上海高二数学期末考试试题

合集下载

上海市高二上学期期末数学试题(解析版)

上海市高二上学期期末数学试题(解析版)

一、填空题1.在等差数列中,已知,,则__.{}n a 12a =34a =-4a =【答案】7-【分析】利用通项公式的相关的性质即可求解.【详解】设公差为,则, d 3132a a d -==-所以.437a a d =+=-故答案为:7-2.等比数列中,若,,则_____. (){*}n a n ∈N 2116a =512a =8a =【答案】4【分析】根据等比数列的通项公式可求得答案.【详解】设等比数列的公比为,则,解得,即,所以(){*}n a n ∈N q 35212a a q ⨯==38q =2q =, 3581842a a q =⨯⨯==故答案为:.43.半径为2的球的表面积为________.【答案】16π【分析】代入球的表面积公式:即可求得.2=4S R π表【详解】, 2R = 由球的表面积公式可得,∴2=4S R π表,2=42=16S ππ⨯⨯球表故答案为:16π【点睛】本题考查球的表面积公式;属于基础题.4.从甲、乙、丙、丁4名同学中选2名同学参加志愿者服务,则甲、乙两人都没有被选到的概率为___________(用数字作答).【答案】 16【解析】先计算出从4名同学中选2名同学的情况,再计算出甲、乙两人都没有被选到的情况,即可求出概率.【详解】解:从4名同学中选2名同学共有种, 2443621C ⨯==⨯甲、乙两人都没有被选到有种,1甲、乙两人都没有被选到的概率为. ∴165.已知正项等差数列的前项和为,,则________.{}n a n n S 25760a a a +-=11S =【答案】22【分析】根据等差数列的性质可得,再根据求和公式即可求出.62a =【详解】正项等差数列的前项和为.{}n a n n S 由得,所以,(舍)25760a a a +-=26620a a -=62a =60a = 611111*********a a a S +=⨯=⨯=故答案为:22【点睛】本题考查了等差数列的求和公式和等差数列的性质,考查了运算能力,属于基础题. 6.如图,以长方体的顶点为坐标原点,过的三条棱所在的直线为坐标轴,建1111ABCD A B C D -D D 立空间直角坐标系,若的坐标为,则的坐标为________1DB (4,3,2)1AC【答案】(4,3,2)-【详解】 如图所示,以长方体的顶点为坐标原点,1111ABCD A B C D -D 过的三条棱所在直线为坐标轴,建立空间直角坐标系,D 因为的坐标为,所以,1DB (4,3,2)(4,0,0),(0,3,2)A C 所以.1(4,3,2)AC =-7.一次期中考试,小金同学数学超过90分的概率是0.5,物理超过90分的概率是0.7,两门课都超过90分的概率是0.3,则他的数学和物理至少有一门超过90的概率为___________.【答案】0.9## 910【分析】利用概率加法公式直接求解.【详解】一次期中考试,小金同学数学超过90分的概率是0.5,物理超过90分的概率是0.7,两门课都超过90分的概率是0.3,∴他的数学和物理至少有一门超过90的概率为:.0.50.70.30.9P =+-=故答案为:0.9.8.如图,点为矩形的边的中点,,,将矩形绕直线旋转所M ABCD BC 1AB =2BC =ABCD AD 得到的几何体体积记为,将绕直线旋转所得到的几何体体积记为,则的值为1V MCD △CD 2V 12V V ________【答案】6【分析】分析几何体的结构,计算出、,由此可得出结果.1V 2V 【详解】将矩形绕直线旋转所得到的几何体是以为底面圆的半径,母线长为的圆柱,ABCD AD 12所以,,21122V ππ=⨯⨯=将绕直线旋转所得到的几何体是以为底面圆的半径,高为的圆锥,MCD △CD 11所以,. 2211133V ππ=⨯⨯⨯=因此,. 126V V =故答案为:.69.已知直三棱柱的各棱长都相等,体积等于.若该三棱柱的所有顶点都在球的表面上,()318cm O 则球的体积等于__. O ()3cm 【分析】先由题目条件可得三棱柱的棱长,后可结合图形确定球O 的球心,后可得答案.【详解】如图,三棱柱是直三棱柱,且所有棱长都相等,111ABC A B C -该三棱柱的顶点都在球的表面上,且三棱柱的体积为18,O 设三棱柱的棱长为,则, a 1sin 60182a a a ⨯⨯⨯︒⨯=解得,分别设上下底面中心为、,a =1O 2O 则的中点即为三棱柱外接球的球心,12O O O ,22O A ==所以球的半径,R ===则球的体积等于.O 34π3⨯=10.如图,一质点从原点出发沿向量到达点,再沿轴正方向从点前进AO )1OA = 1A y 1A 到达点,再沿的方向从点前进到达点,再沿轴正方向从点前进112OA 2A 1OA 2A 1212A A 3A y 3A 到达点,,这样无限前进下去,则质点最终到达的点的坐标为__.2312A A 4A L A【答案】 83【分析】根据已知前进规律,再应用无穷等比数列求和公式可得横纵坐标.【详解】等比数列前项和公式当, n ()11,1n n a q S q -=-,110n q q ∞→+-<<≠,1,1n a S q→-根据已知前进规律,探究轴正方向的规律,得, y 1111181121441616314++++++=⨯=-同理也可发现x==故质点最终到达的点的坐标为.A8)3故答案为:8)3二、单选题11.设“事件与事件互斥”是“事件的对立事件是”的()A B A BA.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】B【分析】由对立事件及互斥事件的关系即可得出结论.【详解】由对立事件一定是互斥事件,但互斥事件不一定是对立事件,故“事件与事件互斥”是“事件的对立事件是”的必要而不充分条件.A B A B故选:B.12.如图,正方体中,、分别为棱、上的点,在平面内且与1111A B C D ABCD-E F1A A BC11ADD A平面平行的直线()DEFA.有一条B.有二条C.有无数条D.不存在【答案】C【分析】设平面,且,可证明平面,从而可得正确的选项.l⊂11ADD A//l DE//l DEF【详解】设平面,且,又平面,平面,l⊂11ADD A//l DE DE⊂DEF l⊂DEF平面,显然满足要求的直线l有无数条.//l∴DEF故选:C.