上海高二数学期末考试试题
上海高二高中数学期末考试带答案解析

上海高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.________________ .2.已知复数满足是虚数单位),则_____________.3.已知是纯虚数,是实数,则4.已知,求=5.复数的值是.6.若关于x的一实系数元二次方程有一个根为,则______7.设复数,则=_____________.8.若且的最小值是_____________9.在复平面上,已知直线上的点所对应的复数满足,则直线的倾斜角为(结果用反三角函数值表示)|为直径的圆的面积为______.10.,那么以|z111.用一个平面去截正方体。
其截面是一个多边形,则这个多边形的边数最多是条12.已知空间四边形,、分别是、中点,,,,则与所成的角的大小为_________二、选择题1.若复数z=a+bi(a、b∈R),则下列正确的是()A.>B.=C.<D.=z22.在复平面内,若复数对应的向量为,复数对应的向量为,则向量对应的复数是()A.1B.C.D.3.如图,正方体中,若分别为棱的中点,、分别为四边形、的中心,则下列各组中的四个点不在同一个平面上的是()(A)(B)(C)(D)4.若为异面直线,直线c∥a,则c与b的位置关系是()A.相交B.异面C.平行D.异面或相交三、解答题1.(本小题满分10分)已知复数z 1满足(1+i )z 1=-1+5i , z 2=a -2-i , 其中i 为虚数单位,a ∈R , 若<|z 1|,求a 的取值范围.2.(本小题满分12分) 如图,长方体中,AD=2,AB=AD=4,,点E 是AB 的中点,点F 是的中点。
(1)求证:;(2)求异面直线与所成的角的大小;(本题满分12分) 已知,且以下命题都为真命题: 命题 实系数一元二次方程的两根都是虚数; 命题存在复数同时满足且.求实数的取值范围.3.(本小题满分14分)已知实系数一元二次方程x 2+px +q =0的两根分别为x 1,x 2。
上海高二高中数学期末考试带答案解析

上海高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.已知全集,集合,则2.若复数满足(是虚数单位),则3.已知直线的倾斜角大小是,则4.若关于的二元一次方程组有唯一一组解,则实数的取值范围是5.已知函数和函数的图像关于直线对称,则函数的解析式为6.已知双曲线的方程为,则此双曲线的焦点到渐近线的距离为7.函数的最小正周期8.若展开式中含项的系数等于含项系数的8倍,则正整数9.执行如图所示的程序框图,若输入的值是,则输出的值是10.已知圆锥底面半径与球的半径都是,如果圆锥的体积恰好也与球的体积相等,那么这个圆锥的母线长为.11.某中学在高一年级开设了门选修课,每名学生必须参加这门选修课中的一门,对于该年级的甲、乙、丙名学生,这名学生选择的选修课互不相同的概率是 (结果用最简分数表示).12.各项为正数的无穷等比数列的前项和为,若,则其公比的取值范围是.13.已知两个不相等的平面向量,()满足||=2,且与-的夹角为120°,则||的最大值是14.给出30行30列的数表:,其特点是每行每列都构成等差数列,记数表主对角线上的数按顺序构成数列,存在正整数使成等差数列,试写出一组的值二、选择题1.已知,,则的值等于()A..B..C..D..2.已知圆的极坐标方程为,则“”是“圆与极轴所在直线相切”的()A.充分不必要条件.B.必要不充分条件.C.充要条件.D.既不充分又不必要条件.3.若直线经过点,则()A..B..C..D..4.已知集合,若对于任意,存在,使得成立,则称集合是“集合”. 给出下列4个集合:①②③④其中所有“集合”的序号是()A.②③.B.③④.C.①②④.D.①③④.三、解答题1.在棱长为的正方体中,分别为的中点.(1)求直线与平面所成角的大小;(2)求二面角的大小.2.如图所示,扇形,圆心角的大小等于,半径为,在半径上有一动点,过点作平行于的直线交弧于点.(1)若是半径的中点,求线段的大小;(2)设,求△面积的最大值及此时的值.3.已知函数.(1)若是偶函数,在定义域上恒成立,求实数的取值范围;(2)当时,令,问是否存在实数,使在上是减函数,在上是增函数?如果存在,求出的值;如果不存在,请说明理由.4.已知点,、、是平面直角坐标系上的三点,且、、成等差数列,公差为,.(1)若坐标为,,点在直线上时,求点的坐标;(2)已知圆的方程是,过点的直线交圆于两点,是圆上另外一点,求实数的取值范围;(3)若、、都在抛物线上,点的横坐标为,求证:线段的垂直平分线与轴的交点为一定点,并求该定点的坐标.5.已知数列的前项和为,且满足 (),,设,.(1)求证:数列是等比数列;(2)若≥,,求实数的最小值;(3)当时,给出一个新数列,其中,设这个新数列的前项和为,若可以写成(且)的形式,则称为“指数型和”.问中的项是否存在“指数型和”,若存在,求出所有“指数型和”;若不存在,请说明理由.上海高二高中数学期末考试答案及解析一、填空题1.已知全集,集合,则【答案】【解析】根据题意,由于全集,集合={x|x>3或x<-1}因此结合数轴法可知,。
上海市高二第一学期期末考试数学试卷含答案(共5套)

上海市高二第一学期期末考试数学试卷(满分100分,90分钟完成,允许使用计算器,答案一律写在答题纸上)一、填空题(每小题3分,满分30分,请将正确答案直接填写在相应空格上)1、计算=-+ii11 。
(i 为虚数单位) 2、已知向量(3,4)a =与(2,0)b =,则a 在b 方向上的投影为_______。
3、过点(1,5)A -,且以(2,1)n =-为法向量的直线的点法向式方程为_______。
4、直线y x m =+被圆221x y +=,则m =_______________。
5、已知直线032=++a y ax 和07)1(3=-+-+a y a x 平行,则a =___________。
6、椭圆221259x y +=上一点P 到两焦点的距离之积为m ,则m 最大时点P 的坐标为 。
7、以抛物线x y 162=的顶点为中心,焦点为右焦点,且分别以()1,3-=p、()1,3=q为两条渐近线的法向量的双曲线方程为_______________。
8、如图1,设线段EF 的长度为1,端点F E 、在边长为2的正方形ABCD 的四边上滑动.当F E 、沿着正方形的四边滑动一周时,EF 的中点M 所形成的轨迹为G ,若G 围成的面积为S ,则=S 。
9、下列四个命题:①直线l 的斜率[1,1]k ?,则直线l 的倾斜角[,]44p pa ?;②直线l :1y kx =+与以(1,5)A -、(4,2)B -两点为端点的线段相交,则4k ?或34k ?;③如果实数x y 、满足方程22(2)3x y -+=,那么yx的最大值为3;④直线1y kx =+与椭圆2215x y m +=恒有公共点,则m 的取值范围是1m ³.其中正确命题的序号是________。
