的球放入3个不同的盒子里,那么没有空盒的概率是 ( )A.31 B.61 C.91 D.92 4. 已知异面直线a 、b 分别在平面α、β内,若l =βα ,则直线l 与直线a 、b 的位置关系是( )A.与a 、b 都相交B.至少与a 、b 中的一条相交C.与a 、b 都不相交 D .至多与a 、b 中的一条相交5. 长方体1111D C B A ABCD -中,31=AA ,4=AD ,5=AB ,则直线1BD 与平面ABCD 所成的角的正弦值是( )A.54B.1023 C.343 D.345 6. 若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是 ( )A.2B.22C.34D.2-7. 在200743)1()1()1(x x x ++++++ 的展开式中,3x 的系数等于 ( )A.42007CB.32007CC.42008CD.32008C8. 在北纬45°圈上有甲、乙两地,它们分别在东经50°与东经140°圈上,则甲、乙两地的球面距离是(其中R 为地球半径) ( )A.R π21B.R π31C.R π41 D.R π229. 若)(x f y =在),(∞+-∞可导,且13)()2(lim0=∆-∆+→∆xa f x a f x ,则=')(a f ( ) A.32 B.2 C.3 D.2310.有编号为1,2,3,4,5的五个茶杯和编号为1,2,3,4,5的五个杯盖,将五个杯盖分别盖在五个茶杯上,至少有两个杯盖的编号与所盖茶杯的编号相同,这样的盖法有 ( )A.36种B.32种C.31种D.30种二、填空题(每小题5分,共25分)11.某学校高中生共有1200人,其中高一年级300人,高二年级400人,高三年级500人,现采用分层抽样的方法从中抽取一个容量为60的样本,则高一年级、高二年级、高三年级分别应抽取人数为 、 、 ; 12.函数33x x y -=的单调递增区间为;13.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下的两个数字都是奇数的概率是 (结果用数值表示); 14.=---→)4421(lim 22x x x ;15.若1010992210102)1()1()1()1(+++++++++=+x a x a x a x a a x x ,则=9a . 三、解答题(共75分,应写出必要的推理或计算的过程) 16.(12分)7名同学站成一排,下列情况各有多少种不同排法? (1)甲、乙必须站在一起; (2)甲不在排头、乙不在排尾;(3)甲、乙之间必须间隔一人(恰有一人).17.( 12分)计算:3111lim xxx --→ .18.(12’)某同学参加科普知识竞赛,需回答三个问题,竞赛规则规定:每题回答正确得100分,回答不正确得100-分。
假设这位同学每题回答正确的概率均为54,且各题回答正确与否相互之间没有影响.(1)求这名同学回答这三个问题的总得分ξ的概率分布列和数学期望; (2)求这名同学总分不为负分(即0≥ξ)的概率。
19. (12分)已知n n n f +=2)((+∈N n ),n n g 2)(=(+∈N n ),试判断并证明)(n f 与)(n g 的大小关系.20.(13分)如图,直三棱柱ABC C B A -111中,21===CA CB C C ,CB AC ⊥,D 、E 分别为棱C C 1、11C B 的中点.(1)求点B 到平面CA C A 11的距离; (2)求二面角A D A B --1的大小;(3)在线段AC 上是否存在一点F ,使得⊥EF 平面BD A 1?若存在,确定其位置并证明结论;若不存在,说明理由.21.(14分)已知函数x x x f ln 21)(2+=. (1) 求函数)(x f 在],1[e 上的最大、最小值;(2) 求证:在区间),1[∞+上,函数)(x f 的图象在函数332)(x x g =的图象下方; (3) 求证:22)()]([-≥'-'n n n x f x f (Nn ∈※).高二数学参考答案一、选择题答案(每小题5分,共50分) 4 11. 15、20、25 12. ]1,1[-(或)1,1(-) 13.10314.41 15.10- .三、解答题(共75分,应写出必要的推理或计算的过程)16.(12分) 略解:(1)甲、乙必须站在一起的排法有:14402266=A A (种) (2)甲不在排头、乙不在排尾的排法有:37202556677=+-A A A (种) (3)甲、乙之间必须间隔一人的排法有:1200225515=A A C (种)17.(12分) 略解:令t x =6,则23)1()1((lim )1)(1()1)(1(lim 11lim 11lim 212123131=+++=+-++-=--=--→→→→t t t t t t t t t t xxt t t x18.