【点睛】本题考查线面平行的判断,注意根据所求直线在定平面中去构造与平面平行的直线,本题属于容易题.13.实数a ,b 满足a •b >0且a ≠b ,由a 、b 、按一定顺序构成的数列( ) 2a b +A .可能是等差数列,也可能是等比数列B .可能是等差数列,但不可能是等比数列C .不可能是等差数列,但可能是等比数列D .不可能是等差数列,也不可能是等比数列【答案】B【分析】由实数a ,b 满足a•b >0且a≠b ,分a ,b >0和a ,b <0,两种情况分析根据等差数列的定义和等比数列的定义,讨论a 、b 、2a b +件的a ,b 的值,最后综合讨论结果,可得答案.【详解】(1)若a >b >0则有a > b 2a b +若能构成等差数列,则a+b= 2a b +2a b +解得a=b (舍),即此时无法构成等差数列若能构成等比数列,则a•b=, 2a b +2a b +=解得a=b (舍),即此时无法构成等比数列(2)若b <a <0,2a b a b +>>>,得2a b b a +=+于是b <3a4ab=9a 2-6ab+b 2得b=9a ,或b=a (舍)当b=9a 时这四个数为-3a ,a ,5a ,9a ,成等差数列.于是b=9a <0,满足题意<0,a•>0,不可能相等,故仍无法构成等比数列 2a b +故选B【点睛】本题考查的知识点是等差数列的确定和等比数列的确定,熟练掌握等差数列和等比数列的定义和性质是解答的关键.14.已知正项等比数列满足,若存在两项,,则的{}n a 7652a a a =+m a n a 14a =14m n +最小值为( )A .B .C .D .不存在3243256【答案】A【分析】根据求出公比得到,结合均为正整7652a a a =+2q =14a =6m n +=,m n 数,得到五组值,代入求出最小值.【详解】设正项等比数列的公比为,{}n a 0q >因为,所以,7652a a a =+25552a q a q a =+化为,,解得.220q q --=0q >2q =因为存在两项,,m n a a 14a =14a =化为.6m n +=则,;,;,;,;,.1m =5n =2m =4n =3m =3n =4m =2n =5m =1n =则当,时,, 1m =5n =1449155m n +=+=当,时,, 2m =4n =1413122m n +=+=当,时,, 3m =3n =14145333m n +=+=当,时,, 4m =2n =1419244m n +=+=当,时,, 5m =1n =14121455m n +=+=故最小值为. 32故选:A .15.已知函数是定义在上的严格增函数且为奇函数,数列是等差数列,,则()f x R {}n a 10110a >的值( ) ()()()()()12320202021f a f a f a f a f a ++++ A .恒为正数B .恒为负数C .恒为D .可正可负0【答案】A 【分析】根据函数的性质可判断函数值正负,从而结合等差数列性质推出()f x 12021()()0f a f a +>,进而将结合等差数列的性质即可判断答案.()()()()()12320202021f a f a f a f a f a ++++ 【详解】因为函数是上的奇函数且是严格增函数,()f x R 所以,且当时,; 当时,.(0)0f =0x >()0f x >0x <()0f x <因为数列是等差数列,,故.{}n a 10110a >1011()0f a >再根据,所以,则,12021101120a a a +=>12021a a ->120212021()()()f a f a f a >-=-所以.12021()()0f a f a +>同理可得,,,22020()()0f a f a +>32019()()0f a f a +>L 所以()()()()()12320202021f a f a f a f a f a +++++ ,1202122020101210101011[()()][()()][()()]()0f a f a f a f a f a f a f a =+++++++> 故选:.A三、解答题16.在高中学生军训表演中,学生甲的命中率为0.4,学生乙的命中率为0.3,甲乙两人的击互不影响,求:(1)甲乙同时射中目标的概率;(2)甲乙中至少有一人击中目标的概率.【答案】(1)0.12(2)0.58【分析】(1)设出相应的事件,找出对应事件的概率,利用相互独立事件的概率求解即可,(2)利用对立事件性质求解即可.【详解】(1)设“甲击中目标”为事件,“乙击中目标”为事件,A B 则,且事件,相互独立,()()0.4,0.3P A P B ==A B 所以甲乙同时射中目标的概率为.()()()0.40.30.12P A B P A P B ⋅=⋅=⨯=(2)设“甲乙中至少有一人击中目标”为事件,C 则它的对立事件为“甲乙都没有击中目标”记为:,A B ⋅则. ()()()()()()11110.410.30.58P C P A B P A P B =-⋅=-⋅=---=17.如图,已知平面,,直线与平面所成的角为,且AB ⊥BCD BC BD ⊥AD BCD 30︒.2AB BC ==(1)求三棱锥的体积;A BCD -(2)设为的中点,求异面直线与所成角的大小.(结果用反三角函数值表示)M BD AD CM【答案】(2)【分析】(1)由题目条件可得BD ,后可由三棱锥体积公式得答案; (2)取中点,连接,则,即为异面直线与所成角,后可AB N ,CN MN //MN AD CMN ∠AD CM 由余弦定理得答案.【详解】(1)因为平面,所以即为直线与平面所成的角, AB ⊥BCD ADB ∠AD BCD所以,所以 o 30ADB ∠=o tan 30AB BD ==所以三棱锥的体积 A BCD -1111223632A BCD BCD V S AB BC BD AB -=⋅=⋅⋅=⨯⨯⨯A (2)取中点,连接,则,AB N ,CN MN //MN AD 所以即为异面直线与所成角,CMN ∠AD CM 又平面,平面,则,AB ⊥BCD BD ⊂BCD AB BD ⊥得. 1422,AD MN AD ====CN CM ====则在中,,CMN A 2,MN CN CM ===所以, 222cos 2CM MN CN CMN CM MN +-∠=⋅所以异面直线与所成角的大小为AD CM18.