10、如图2,设椭圆171622=+y x 的左右焦点分别为21F F 、,过焦点1F 的直线交椭圆于B A 、两点,若2ABF ∆的内切圆的面积为π,设B A 、两点的坐标分别为),(),(2211y x B y x A 、,则||21y y -值为 。
上海市高二上学期数学期末考试试卷含答案

第一学期高二数学期末考试试卷注意事项:1.考试时间:90分钟试卷满分:100分;2.本试卷由填空题、选择题和解答题三大题组成,共19题;3.测试范围:必修三《第10章空间直线与平面》、《第11章简单几何体》、《第12 章概率初步》、第13章《统计》+选择性必修一《第3 章空间向量及其应用》、《第1章平面直角坐标系中的直线》、第2章《圆锥曲线》 2.1 圆;一、填空题(本大题共有10题,满分34分;其中1-6题每题3分,7-10题每题4分)1、某医院对某学校高三年级的600名学生进行身体健康调查,采用男女分层抽样法抽取一个容量为50的样本,己知女生比男生少抽了10人,则该年级的女生人数是_________.2、如图所示,下列空间图形中,①图(1)是圆柱;②图(2)是圆锥;③图(3)是圆台.上述说法正确的个数为________.3、三条两两相交的直线最多可确定的平面的个数为________.4、如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC.若所有的棱长都是2,则异面直线AC1与BC所成的角的正弦值为5、如图,在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别为AA1,C1D1的中点,过D,M,N三点的平面与直线A1B1交于点P,则线段PB1的长为________.6、如图所示的正方体的棱长为4,E ,F 分别为A 1D 1,AA 1的中点,则过C 1,E ,F 的截面的周长为________.7、若三条直线OA ,OB ,OC 两两垂直,则直线OA 垂直于________.(填序号)①平面OAB ;②平面OAC ;③平面OBC ;④平面ABC .8、经过点A (1,1)且在x 轴上的截距等于在y 轴上的截距的直线方程是__________.9、已知点P 是直线x +y +6=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 为切点,C 为圆心,则当四边形P ACB 的面积最小时,点P 的坐标为________. 10、已知一组数据12,,,n x x x 的平均数6x =,方差221s =,去掉一个数据之后,剩余数据的平均数没有变,方差变为24,则这组数据的个数n =__________.二、选择题(本大题共有4题,满分16分;其中每题4分)11、下列命题中,正确的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .用一个平面去截棱锥,底面与截面之间的部分组成的空间图形叫棱台C .圆台的所有平行于底面的截面都是圆D .棱柱的一条侧棱就是棱柱的高12、如图,在三棱柱ABC -A 1B 1C 1中,AM =2MA 1,BN =2NB 1,过MN 作一平面交底面三角形ABC 的边BC ,AC 于点E ,F ,则( )A .MF ∥NEB .四边形MNEF 为梯形C .四边形MNEF 为平行四边形D .A 1B 1∥NE13、若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且()2P A a =-,()45P B a =-,则实数a 的取值范围是( )A .(1,2)B .53,42⎛⎫ ⎪⎝⎭C .54,43⎛⎫ ⎪⎝⎭D .54,43⎛⎤ ⎥⎝⎦14、设实数x ,y 满足(x -2)2+y 2=3,那么y x 的最大值是( ) A .12 B .33 C .32D . 3三、解答题(本大题共有5题,满分50分)15、(本题8分)如图,AB 是圆O 的直径,点C 是弧AB 上的一点,D ,E 分别是VB ,VC 的中点,求异面直线DE 与AC 所成的角的大小为________.16、(本题8分)如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =AB ,D 为PB 的中点,则下列结论正确的序号是;并说明理由;A .BC ⊥平面P ABB .AD ⊥PCC .AD ⊥平面PBCD .PB ⊥平面ADC17、(本题10分)从2名男生(记为1A,2A)和2名女生(记为1B,2B)这4人中一次性选取2名学生参加象棋比赛(每人被选到的可能性相同).(1)请写出该试验的样本空间 ;(2)设事件M为“选到1名男生和1名女生”,求事件M发生的概率;(3)若2名男生1A,2A所处年级分别为高一、高二,2名女生1B,2B所处年级分别为高一、高二,设事件N为“选出的2人来自不同年级且至少有1名女生”,求事件N发生的概率.18、(本题12分)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间[40,50),[50,60),,[80,90),[90,100].(1)求频率分布直方图中a的值:(2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)19、(本题12分)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若平面AB1E与平面A1B1E夹角的大小为30°,求AB的长.参考答案注意事项:1.考试时间:90分钟试卷满分:100分;2.本试卷由填空题、选择题和解答题三大题组成,共19题;3.测试范围:必修三《第10章空间直线与平面》、《第11章简单几何体》、《第12 章概率初步》、第13章《统计》+选择性必修一《第3 章空间向量及其应用》、《第1章平面直角坐标系中的直线》、第2章《圆锥曲线》 2.1 圆;二、填空题(本大题共有10题,满分34分;其中1-6题每题3分,7-10题每题4分)1、某医院对某学校高三年级的600名学生进行身体健康调查,采用男女分层抽样法抽取一个容量为50的样本,己知女生比男生少抽了10人,则该年级的女生人数是_________.【答案】240【详解】抽取比例为50160012=,设该年级的女生人数是x,则男生人数为600x-,因为女生比男生少抽了10人,所以11(600)101212x x=--,解得240x=,故答案为:240.2、如图所示,下列空间图形中,①图(1)是圆柱;②图(2)是圆锥;③图(3)是圆台.