(12分) 略解:(1)1251)51()300(3==-=ξP ,12512)51(54)100(213=∙∙=-=C P ξ 481)4()100(223=∙∙==C P ξ,64)4()300(3===ξP ,分布列如下:(0.008) 由此可得180125300125100125)100(125)300(=⨯+⨯+⨯-+⨯-=ξE (2)由上知,所求概率125112)300()100()0(==+==≥=ξξξP P P P (0.896)19.(12分)解:易知2)1(=f ,6)2(=f ,12)3(=f ,20)4(=f ,30)5(=f ;2)1(=g ,4)2(=g ,8)3(=g ,16)4(=g ,32)5(=g ,依此猜想:)1()1(g f =,当2=n 、3、4时)()(n g n f >,当5≥n 时,)()(n g n f <。
当4≤n 时已验证,下面用数学归纳法来证明:当5≥n 时,)()(n g n f <(1) 当5=n 时,由上知30)5(=f ,32)5(=g ,)()(n g n f <成立; (2) 假设k n =(5≥k )时命题成立,即)()(k g k f <,则:k k k f k g k g 22)(2)(2)1(2+=>=+,23)1()1()1(22++=+++=+k k k k k f ∴ )1)(2(2)23()22()1()1(222+-=--=++-+>+-+k k k k k k k k k f k g ∵ 5≥k ,∴ 0)1)(2(>+-k k ,∴ )1()1(+>+k f k g 这就是说,当1+=k n 时,命题也成立。
综上知,当5≥n 时,)()(n g n f <。
(另外,也可以用n )11(+的展开式,利用放缩来证)20.(13分) 解:依题易知,CA 、CB 、1CC 两两垂直,从而可以C 为原点,CA 、CB 、1CC 所在直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图,则: )0,0,2(A ,)0,2,0(B ,)0,0,0(C )2,0,2(1A ,)2,2,0(1B ,)2,0,0(1C ,)1,0,0(D ,)2,1,1(E(Ⅰ)易知CA BC ⊥且1CC BC ⊥,从而⊥BC 平面CA C A 11,双2=BC ,所以点B 到平面CA C A 11的距离为2;(Ⅱ)设),,(1z y x n 为平面D BA 1的法向量, 则B A n 11⊥,且D A n 11⊥, 所以011=∙B A n 且011=∙D A n , 又)2,2,2(1--=B A ,)1,0,2(1--=D A 所以⎩⎨⎧=-+-=-+-0020222z y x z y x 不妨取1=x 可得)2,1,1(1--=n 为平面D BA 1的法向量又)0,2,0(2==CB n 为平面D AA 1的法向量, 设二面角A D A B --1为θ,则由1n 、2n 的方向知:66,cos cos 212121=>=<-=n n θ,又),0(πθ∈ 故二面角A D A B --1为66arccos. (Ⅲ)设在线段AC 上存在点)0,0,(x F ,使得⊥EF 平面BD A 1,则1//n EF ,又)2,1,(--=x EF ,)2,1,1(1--=n ,故1=x ,从而线段AC 上存在点)0,0,1(F (即为AC 中点),使得⊥EF 平面BD A 1.21.(14分)解:(1)易知)(x f y =在],1[e 单调递增, ∴ 121)()(2max +==e e f x f ,21)1()(min ==f x f .(2) 设3232ln 21)(x x x x F -+=,则xx x x x x x x F )21)(1(21)(22++-=-+='∵ 1≥x ,∴ 0)(≤'x F ,故)(x F y =在),1[∞+单调递减,又061)1(<-=F ,∴ 当),1[∞+∈x 时,0)(<x F 恒成立, 即3232ln 21x x x <+恒成立,故函数)(x f 的图象在函数332)(x x g =的图象下方.(3) 当1=n 时,不等式显然成立; 当2≥n 时,有 )1()1()()]([n n n nnxx x x x f x f +-+='-'(另外,也可以用数学归纳法来证明)22)222(21)]1()1()1([2111111212214422212142211122211-=+++≥++++++=∙+++=∙++∙+∙=----------------n n n n n n n n n n n n n n n n n n n n n n n n n n n n n C C C x x C x x C x x C xC x C x C xx C x x C x x C。