已知数列满足,且.{}n a 11a =123n n a a +=+(1)令,求证:是等比数列;3n n b a =+{}n b (2)求数列的通项公式及数列的前项和.{}n a n a {}n a n 【答案】(1)证明见解析(2),数列的前项和为 123n n a +=-{}n a n 2234n n +--【分析】(1)根据题意结合等比数列定义运算分析;(2)根据题意结合等比数列的通项公式求得,再利用分组求和以及等比数列的求和公123n n a +=-式运算求解.【详解】(1)因为,所以, 123n n a a +=+()1323n n a a ++=+又∵,则,且,3n n b a =+12n n b b +=14b =所以是以首项,公比的等比数列.{}n b 14b =2q =(2)由(1)得,所以,11422n n n b -+=⋅=123n n a +=-所以 ()()()()23123412323...23222...23n n n S n ++=-+-++-=++++-. ()2412312324n n n n +-=-=---19.如图,在圆柱中,是圆柱的母线,是圆柱的底面的直径,是底面圆周上异1OO AB BC O A D 于、的点.B C(1)求证:平面;CD ⊥ABD (2)若,,,求圆柱的侧面积.2BD =4CD =6AC =1OO 【答案】(1)证明见解析(2)【分析】(1)由圆柱的性质可得底面,即可得出,再由直线与平面垂直的判定AB ⊥BCD AB CD ⊥得出结论;(2)由已知解直角三角形求出圆柱的底面半径及母线长,即可求出答案.【详解】(1)证明:底面,且底面,AB ⊥Q BCD CD ⊂BCD ,AB CD ∴⊥又,且,平面,CD BD ⊥ AB BD B = AB 、BD ⊂ABD 平面;CD \^ABD (2)在中,,,Rt BCD ∆2BD =4CD =BC ∴==又在中,,Rt ABC ∆6AC =.4AB ∴==4,∴圆柱的侧面积为.∴1OO 24π=20.若数列满足“对任意正整数,,,都存在正整数,使得”,则称数列{}n a i j i j ≠k k i j a a a =⋅具有“性质”.{}n a P (1)判断各项均等于的常数列是否具有“性质”,并说明理由;a P (2)若公比为的无穷等比数列具有“性质”,求首项的值;2{}n a P 1a (3)若首项的无穷等差数列具有“性质”,求公差的值.12a ={}n a P d【答案】(1)答案见解析;(2),且;(3)或.12ma =1m ≥-m Z ∈1d =2d =【分析】(1)根据性质计算,由解得或,可得结论; P 2i j k a a a a a ===0a =1a =(2)通项公式,然后由求出,由的范围可得的值的形式;112n n a a -=⋅k i j a a a =⋅1a 1m k i j =+--1a (3)由得,由对于任意的正整数,存在整数和,使得,1k n a a a =221d k n =-+n 1k 2k 11k n a a a =⋅,两式相减得.首先确定,得是整数,因此也是整数,22k n a a a =⋅21()n da k k d =-0d ≠21n a k k =-d 然后说明不合题意(取较大的,使得即可得),时只有或2,并说明符0d <m 11m m a a a +>0d >1d =合题意.【详解】解:(1)若数列具有“性质”,由已知对于任意正整数,,,都存在正整数{}n a P i j i j ≠,使得,所以,解得或.k k i j a a a =⋅2a a =0a =1a =所以当或时,常数数列满足“性质”的所有条件,数列具有“性质”;当且0a =1a =P P 0a ≠1a ≠时,数列不具有“性质”.{}n a P (2)对于任意正整数,,,存在正整数,使得,即,i j i j ≠k k i j a a a =⋅111111222k i j a a a ---⋅=⋅⋅⋅,令,则.112k i j a +--=1k i j m Z +--=∈12m a =当且时,则,对任意正整数,,,由得1m ≥-m Z ∈11122n m n n a a -+-=⋅=i j i j ≠k i j a a a =⋅,得,而是正整数,所以存在正整数使111222m k m i m j +-+-+-=⋅1k i j m =++-1i j m ++-1k i j m =++-得成立,数列具有“性质”.k i j a a a =⋅P 若,取,,,不是中的项,不合题意.2m ≤-1,2i j ==12112222m m m a a ++=⨯=21m m +<212m +{}n a 综上所述,且.12m a =1m ≥-m Z ∈(3).对于任意的正整数,存在整数,使得得. 2(1)n a n d =+- n k 1k n a a a =⋅221d k n =-+对于任意的正整数,存在整数和,使得,,两式相减得. n 1k 2k 11k n a a a =⋅22k n a a a =⋅21()n da k k d =-当时,显然不合题意.0d =当时,得,是整数,从而得到公差也是整数.0d ≠21n a k k =-d 若时,此数列是递减的等差数列,取满足正整数,解得,0d <()2102m m a a a <⎧⎪⎨->=⎪⎩m 211m d m ⎧>-+⎪⎪⎨⎪>⎪⎩由,所以不存在正整数使得成立.从而时,不具有“性质”.211m m m a a a a +⋅>>k 1m m k a a a +⋅=0d <P 是正整数,都是正整数,因此或2. 221d k n =-+,k n 1d =当时,数列2,3,4,……,,……,对任意正整数,,,由得1d =1n +i j i j ≠k i j a a a =⋅,得,而是正整数,从而数列具有“性质”.1(1)(1)k i j +=+⋅+k i j i j =++⋅i j i j ++⋅P 当时,数列2,4,6,……,,……,对任意正整数,,,由得2d =2n i j i j ≠k i j a a a =⋅,得,而是正整数,从而数列具有“性质”.222k i j =⋅2k i j =⋅2i j ⋅P 综上所述或.1d =2d =【点睛】关键点点睛:本题考查数列新定义,考查学生的创新意识,推理能力.解题关键是理解新定义并能运用新定义解题.性质,即对任意的,存在,使得,只要根据P ,*m n N ∈*k N ∈k m n a a a =这个恒成立式求得数列即可.。