上述说法正确的个数为________.【答案】0;【解析】图(1)不是圆柱,因为从其轴截面可以看出,该空间图形不是由矩形绕其一边所在直线旋转一周得到的;图(2)不是圆锥,因为该空间图形不是由直角三角形绕其直角边所在直线旋转一周得到的;图(3)不是圆台,因为该空间图形的上、下底面所在的平面不平行,不是由平行于圆锥底面的平面截得的.3、三条两两相交的直线最多可确定的平面的个数为________.【答案】3【解析】在空间中,两两相交的三条直线最多可以确定3个平面,如图所示:PA ,PB ,PC 相交于一点P ,且PA ,PB ,PC 不共面,则PA ,PB 确定一个平面PAB ,PB ,PC 确定一个平面PBC ,PA ,PC 确定一个平面PAC .4、如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC .若所有的棱长都是2,则异面直线AC 1与BC 所成的角的正弦值为【答案】144; 【解析】如图,连接AB 1,∵BC ∥B 1C 1,∴∠AC 1B 1就是异面直线AC 1与BC 所成的角.在△AC 1B 1中,AC 1=AB 1=22,B 1C 1=2,∴cos ∠AC 1B 1=122=24.∴sin ∠AC 1B 1=144. ∴异面直线AC 1与BC 所成的角的正弦值为144. 5、如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AA 1,C 1D 1的中点,过D ,M ,N 三点的平面与直线A 1B 1交于点P ,则线段PB 1的长为________.【答案】34a 【解析】延长DM 交D 1A 1的延长线于点G ,连接GN 交A 1B 1于点P .由M ,N 分别为AA 1,C 1D 1的中点知,P 在A 1B 1的14(靠近A 1)处,故线段PB 1的长为34a .6、如图所示的正方体的棱长为4,E ,F 分别为A 1D 1,AA 1的中点,则过C 1,E ,F 的截面的周长为________.【答案】45+62;【解析】 由EF ∥平面BCC 1B 1可知,平面BCC 1B 1与平面EFC 1的交线为BC 1,平面EFC 1与平面ABB 1A 1的交线为BF ,所以截面周长为EF +FB +BC 1+C 1E =45+6 2.7、若三条直线OA ,OB ,OC 两两垂直,则直线OA 垂直于________.(填序号)①平面OAB ;②平面OAC ;③平面OBC ;④平面ABC .【答案】③;【解析】由线面垂直的判定定理知OA 垂直于平面OBC ;8、经过点A (1,1)且在x 轴上的截距等于在y 轴上的截距的直线方程是__________.【答案】x -y =0或x +y -2=0【解析】若直线在x 轴上的截距为0,可设直线方程为y =kx ,将A (1,1)代入,得k =1,∴直线方程为y =x .若直线在x 轴上的截距不为0,可设直线方程为x +y =a ,将A (1,1)代入,得a =2,∴直线方程为x +y =2.9、已知点P 是直线x +y +6=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 为切点,C 为圆心,则当四边形P ACB 的面积最小时,点P 的坐标为________.【答案】(-3,-3)【解析】如图所示,四边形PACB 的面积S =2S △PAC =|PA |·|AC |=|PA |=|PC |2-1,要使S 最小,需|PC |最小,当CP 与直线x +y +6=0垂直时,|PC |取得最小值,此时直线PC 的方程为y -1=x -1,即x -y =0,与方程x +y +6=0联立得P (-3,-3).10、已知一组数据12,,,n x x x 的平均数6x =,方差221s =,去掉一个数据之后,剩余数据的平均数没有变,方差变为24,则这组数据的个数n =__________.【答案】8【详解】因为去掉一个数据之后,数据的平均数没有变,所以去掉的数据为6,去掉6后方差变为24,故得到()24121-=n n ,解得:8n =故答案为:8;二、选择题(本大题共有4题,满分16分;其中每题4分)11、下列命题中,正确的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .用一个平面去截棱锥,底面与截面之间的部分组成的空间图形叫棱台C .圆台的所有平行于底面的截面都是圆D .棱柱的一条侧棱就是棱柱的高【答案】A【解析】用一个平行于底面的平面截棱锥,底面与截面之间的部分组成的空间图形叫棱台,B 错误.圆台的所有平行于底面的截面都是圆面,C 错误.立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,D 错误.12、如图,在三棱柱ABC -A 1B 1C 1中,AM =2MA 1,BN =2NB 1,过MN 作一平面交底面三角形ABC 的边BC ,AC 于点E ,F ,则( )A .MF ∥NEB .四边形MNEF 为梯形C .四边形MNEF 为平行四边形D .A 1B 1∥NE【答案】B【解析】∵在▱AA 1B 1B 中,AM =2MA 1,BN =2NB 1,∴AM ∥BN ,且AM =BN ,∴四边形ABNM 是平行四边形,∴MN ∥AB .又MN ⊄平面ABC ,AB ⊂平面ABC ,∴MN ∥平面ABC .又MN ⊂平面MNEF ,平面MNEF ∩平面ABC =EF ,∴MN ∥EF ,∴EF ∥AB ,显然在△ABC 中,EF ≠AB ,∴EF ≠MN ,∴四边形MNEF 为梯形.故选B. 13、若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且()2P A a =-,()45P B a =-,则实数a 的取值范围是( )A .(1,2)B .53,42⎛⎫ ⎪⎝⎭C .54,43⎛⎫ ⎪⎝⎭D .54,43⎛⎤ ⎥⎝⎦【答案】D【详解】随机事件A 、B 互斥,A 、B 发生的概率均不等于0,且()2P A a =-,()45P B a =-, ∴0()10()1()()1P A P B P A P B <<⎧⎪<<⎨⎪+⎩,即021*******a a a <-<⎧⎪<-<⎨⎪-⎩,解得5443a <,即54,43a ⎛⎤∈ ⎥⎝⎦. 故选:D .14、设实数x ,y 满足(x -2)2+y 2=3,那么y x的最大值是( ) A .12 B .33 C .32D . 3【答案】D【解析】令yx=k,则y=kx,∴kx-y=0,问题转化为直线kx-y=0与圆有关系,则|2k-0|1+k2≤3,∴k2≤3,∴-3≤k≤3,故yx的最大值为3,故选D.三、解答题(本大题共有5题,满分50分)15、(本题8分)如图,AB是圆O的直径,点C是弧AB上的一点,D,E分别是VB,VC的中点,求异面直线DE与AC所成的角的大小为________.【答案】90°【解析】∵在△VBC中,E,D分别为VC,VB的中点,∴DE∥BC,∴异面直线DE与AC所成的角即为BC与AC所成的角,即为∠ACB=90°.16、(本题8分)如图,在三棱锥P-ABC中,P A⊥平面ABC,AB⊥BC,P A=AB,D为PB的中点,则下列结论正确的序号是;并说明理由;A.BC⊥平面P ABB.AD⊥PCC.AD⊥平面PBCD.PB⊥平面ADC【答案】ABC【解析】∵PA⊥平面ABC,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,故A正确;由BC⊥平面PAB,得BC⊥AD,又PA=AB,D是PB的中点,∴AD⊥PB,又PB∩BC=B,PB,BC⊂平面PBC,∴AD⊥平面PBC,故C正确;∴AD ⊥PC ,故B 正确. 17、(本题10分)从2名男生(记为1A ,2A )和2名女生(记为1B ,2B )这4人中一次性选取2名学生参加象棋比赛(每人被选到的可能性相同).(1)请写出该试验的样本空间Ω;(2)设事件M 为“选到1名男生和1名女生”,求事件M 发生的概率;(3)若2名男生1A ,2A 所处年级分别为高一、高二,2名女生1B ,2B 所处年级分别为高一、高二,设事件N 为“选出的2人来自不同年级且至少有1名女生”,求事件N 发生的概率.【答案】(1){}121112212212(,),(,),(,),(,),(,),(,)A A A B A B A B A B B B ;(2)23;(3)12【详解】(1)解:由题知,样本空间Ω为{}121112212212(,),(,),(,),(,),(,),(,)A A A B A B A B A B B B ;(2)由(1)知,所有的可能结果数为6个,其中满足事件M 得结果数有4个;故()4263M P ==; (3)由(1)知,所有的可能结果数为6个,其中满足事件N 得结果数有3个;故()3162N P ==.18、(本题12分)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间[40,50),[50,60),,[80,90),[90,100].(1)求频率分布直方图中a 的值: (2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)【答案】(1)0.006a =;(2)众数75;中位数76.4(1)由(0.0040.0180.02220.028)101a +++⨯+⨯=,得0.006a =(2)50名学生竞赛成绩的众数为7080752+= 设中位数为m ,则0.040.060.22(70)0.0280.5m +++-⨯=,解得76.4m ≈ 所以这50名学生竞赛成绩的中位数为76.419、(本题12分)如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若平面AB 1E 与平面A 1B 1E 夹角的大小为30°,求AB 的长.【解析】(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1). 故AD 1→=(0,1,1),B 1E —→=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0.∵AD 1→·B 1E —→=-a 2·0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0)(0≤z 0≤1),使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0).设平面B 1AE 的法向量为n =(x ,y ,z ).则n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0. 取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,即n ·DP →=0,a 2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,使得DP ∥平面B 1AE ,此时AP =12. (3)连接A 1D ,B 1C ,由ABCD -A 1B 1C 1D 1为长方体及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C ,又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,B 1C ,B 1E ⊂平面DCB 1A 1, ∴AD 1⊥平面DCB 1A 1,∴AD 1→是平面DCB 1A 1即平面A 1B 1E 的一个法向量,且AD 1→=(0,1,1).设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n |·|AD 1→|=-a 2-a 2×1+a 24+a 2. ∵平面AB 1E 与平面A 1B 1E 夹角的大小为30°,∴|cos θ|=cos 30°,即3a22×1+5a 24=32. 解得a =2,即AB 的长为2.。
上海高二高中数学期末考试带答案解析

上海高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.过点,且垂直于OA的直线方程为_______________。
2.直线l的一个法向量(),则直线l倾角的取值范围是_______。
3.已知直线:与:平行,则k的值是____________。
4.直线l的一个方向向量,则l与的夹角大小为__________。
(用反三角函数表示)5.已知圆C与直线及都相切,圆心在直线上,则圆C的方程为________________________。
6.等轴双曲线C与椭圆有公共的焦点,则双曲线C的方程为____________。
7.有一抛物线形拱桥,中午12点时,拱顶离水面2米,桥下的水面宽4米;下午2点,水位下降了1米,桥下的水面宽_________米。
8.直线:绕原点逆时针旋转的直线,则与的交点坐标为_______。
9.已知方程表示圆,则___________。
10.已知过抛物线C:()焦点F的直线l和y轴正半轴交于点A,并且l与C在第一象限内的交点M 恰好为A、F的中点,则直线的斜率_____________。
11.已知、是椭圆C:()的两个焦点,P为椭圆C上的一点,且。
若的面积为9,则_________。