上海市高二上学期数学期末考试试卷含答案

上海市高二上学期数学期末考试试卷含答案

第一学期高二数学期末考试试卷注意事项:1.考试时间:90分钟试卷满分:100分;2.本试卷由填空题、选择题和解答题三大题组成,共19题;3.测试范围:必修三《第10章空间直线与平面》、《第11章简单几何体》、《第12 章概率初步》、第13章《统计》+选择性必修一《第3 章空间向量及其应用》、《第1章平面直角坐标系中的直线》、第2章《圆锥曲线》 2.1 圆;一、填空题(本大题共有10题,满分34分;其中1-6题每题3分,7-10题每题4分)1、某医院对某学校高三年级的600名学生进行身体健康调查,采用男女分层抽样法抽取一个容量为50的样本,己知女生比男生少抽了10人,则该年级的女生人数是_________.2、如图所示,下列空间图形中,①图(1)是圆柱;②图(2)是圆锥;③图(3)是圆台.上述说法正确的个数为________.3、三条两两相交的直线最多可确定的平面的个数为________.4、如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC.若所有的棱长都是2,则异面直线AC1与BC所成的角的正弦值为5、如图,在棱长为a的正方体ABCD-A1B1C1D1中,M,N分别为AA1,C1D1的中点,过D,M,N三点的平面与直线A1B1交于点P,则线段PB1的长为________.6、如图所示的正方体的棱长为4,E ,F 分别为A 1D 1,AA 1的中点,则过C 1,E ,F 的截面的周长为________.7、若三条直线OA ,OB ,OC 两两垂直,则直线OA 垂直于________.(填序号)①平面OAB ;②平面OAC ;③平面OBC ;④平面ABC .8、经过点A (1,1)且在x 轴上的截距等于在y 轴上的截距的直线方程是__________.9、已知点P 是直线x +y +6=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 为切点,C 为圆心,则当四边形P ACB 的面积最小时,点P 的坐标为________. 10、已知一组数据12,,,n x x x 的平均数6x =,方差221s =,去掉一个数据之后,剩余数据的平均数没有变,方差变为24,则这组数据的个数n =__________.二、选择题(本大题共有4题,满分16分;其中每题4分)11、下列命题中,正确的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .用一个平面去截棱锥,底面与截面之间的部分组成的空间图形叫棱台C .圆台的所有平行于底面的截面都是圆D .棱柱的一条侧棱就是棱柱的高12、如图,在三棱柱ABC -A 1B 1C 1中,AM =2MA 1,BN =2NB 1,过MN 作一平面交底面三角形ABC 的边BC ,AC 于点E ,F ,则( )A .MF ∥NEB .四边形MNEF 为梯形C .四边形MNEF 为平行四边形D .A 1B 1∥NE13、若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且()2P A a =-,()45P B a =-,则实数a 的取值范围是( )A .(1,2)B .53,42⎛⎫ ⎪⎝⎭C .54,43⎛⎫ ⎪⎝⎭D .54,43⎛⎤ ⎥⎝⎦14、设实数x ,y 满足(x -2)2+y 2=3,那么y x 的最大值是( ) A .12 B .33 C .32D . 3三、解答题(本大题共有5题,满分50分)15、(本题8分)如图,AB 是圆O 的直径,点C 是弧AB 上的一点,D ,E 分别是VB ,VC 的中点,求异面直线DE 与AC 所成的角的大小为________.16、(本题8分)如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =AB ,D 为PB 的中点,则下列结论正确的序号是;并说明理由;A .BC ⊥平面P ABB .AD ⊥PCC .AD ⊥平面PBCD .PB ⊥平面ADC17、(本题10分)从2名男生(记为1A,2A)和2名女生(记为1B,2B)这4人中一次性选取2名学生参加象棋比赛(每人被选到的可能性相同).(1)请写出该试验的样本空间 ;(2)设事件M为“选到1名男生和1名女生”,求事件M发生的概率;(3)若2名男生1A,2A所处年级分别为高一、高二,2名女生1B,2B所处年级分别为高一、高二,设事件N为“选出的2人来自不同年级且至少有1名女生”,求事件N发生的概率.18、(本题12分)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间[40,50),[50,60),,[80,90),[90,100].(1)求频率分布直方图中a的值:(2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)19、(本题12分)如图,在长方体ABCD-A1B1C1D1中,AA1=AD=1,E为CD的中点.(1)求证:B1E⊥AD1;(2)在棱AA1上是否存在一点P,使得DP∥平面B1AE?若存在,求AP的长;若不存在,说明理由;(3)若平面AB1E与平面A1B1E夹角的大小为30°,求AB的长.参考答案注意事项:1.考试时间:90分钟试卷满分:100分;2.本试卷由填空题、选择题和解答题三大题组成,共19题;3.测试范围:必修三《第10章空间直线与平面》、《第11章简单几何体》、《第12 章概率初步》、第13章《统计》+选择性必修一《第3 章空间向量及其应用》、《第1章平面直角坐标系中的直线》、第2章《圆锥曲线》 2.1 圆;二、填空题(本大题共有10题,满分34分;其中1-6题每题3分,7-10题每题4分)1、某医院对某学校高三年级的600名学生进行身体健康调查,采用男女分层抽样法抽取一个容量为50的样本,己知女生比男生少抽了10人,则该年级的女生人数是_________.【答案】240【详解】抽取比例为50160012=,设该年级的女生人数是x,则男生人数为600x-,因为女生比男生少抽了10人,所以11(600)101212x x=--,解得240x=,故答案为:240.2、如图所示,下列空间图形中,①图(1)是圆柱;②图(2)是圆锥;③图(3)是圆台.