12.已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为切点,那么的最小值为_____________。
二、选择题1.已知圆:,圆与圆关于直线对称,则圆的方程为 ( )A.B.C.D.2.若直线与曲线有公共点,则b的取值范围是 ( )A.B.C.D.3.给出下列3个命题:①在平面内,若动点M到、两点的距离之和等于2,则动点M的轨迹是椭圆;②在平面内,给出点、,若动点P满足,则动点P的轨迹是双曲线;③在平面内,若动点Q到点和到直线的距离相等,则动点Q的轨迹是抛物线。
其中正确的命题有( )A.0个B.1个C.2个D.3个4.已知直线l:y=k(x+2)(k>0)与抛物线C:相交于A、B两点,F为C的焦点,若,则( )A.B.C.D.三、解答题1.已知直线l:与x轴交于点A;以O为圆心,过A的圆记为圆O。
上海高二高中数学期末考试带答案解析

上海高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.计算矩阵的乘积______________2.计算行列式=____________3.直线的倾斜角为,则的值是___________4.=___________5.已知直线与圆相切,则的值为___________6.以抛物线的焦点为圆心,且过坐标原点的圆的方程为___________7.已知方程表示椭圆,则的取值范围为___________8.若向量,,且,那么的值为___________9.若直线经过原点,且与直线的夹角为,则直线方程为___________10.若三条直线,和只有两个不同的交点,则实数的值为__________11.执行右边的程序框图,则输出的结果是___________12.若点和点分别为双曲线的中心和左焦点,点为双曲线右支上的任意一点,则的取值范围为__________13.已知,是圆:(为圆心)上一动点,线段的垂直平分线交于,则动点的轨迹方程为___________14.双曲线的左、右焦点分别为,,点在其右支上,且满足,,则横坐标的值是___________二、选择题1.与双曲线有共同的渐近线,且过点(2,2)的双曲线标准方程为()A.B.C.D.2.在等比数列中,,公比.若,则=( )A.9B.10C.11D.123.已知抛物线的焦点为,点,在抛物线上,且,则有( )A.B.C.D.4.已知是定义域为正整数集的函数,对于定义域内任意的,若成立,则成立,下列命题成立的是( )A.若成立,则对于任意,均有成立B.若成立,则对于任意的,均有成立C.若成立,则对于任意的,均有成立D.若成立,则对于任意的,均有成立三、解答题1.(12分)过椭圆的右焦点的直线L与圆相切,并且直线L过抛物线的焦点。
(1)求、的坐标;(2)求直线L的方程。
2.(12分)已知一个圆与轴相切,在直线上截得弦长为2,且圆心在直线上,求此圆的方程.3.(14分)已知,直线,为平面上的动点,过点作的垂线,垂足为点,且.(1)求动点的轨迹的方程;(2)过点的直线交轨迹于两点,点O是直角坐标系的原点,求面积的最小值,并求出当的面积取到最小值时直线的方程。
上海高二高中数学期末考试带答案解析

上海高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.过点、的直线的斜率为______________.2.若是虚数单位,复数满足,则的虚部为_________.3.正四面体的所有棱长都为2,则它的体积为________.4.以为圆心且过原点的圆的方程为_____________.5.某几何体的三视图如图所示,则该几何体的体积为__________.6.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.7.正方体中,二面角的大小为__________.8.双曲线的顶点到其渐近线的距离等于_________.9.已知球的半径为1,、是球面上两点,线段的长度为,则、两点的球面距离为 ________.10.在长方体中,已知,为的中点,则直线与平面的距离是___________.11.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有人的选派方法种数是___________(用数字作答).12.已知椭圆的右焦点为,过点的直线交椭圆于两点.若的中点坐标为,则的方程为_________________.13.设实数满足则的最大值为____________.14.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计)二、选择题1.在正方体中任取两条棱,则这两条棱为异面直线的概率为()A.B.C.D.2.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588B.480C.450D.1203..()A.B.C.1D.4.若直线与曲线有且仅有三个交点,则的取值范围是()A.B.C.D.三、解答题1.求的二项展开式中的第5项的二项式系数和系数.2.求半径为10,且与直线相切于的圆的方程.3.已知椭圆上存在两点、关于直线对称,求的取值范围.4.如图,四棱柱中, 侧棱底面,,,,为棱的中点.(1)证明:;(2)求异面直线与所成角的大小.(结果用反三角函数值表示)5.下图是利用计算机作图软件在直角坐标平面上绘制的一列抛物线和一列直线,在焦点为的抛物线列中,是首项和公比都为的等比数列,过作斜率2的直线与相交于和(在轴的上方,在轴的下方).证明:的斜率是定值;求、、、、所在直线的方程;记的面积为,证明:数列是等比数列,并求所有这些三角形的面积的和.上海高二高中数学期末考试答案及解析一、填空题1.过点、的直线的斜率为______________.【答案】2.【解析】由斜率公式得:.【考点】直线的斜率公式.2.若是虚数单位,复数满足,则的虚部为_________.【答案】.【解析】,,则的虚部为.【考点】复数的除法.3.正四面体的所有棱长都为2,则它的体积为________.【答案】.【解析】试题分析:过作,则是的中心,连接,则,,在中,,所以.【考点】多面体的体积.4.以为圆心且过原点的圆的方程为_____________.【答案】.【解析】由题意,得所求圆的半径,则所求圆的标准方程为.【考点】圆的标准方程.5.某几何体的三视图如图所示,则该几何体的体积为__________.【答案】.【解析】由三视图可知,该几何体是一个侧放的圆柱,底面半径为1,高为5;则该几何体的体积.【考点】三视图、圆柱的体积.6.已知圆锥的高与底面半径相等,则它的侧面积与底面积的比为________.【答案】.【解析】设圆锥的底面半径和高为,则其母线长;所以圆锥的侧面积,底面面积,则它的侧面积与底面积的比为.【考点】圆锥的侧面积公式.7.正方体中,二面角的大小为__________.【答案】.【解析】二面角,即半平面与所成的图形,交线为,易知,所以是二面角的平面角,且,即二面角的大小为.【考点】二面角的平面角.8.双曲线的顶点到其渐近线的距离等于_________.【答案】.【解析】双曲线的顶点为,渐近线方程为,即;则顶点到其渐近线的距离为.【考点】双曲线的性质、点到直线的距离公式.9.已知球的半径为1,、是球面上两点,线段的长度为,则、两点的球面距离为 ________.【答案】.【解析】设球心为O,连接,则是等腰三角形,且,则,所以、两点的球面距离为.【考点】两点的球面距离.10.在长方体中,已知,为的中点,则直线与平面的距离是___________.【答案】9.【解析】过作,因为,所以,则,的长度即为直线与平面的距离;在中,,;在中,,,,即直线与平面的距离为9.【考点】直线到平面的距离.11.从3名骨科、4名脑外科和5名内科医生中选派5人组成一个抗震救灾医疗小组,则骨科、脑外科和内科医生都至少有人的选派方法种数是___________(用数字作答).【答案】590.【解析】骨科、脑外科和内科医生都至少有人的选派方法可分以下几类:3名骨科、1名脑外科和1名内科医生,有种;1名骨科、3名脑外科和1名内科医生,有种;1名骨科、1名脑外科和3名内科医生,有种;2名骨科、2名脑外科和1名内科医生,有种;1名骨科、2名脑外科和2名内科医生,有种;2名骨科、1名脑外科和2名内科医生,有种;由分类加法计数原理得,共有种.【考点】组合.12.已知椭圆的右焦点为,过点的直线交椭圆于两点.若的中点坐标为,则的方程为_________________.【答案】.【解析】设,则,两式相减,得,又因为的中点为,且斜率,所以,又,所以的方程为.【考点】点差法.13.设实数满足则的最大值为____________.【答案】.【解析】:画出不等式组表示的可行域和目标函数基准直线(如图);设,则,当直线经过A点时,最小,即最大;联立,得,此时.【考点】简单的线性规划.14.在棱长为1的正方体盒子里有一只苍蝇,苍蝇为了缓解它的无聊,决定要考察这个盒子的每一个角,它从一个角出发并回到原处,并且每个角恰好经过一次,为了从一个角到另一个角,它或直线飞行,或者直线爬行,苍蝇的路径最长是____________.(苍蝇的体积不计)【答案】.【解析】根据题意,苍蝇需要8次完成,有两种方法:方法一:每次都到达相邻顶点,需经过8条棱,总路径长为8;方法二:每次到达不相邻的顶点,需爬行4次(面对角线),飞行4次(体对角线),总路径长是;又,所以苍蝇的路径最长是.【考点】正方体的面对角线与体对角线.二、选择题1.在正方体中任取两条棱,则这两条棱为异面直线的概率为()A.B.C.D.【答案】B.【解析】从正方体的12条棱中,任取两条棱,有种不同的方法,因为与已知棱成异面直线的有4条,所以共有对异面直线,则这两条棱为异面直线的概率.【考点】古典概型.2.某校从高一年级学生中随机抽取部分学生,将他们的模块测试成绩分为6组:[40,50),[50,60),[60,70), [70,80), [80,90), [90,100)加以统计,得到如图所示的频率分布直方图,已知高一年级共有学生600名,据此估计,该模块测试成绩不少于60分的学生人数为()A.588B.480C.450D.120【答案】B.【解析】由频率分布直方图可知,该模块测试成绩不少于60分的频率为,所以该模块测试成绩不少于60分的学生人数为.【考点】频率分布直方图.3..()A.B.C.1D.【答案】A.【解析】由,可得.【考点】二项式定理.4.若直线与曲线有且仅有三个交点,则的取值范围是()A.B.C.D.【答案】B.【解析】由题意得,曲线C是由椭圆上半部分和双曲线上半部分组成,且双曲线的渐近线方程为,与直线平行;当直线过右顶点时,直线与曲线C有两个交点,此时,;当直线与椭圆相切时,直线与曲线C有两个交点,此时;由图像可知,时,直线与曲线C有三个交点.【考点】直线与圆锥曲线的位置关系.三、解答题1.求的二项展开式中的第5项的二项式系数和系数.【答案】.【解析】解题思路:利用二项式定理的通项公式写出,再求出二项式系数与系数.规律总结:涉及求二项展开式的二项式系数或系数或特定项时,往往先写出二项式的通项公式,再进行求解.注意点:要正确区分二项式系数与系数:二项式系数仅是一个组合数,系数是未知数的系数.试题解析:,所以二项式系数为,系数为.【考点】二项式定理.2.求半径为10,且与直线相切于的圆的方程.【答案】或【解析】解题思路:设出所求圆的圆心坐标,根据题意可得,进而求出圆的标准方程.规律总结:直线圆的位置关系,主要涉及直线与圆相切、相交、相离,在解决直线圆的位置关系时,要注意结合初中平面几何中的直线与圆的知识.试题解析:设圆心为,则由题意得解得或所以所求圆的方程为或【考点】直线与圆的位置关系.3.已知椭圆上存在两点、关于直线对称,求的取值范围.【答案】.【解析】解题思路:利用直线与直线垂直,设出直线的方程,联立直线与椭圆方程,消去,整理成关于的一元二次方程,利用中点公式和判别式求出的范围.规律总结:涉及直线与椭圆的位置关系问题,往往采用“设而不求”的方法进行求解..试题解析:设直线方程为,联立得从而则中点是,则解得由有实数解得即于是则的取值范围是.【考点】1.直线与椭圆的位置关系;2.对称问题.4.如图,四棱柱中, 侧棱底面,,,,为棱的中点.(1)证明:;(2)求异面直线与所成角的大小.(结果用反三角函数值表示)【答案】(1)证明见解析;(2).【解析】解题思路:(1)利用勾股定理证明垂直;(2)作出平行线,构造异面直线所成的角,再利用三角形进行求角.规律总结:对于空间几何体中的垂直、平行关系的判定,要牢牢记住并灵活进行转化,线线关系是关键;涉及空间中的求角问题,往往利用角的定义作出辅助线,转化为平面中的线线角.试题解析:(1)证明:连结.在中,即,所以又因为,所以;解:取的中点为,连结.又因为为中点,则所以即为异面直线与所成角.在中,,所以为直角三角形,.所以异面直线与所成角为【考点】1.直线的垂直关系的证明;2.直线与平面所成的角的求法.5.下图是利用计算机作图软件在直角坐标平面上绘制的一列抛物线和一列直线,在焦点为的抛物线列中,是首项和公比都为的等比数列,过作斜率2的直线与相交于和(在轴的上方,在轴的下方).证明:的斜率是定值;求、、、、所在直线的方程;记的面积为,证明:数列是等比数列,并求所有这些三角形的面积的和.【答案】(1);(2);(3).【解析】解题思路:(1)联立直线与抛物线方程,整理成关于,的方程,进而求出的斜率;(2)利用直线的点斜式方程写出直线方程即可;(3)联立直线与抛物线方程,求弦长与点到直线的距离,进而求三角形的面积.规律总结:锥曲线的问题一般都有这样的特点:第一小题是基本的求方程问题,一般简单的利用定义和性质即可;后面几个小题一般来说综合性较强,用到的内容较多,大多数需要整体把握问题并且一般来说计算量很大,学生遇到这种问题就很棘手,有放弃的想法,所以处理这类问题一定要有耐心..试题解析:(1)由已知得,抛物线焦点,抛物线方程为,直线的方程为于是,抛物线与直线在轴上方的交点的坐标满足则有而直线的斜率为,则解得又点在第一象限,则;直线方程为;由得则,而到直线的距离为,于是的面积,所以数列是以为首项,为公比的等比数列.由于,所以所有三角形面积和为.【考点】1.直线的方程;2.直线与抛物线的位置关系.。