上述说法正确的个数为________.【答案】0;【解析】图(1)不是圆柱,因为从其轴截面可以看出,该空间图形不是由矩形绕其一边所在直线旋转一周得到的;图(2)不是圆锥,因为该空间图形不是由直角三角形绕其直角边所在直线旋转一周得到的;图(3)不是圆台,因为该空间图形的上、下底面所在的平面不平行,不是由平行于圆锥底面的平面截得的.3、三条两两相交的直线最多可确定的平面的个数为________.【答案】3【解析】在空间中,两两相交的三条直线最多可以确定3个平面,如图所示:PA ,PB ,PC 相交于一点P ,且PA ,PB ,PC 不共面,则PA ,PB 确定一个平面PAB ,PB ,PC 确定一个平面PBC ,PA ,PC 确定一个平面PAC .4、如图,在三棱柱ABC -A 1B 1C 1中,AA 1⊥平面ABC .若所有的棱长都是2,则异面直线AC 1与BC 所成的角的正弦值为【答案】144; 【解析】如图,连接AB 1,∵BC ∥B 1C 1,∴∠AC 1B 1就是异面直线AC 1与BC 所成的角.在△AC 1B 1中,AC 1=AB 1=22,B 1C 1=2,∴cos ∠AC 1B 1=122=24.∴sin ∠AC 1B 1=144. ∴异面直线AC 1与BC 所成的角的正弦值为144. 5、如图,在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为AA 1,C 1D 1的中点,过D ,M ,N 三点的平面与直线A 1B 1交于点P ,则线段PB 1的长为________.【答案】34a 【解析】延长DM 交D 1A 1的延长线于点G ,连接GN 交A 1B 1于点P .由M ,N 分别为AA 1,C 1D 1的中点知,P 在A 1B 1的14(靠近A 1)处,故线段PB 1的长为34a .6、如图所示的正方体的棱长为4,E ,F 分别为A 1D 1,AA 1的中点,则过C 1,E ,F 的截面的周长为________.【答案】45+62;【解析】 由EF ∥平面BCC 1B 1可知,平面BCC 1B 1与平面EFC 1的交线为BC 1,平面EFC 1与平面ABB 1A 1的交线为BF ,所以截面周长为EF +FB +BC 1+C 1E =45+6 2.7、若三条直线OA ,OB ,OC 两两垂直,则直线OA 垂直于________.(填序号)①平面OAB ;②平面OAC ;③平面OBC ;④平面ABC .【答案】③;【解析】由线面垂直的判定定理知OA 垂直于平面OBC ;8、经过点A (1,1)且在x 轴上的截距等于在y 轴上的截距的直线方程是__________.【答案】x -y =0或x +y -2=0【解析】若直线在x 轴上的截距为0,可设直线方程为y =kx ,将A (1,1)代入,得k =1,∴直线方程为y =x .若直线在x 轴上的截距不为0,可设直线方程为x +y =a ,将A (1,1)代入,得a =2,∴直线方程为x +y =2.9、已知点P 是直线x +y +6=0上的动点,P A ,PB 是圆x 2+y 2-2x -2y +1=0的两条切线,A ,B 为切点,C 为圆心,则当四边形P ACB 的面积最小时,点P 的坐标为________.【答案】(-3,-3)【解析】如图所示,四边形PACB 的面积S =2S △PAC =|PA |·|AC |=|PA |=|PC |2-1,要使S 最小,需|PC |最小,当CP 与直线x +y +6=0垂直时,|PC |取得最小值,此时直线PC 的方程为y -1=x -1,即x -y =0,与方程x +y +6=0联立得P (-3,-3).10、已知一组数据12,,,n x x x 的平均数6x =,方差221s =,去掉一个数据之后,剩余数据的平均数没有变,方差变为24,则这组数据的个数n =__________.【答案】8【详解】因为去掉一个数据之后,数据的平均数没有变,所以去掉的数据为6,去掉6后方差变为24,故得到()24121-=n n ,解得:8n =故答案为:8;二、选择题(本大题共有4题,满分16分;其中每题4分)11、下列命题中,正确的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .用一个平面去截棱锥,底面与截面之间的部分组成的空间图形叫棱台C .圆台的所有平行于底面的截面都是圆D .棱柱的一条侧棱就是棱柱的高【答案】A【解析】用一个平行于底面的平面截棱锥,底面与截面之间的部分组成的空间图形叫棱台,B 错误.圆台的所有平行于底面的截面都是圆面,C 错误.立在一起的一摞书可以看成一个四棱柱,当把这摞书推倾斜时,它的侧棱就不是棱柱的高,D 错误.12、如图,在三棱柱ABC -A 1B 1C 1中,AM =2MA 1,BN =2NB 1,过MN 作一平面交底面三角形ABC 的边BC ,AC 于点E ,F ,则( )A .MF ∥NEB .四边形MNEF 为梯形C .四边形MNEF 为平行四边形D .A 1B 1∥NE【答案】B【解析】∵在▱AA 1B 1B 中,AM =2MA 1,BN =2NB 1,∴AM ∥BN ,且AM =BN ,∴四边形ABNM 是平行四边形,∴MN ∥AB .又MN ⊄平面ABC ,AB ⊂平面ABC ,∴MN ∥平面ABC .又MN ⊂平面MNEF ,平面MNEF ∩平面ABC =EF ,∴MN ∥EF ,∴EF ∥AB ,显然在△ABC 中,EF ≠AB ,∴EF ≠MN ,∴四边形MNEF 为梯形.故选B. 13、若随机事件A ,B 互斥,A ,B 发生的概率均不等于0,且()2P A a =-,()45P B a =-,则实数a 的取值范围是( )A .(1,2)B .53,42⎛⎫ ⎪⎝⎭C .54,43⎛⎫ ⎪⎝⎭D .54,43⎛⎤ ⎥⎝⎦【答案】D【详解】随机事件A 、B 互斥,A 、B 发生的概率均不等于0,且()2P A a =-,()45P B a =-, ∴0()10()1()()1P A P B P A P B <<⎧⎪<<⎨⎪+⎩,即021*******a a a <-<⎧⎪<-<⎨⎪-⎩,解得5443a <,即54,43a ⎛⎤∈ ⎥⎝⎦. 