上海高二年级第二学期期末考试(数学)

上海高二年级第二学期期末考试卷数学一、填空题(本大题满分56分)本大题共有14题,考生必须在答题纸相应编码的空格内直接填写结果,每个空格填对得4分,否则一律得零分. 1.的共轭复数是是虚数单位)(2i i -________________ .2.0732)2,1(=-+-y x 且以直线过点的法向量为方向向量的直线方程为______________________ .3.已知四棱锥P ABCD -的底面是边长为4的正方形,侧棱PA ⊥底面ABCD , 且6=PA ,则该四棱锥的体积是___________________ .4.动点P 到点(2,0)F 的距离与它到直线20x +=的距离相等,则点P 的轨迹方程为________________ .5.把地球看作是半径为R 的球,A 、B是东经060圈上两点,它们的纬度差为030,则A 、B两点间的球面距离是____________________.6.若关于x 的实系数一元二次方程02=++q px x 有一个根为)(1是虚数单位i i +,则q 的值为______________________.7.如图,一个直三棱柱形的密闭容器111C B A ABC -盛有水 ,41=AA ,若以B B AA 11液面恰好过AC 、BC 、11C A 、11C B 的中点,则以面ABC 为底面水平放置时液面的高度为________________.8.过椭圆)0(12222>>=+b a b y a x 的左焦点)0,(1c F -作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则a c 的值为_______________________________.9.两个平行于圆锥底面的平面将圆锥的高分成相等的三段,那么圆锥被这两个平面分成三部分,这三部分的体积由小到大的比为_________. 10.直线P y x 上有一点042=--,它与两定点)3()14(,4B,A -的距离之差最大,则P 点坐标为_________.11.四面体A —BCD 的四个顶点都在半径为2的球面上,且AB 、AC 、AD 两两垂直,则的最大值是ACD ABD ABC S S S ∆∆∆++________12.等边圆柱(轴截面是正方形)、球、正方体的体积相等,它们的表面积正方体球圆柱、S、S S由小到大的顺序是__________ .13.命题p :实系数一元二次方程022=++ax x 的两根都是虚数;命题q :存在复数z 同时满足12=+=a z z 且.则p 是q 的_________条件.14.如图从双曲线12222=-b ya x 的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT ,交双曲线右支于P ,若M 为线段FP 的中点,O 为原点,则MTMO -的值为(用a 、b 表示)_________________ .二.选择量(本大题满分20分)本大题共有4题,每题有且只有一个正确答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016上海市高二数学期末试卷 (共150分,时间120分钟)
一、选择题(每小题5 分,共12小题,满分60分) 1.对抛物线24y x =,下列描述正确的是( ) A 开口向上,焦点为(0,1) B 开口向上,焦点为1(0,)16 C 开口向右,焦点为(1,0)
D 开口向右,焦点为1
(0,)16
2.已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ⌝是B ⌝的 ( ) A 充分条件 B 必要条件 C 充要条件 D 既不充分也不必要条件
3.椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为( ) A 25- B 25 C 1- D 1
4.在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =u u u u r r
, b D A =11,
c A A =1,则下列向量中与B 1相等的向量是( )
A ++-2121
B ++2121
C +-2121
D +--2
121 5.空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),
若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1,则点C 的轨迹为( ) A 平面 B 直线 C 圆 D 线段 6.给出下列等式:命题甲:2
2,2,)2
1
(1x x x -成等比数列,命题乙:)3lg(),1lg(,lg ++x x x 成等差数列,则甲是乙的( ) A 充分非必要条件 B 必要非充分条件 C 充要条件
D 既非充分又非必要条件
7.已知=(1,2,3), =(3,0,-1),=⎪⎭
⎫
⎝⎛--53,1,5
1给出下列等式:
①∣++∣=∣--∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(c b a ++=2
22c b a ++
④c b a ⋅⋅)( =)(c b a ⋅⋅
其中正确的个数是 ( ) A 1个 B 2个 C 3个 D 4个 8.设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为( ) A 椭圆 B 双曲线 C 抛物线 D 圆
9.已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的( ) A 充分必要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分又不必要条件
10.椭圆122222=+b
y a x 与双曲线1222
22=-b y a x 有公共焦点,则椭圆的离心率是
A
23 B 315 C 4
6
D 630
11.下列说法中错误..