故选:D .14、设实数x ,y 满足(x -2)2+y 2=3,那么y x的最大值是( ) A .12 B .33 C .32D . 3【答案】D【解析】令yx=k,则y=kx,∴kx-y=0,问题转化为直线kx-y=0与圆有关系,则|2k-0|1+k2≤3,∴k2≤3,∴-3≤k≤3,故yx的最大值为3,故选D.三、解答题(本大题共有5题,满分50分)15、(本题8分)如图,AB是圆O的直径,点C是弧AB上的一点,D,E分别是VB,VC的中点,求异面直线DE与AC所成的角的大小为________.【答案】90°【解析】∵在△VBC中,E,D分别为VC,VB的中点,∴DE∥BC,∴异面直线DE与AC所成的角即为BC与AC所成的角,即为∠ACB=90°.16、(本题8分)如图,在三棱锥P-ABC中,P A⊥平面ABC,AB⊥BC,P A=AB,D为PB的中点,则下列结论正确的序号是;并说明理由;A.BC⊥平面P ABB.AD⊥PCC.AD⊥平面PBCD.PB⊥平面ADC【答案】ABC【解析】∵PA⊥平面ABC,∴PA⊥BC,又BC⊥AB,PA∩AB=A,∴BC⊥平面PAB,故A正确;由BC⊥平面PAB,得BC⊥AD,又PA=AB,D是PB的中点,∴AD⊥PB,又PB∩BC=B,PB,BC⊂平面PBC,∴AD⊥平面PBC,故C正确;∴AD ⊥PC ,故B 正确. 17、(本题10分)从2名男生(记为1A ,2A )和2名女生(记为1B ,2B )这4人中一次性选取2名学生参加象棋比赛(每人被选到的可能性相同).(1)请写出该试验的样本空间Ω;(2)设事件M 为“选到1名男生和1名女生”,求事件M 发生的概率;(3)若2名男生1A ,2A 所处年级分别为高一、高二,2名女生1B ,2B 所处年级分别为高一、高二,设事件N 为“选出的2人来自不同年级且至少有1名女生”,求事件N 发生的概率.【答案】(1){}121112212212(,),(,),(,),(,),(,),(,)A A A B A B A B A B B B ;(2)23;(3)12【详解】(1)解:由题知,样本空间Ω为{}121112212212(,),(,),(,),(,),(,),(,)A A A B A B A B A B B B ;(2)由(1)知,所有的可能结果数为6个,其中满足事件M 得结果数有4个;故()4263M P ==; (3)由(1)知,所有的可能结果数为6个,其中满足事件N 得结果数有3个;故()3162N P ==.18、(本题12分)冬奥会的全称是冬季奥林匹克运动会,是世界规模最大的冬季综合性运动会,每四年举办一届.第24届冬奥会将于2022年在中国北京和张家口举行.为了弘扬奥林匹克精神,增强学生的冬奥会知识,某市某中学校从全校随机抽取50名学生参加冬奥会知识竞赛,并根据这50名学生的竞赛成绩,绘制频率分布直方图(如图所示),其中样本数据分组区间[40,50),[50,60),,[80,90),[90,100].(1)求频率分布直方图中a 的值: (2)求这50名学生竞赛成绩的众数和中位数.(结果保留一位小数)【答案】(1)0.006a =;(2)众数75;中位数76.4(1)由(0.0040.0180.02220.028)101a +++⨯+⨯=,得0.006a =(2)50名学生竞赛成绩的众数为7080752+= 设中位数为m ,则0.040.060.22(70)0.0280.5m +++-⨯=,解得76.4m ≈ 所以这50名学生竞赛成绩的中位数为76.419、(本题12分)如图,在长方体ABCD -A 1B 1C 1D 1中,AA 1=AD =1,E 为CD 的中点.(1)求证:B 1E ⊥AD 1;(2)在棱AA 1上是否存在一点P ,使得DP ∥平面B 1AE ?若存在,求AP 的长;若不存在,说明理由;(3)若平面AB 1E 与平面A 1B 1E 夹角的大小为30°,求AB 的长.【解析】(1)证明 以A 为原点,AB →,AD →,AA 1→的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系(如图).设AB =a ,则A (0,0,0),D (0,1,0),D 1(0,1,1),E ⎝⎛⎭⎫a 2,1,0,B 1(a,0,1). 故AD 1→=(0,1,1),B 1E —→=⎝⎛⎭⎫-a 2,1,-1,AB 1→=(a,0,1),AE →=⎝⎛⎭⎫a 2,1,0.∵AD 1→·B 1E —→=-a 2·0+1×1+(-1)×1=0, ∴B 1E ⊥AD 1.(2)解 假设在棱AA 1上存在一点P (0,0,z 0)(0≤z 0≤1),使得DP ∥平面B 1AE ,此时DP →=(0,-1,z 0).设平面B 1AE 的法向量为n =(x ,y ,z ).则n ⊥AB 1→,n ⊥AE →,得⎩⎪⎨⎪⎧ ax +z =0,ax 2+y =0. 取x =1,得平面B 1AE 的一个法向量n =⎝⎛⎭⎫1,-a 2,-a . 要使DP ∥平面B 1AE ,只要n ⊥DP →,即n ·DP →=0,a 2-az 0=0, 解得z 0=12. 又DP ⊄平面B 1AE ,∴存在点P ,使得DP ∥平面B 1AE ,此时AP =12. (3)连接A 1D ,B 1C ,由ABCD -A 1B 1C 1D 1为长方体及AA 1=AD =1,得AD 1⊥A 1D . ∵B 1C ∥A 1D ,∴AD 1⊥B 1C ,又由(1)知B 1E ⊥AD 1,且B 1C ∩B 1E =B 1,B 1C ,B 1E ⊂平面DCB 1A 1, ∴AD 1⊥平面DCB 1A 1,∴AD 1→是平面DCB 1A 1即平面A 1B 1E 的一个法向量,且AD 1→=(0,1,1).设AD 1→与n 所成的角为θ,则cos θ=n ·AD 1→|n |·|AD 1→|=-a 2-a 2×1+a 24+a 2. ∵平面AB 1E 与平面A 1B 1E 夹角的大小为30°,∴|cos θ|=cos 30°,即3a22×1+5a 24=32. 解得a =2,即AB 的长为2.。

上海高二高中数学期末考试带答案解析

上海高二高中数学期末考试带答案解析

上海高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.过点,且垂直于OA的直线方程为_______________。

2.直线l的一个法向量(),则直线l倾角的取值范围是_______。

3.已知直线:与:平行,则k的值是____________。

4.直线l的一个方向向量,则l与的夹角大小为__________。

(用反三角函数表示)5.已知圆C与直线及都相切,圆心在直线上,则圆C的方程为________________________。

6.等轴双曲线C与椭圆有公共的焦点,则双曲线C的方程为____________。

7.有一抛物线形拱桥,中午12点时,拱顶离水面2米,桥下的水面宽4米;下午2点,水位下降了1米,桥下的水面宽_________米。

8.直线:绕原点逆时针旋转的直线,则与的交点坐标为_______。

9.已知方程表示圆,则___________。

10.已知过抛物线C:()焦点F的直线l和y轴正半轴交于点A,并且l与C在第一象限内的交点M 恰好为A、F的中点,则直线的斜率_____________。

11.已知、是椭圆C:()的两个焦点,P为椭圆C上的一点,且。

若的面积为9,则_________。

12.已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为切点,那么的最小值为_____________。

二、选择题1.已知圆:,圆与圆关于直线对称,则圆的方程为 ( )A.B.C.D.2.若直线与曲线有公共点,则b的取值范围是 ( )A.B.C.D.3.给出下列3个命题:①在平面内,若动点M到、两点的距离之和等于2,则动点M的轨迹是椭圆;②在平面内,给出点、,若动点P满足,则动点P的轨迹是双曲线;③在平面内,若动点Q到点和到直线的距离相等,则动点Q的轨迹是抛物线。

其中正确的命题有( )A.0个B.1个C.2个D.3个4.已知直线l:y=k(x+2)(k>0)与抛物线C:相交于A、B两点,F为C的焦点,若,则( )A.B.C.D.三、解答题1.已知直线l:与x轴交于点A;以O为圆心,过A的圆记为圆O。