的个数为 ( ) ①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题
为假,则它本身一定为真;③1
2x y >⎧⎨>⎩是3
2
x y xy +>⎧⎨>⎩=a b
=是等价的;⑤“3x ≠”是“3x ≠”成立的充分条件. A 2 B 3 C 4 D 5
12.已知(1,2,3)OA =u u u r ,(2,1,2)OB =u u u r ,(1,1,2)OP =u u u r
,点
Q 在直线OP
上运动,则当QA QB ⋅u u u r u u u r
取得最小值时,点Q 的坐标为 ( )
A 131(,,)
243
B 123(,,)
234
C 448(,,)333
D 447(,,)333
二、填空题(每小题6分,共5小题,满分30分)
13.已知+-=+82,3168-+-=-(,,两两互相垂直),那么
⋅= 。
14.以(1,1)-为中点的抛物线28y x =的弦所在直线方程为: .
15.已知M 1(2,5,-3),M 2(3,
-2,-5),设在线段M 1M 2的一点M 满足21M M =24MM ,则向量OM 的坐标为 。
16.下列命题
①命题“事件A 与B 互斥”是“事件A 与B 对立”的必要不充分条件. ② “am 2<bm 2”是“a <b ”的充分必要条件. ③ “矩形的两条对角线相等”的否命题为假.
④在ABC ∆中,“︒=∠60B ”是C B A ∠∠∠,,三个角成等差数列的充要条件. ⑤ABC ∆中,若sin cos A B =,则ABC ∆为直角三角形. 判断错误的有___________
17.在直三棱柱111ABC A B C -中,11BC AC ⊥.有下列条件: ①AB AC BC ==; ②AB AC ⊥; ③AB AC =.
其中能成为11BC AB ⊥的充要条件的是________.(填上序号) 三、解答题(共4小题,每小题15分,共60分)
18.(本题满分15分)求ax 2+2x +1=0(a ≠0)至少有一负根的充要条件.
19.(本题满分15分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :
f(x)=-(5-2m)x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.
20.(本题满分15分)直线l :1y kx =+与双曲线C :2231x y -=相交于不同的A 、
B 两点.
(1)求AB 的长度;
(2)是否存在实数k ,使得以线段AB 为直径的圆经过坐标第原点?若存在,求出k 的值;若不存在,写出理由.
21、(本题满分15分)如图,直三棱柱ABC-A 1B 1C 1底面△ABC , 中,CA=CB=1∠BCA=90°,棱AA 1=2M ,N 分别是A 1B 1, A 1A 的中点。
(1)求的长度;
(2)求cos (1BA ,1CB )的值; (3)求证:A 1B ⊥C 1M 。
参考答案
一、选择题(每小题5 分,共12小题,满分60分)
1、B
2、C
3、D
4、A
5、B
6、B
7、D
8、C
9、B 10、B 11、C 12、C
二、填空题(每小题6分,共5小题,满分30分) 13、- 65 14、430x y +-= 15、⎪⎭⎫
⎝
⎛--29,41,411 16、②⑤ 17、①、③
三、解答题(共5小题,满分74分)
18、(本题满分14分)解:若方程有一正根和一负根,等价于121
0x x a
=<⇒ a <0
若方程有两负根,等价于440201
0Δa a a
⎧
⎪=-≥⎪⎪-<⇒⎨⎪⎪>⎪⎩0<a ≤1
综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1
由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根.
故a <0或0<a ≤1是方程ax 2+2x+1=0至少有一负根的充分条件. 所以ax 2+2x+1=0(a ≠0)至少有一负根的充要条件是a <0或0<a ≤1 19、(本题满分15分)解:不等式|x -1|<m -1的解集为R ,须m -1<0
即p 是真 命题,m<1
f(x)=-(5-2m)x 是减函数,须5-2m>1即q 是真命题,m<2 由于p 或q 为真命题,p 且q 为假命题
故p 、q 中一个真,另一个为假命题 因此,1≤m<2
20、(本题满分15分)
联立方程组⎩⎨⎧=-+=1
31
22y x ax y 消去y 得()022322=---ax x a ,因为有两个交点,所以
{()
3840
3222
>-+=∆≠-a a a
,解得2
212212232
,32,3,6a
x x a a x x a a --=-=
+≠<且。
(1)
)36(3
6
524)(1122224212
212
212≠<-++-=
-++=-+=a a a a a x x x x a
x x a AB 且。
(2)由题意得 0)1)(1(,0,121212121=+++=+-=ax ax x x y y x x k k ob oa 即即 整 理得1,12±==a a 符合条件,所以 21、(本题满分15分)如图,
解:以C 为原点,1CC CB CA ,,分别为x 轴,
y 轴,
z 轴建立空间直角坐标系。
(1) 依题意得出
3101010=BN N B ),,,(),,,(;
(2) 依题意得出
),,
(),,,(),,,(),,(21000001020111B C B A 563210211111111===⋅=-=∴CB BA CB BA CB BA ,,),,,(),,,(
∴cos ﹤11CB BA ﹥3010
1
1
111=
⋅CB BA (3) 证明:依题意将,,,),,,(,,,),,,(⎪⎭
⎫
⎝⎛=--=⎪⎭
⎫ ⎝⎛021*******
1212001
111C B A M C M
C B A C A C A 1111110021
21⊥∴⊥∴=++-=⋅∴,。