上海市嘉定区2023-2024学年高二下学期期末考试数学试卷

上海市嘉定区2023-2024学年高二下学期期末考试数学试卷

上海市嘉定区2023-2024学年高二下学期期末考试数学试卷一、填空题1.直线230x y ++=的斜率为. 2.若2C 10n =,则正整数n 的值为. 3.已知一组数据8.6,8.9,9.1,9.6,9.7,9.8,9.9,10.2,10.6,10.8,11.2,11.7,则该组数据的第80百分位数为.4.在空间直角坐标系O xyz -中一点()2,3,4P 关于坐标平面yOz 的对称点P '的坐标为 5.化循环小数为分数:0.13=&& 6.圆柱的底面半径为3,侧面积为12π,则圆柱的体积为. 7.在()521x +的二项展开式中,2x 项的系数为.8.已知抛物线 ²8y x =上一点P 到焦点的距离为5,则点P 到x 轴的距离为. 9.盲盒是指消费者不能提前得知具体产品款式的商品盒面.已知某盲盒产品共有4种玩偶,小明购买5个盲盒,则他能集齐4种玩偶的概率是.10.已知1F ,2F 分别为双曲线()2222:10,0x yC a b a b-=>>的左右焦点,过1F 的直线l 与双曲线C 的左右两支分别交于A ,B 两点,若22::3:4:5AB BF AF =,则双曲线的渐近线方程为.11.如图,在棱长为1的正方体1111ABCD A B C D -中,点P 是对角线1AC 上的动点(点P 与点A ,1C 不重合).给出下列结论:①存在点P ,使得平面1A DP ⊥平面11AAC ;②对任意点P ,都有1A P DP =;③1A DP △ ④若1θ是平面1A DP 与平面1111D C B A 的夹角,2θ是平面1A DP 与平面11BB C C 的夹角,则对任意点P ,都有12θθ≠.其中所有正确结论的序号是.12.“用一个不垂直于圆锥的轴的平面截圆锥,当圆锥的轴与截面所成的角不同时,可以得到不同的截口曲线”,利用这个原理,小强在家里用两个射灯(射出的光锥视为圆锥)在墙上投影出两个相同的椭圆(图1),光锥的一条母线恰好与墙面垂直.图2是一个射灯投影的直观图,圆锥PO 的轴截面APB 是等边三角形,椭圆1O 所在平面为,PB αα⊥,则椭圆1O 的离心率为.二、单选题13.已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“//αβ”是“//m β”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件14.直线1:10l x -=与直线2:20l x +=的夹角为( )A .π2B .π3C .π4D .π615.空间直角坐标系中,从原点出发的两个向量a r 、b r ;满足:2a b ?rr ,1=r b ,且存在实数t ,使得20a a tb -+≥r r r 成立,则向量b r 确定时,由a r构成的空间几何体的侧面积是( ). A .4π3B .4π9C .8π3D .8π916.设n S 是一个无穷数列{}n a 的前n 项和,若一个数列满足对任意的正整数n ,不等式11n n S S n n +<+恒成立,则称数列{}n a 为和谐数列.关于命题:①若等差数列{}n a 为和谐数列,则n S 一定存在最小值;②若{}n a 的首项小于零,则一定存在公比为负数的一个等比数列为和谐数列.下列判断正确的是( )A .①和②都为真命题B .①和②都为假命题C .①为真命题,②为假命题D .①为假命题,②为真命题三、解答题17.如图,在正四棱锥P ABCD -中,O 为底面ABCD 的中心.(1)若5AP =,AD =(2)若AP AD =,E 为PB 的中点, 求直线BD 与平面AEC 所成角的大小. 18.已知数列{}n a 各项均为正数,且11a =,记其前n 项和为n S . (1)若数列{}n a 为等差数列,312S =,求数列{}n a 的通项公式: (2)若数列{}n a 为等比数列,6132a =,求满足15n n S a >时n 的最小值. 19.用分层随机抽样从某校高一年级学生的数学期末成绩(满分100分,成绩都是整数)中抽取一个容量为100的样本,其中男生成绩数据40个,女生成绩数据60个,再将40个男生成绩样本数据分为6组: [40,50)、[50,60)、[60,70)、[70,80)、[80,90)、[90,100].绘制得到如图所示的频率分布直方图.(1)求a 的值;(2)若在区间[40,50)和[90,100]内的两组男生成绩样本数据中,随机抽取两个进行调查,求调查对象来自不同分组的概率:(3)已知男生成绩样本数据的平均数和方差分别为71和187.75,女生成绩样本数据的平均数和方差分别为73.5和119,求总样本的平均数和方差.20.已知椭圆 ()222Γ:1024x y b b+=<<的左、右顶点分别为A 、B ,且椭圆Γ经过点 31,2T ⎛⎫ ⎪⎝⎭.(1)求b 的值,并求经过点T 且与圆221x y +=相切的直线方程;(2)设R 为椭圆Γ上的一个异于A 、B 的动点,直线AR 、BR 分别与直线4x =相交于P 、Q 两点,求PQ 的最小值:(3)已知椭圆Γ上有不同的两点M 、N ,且直线MN 不与坐标轴垂直,设直线MA 、NB 的斜率分别为1k 、2k ,求证:“213k k =”是“直线MN 经过定点()1,0”的充要条件. 21.设()()()()1ln 1ln 0f x x x x a a =+-->.(1)若1a =,求函数()y f x =的图象在1x =处的切线方程; (2)若()0f x ≥在 [)1,+∞上恒成立,求实数a 的取值范围;(3)若函数()y f x =存在两个极值点1212x x x x (<)、,求证:122x x +>.。

上海高二高中数学期末考试带答案解析

上海高二高中数学期末考试带答案解析

上海高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.计算.2.已知复数,则= .3.经过点的直线l的点方向式方程是.4.已知点,则线段AB的垂直平分线l的点法向式方程是.5.已知方程表示的曲线是圆,则实数a的值是.6.已知两点,则以线段PQ为直径的圆的方程是 .7.双曲线C过点(2,3),且其中一条渐近线是,则双曲线C的标准方程是.8.已知直线与直线的夹角为,则实数k= .9.直角坐标平面上点P与点的距离比它到直线的距离小2,则点P的轨迹方程是 .10.直线两点,则以A为焦点,经过B点的椭圆的标准方程是.11.圆与直线的位置关系是.(相交、相切、相离)12.已知直线l与两点,若直线l与线段AB相交,则实数k的取值范围是.二、选择题1.若复数是虚数,则a、b应满足的条件是 . [答]( )2.已知,则在复平面上所对应的复数是 .[答]( )3.若过点的直线l与抛物线有且只有一个交点,则这样的直线l共有条. [答]( )A 1B 2C 3D 44.下列说法正确的是. [答]( )(1)若直线l的倾斜角为,则;(2)若直线l的一个方向向量为,则直线l的斜率;(3)若直线l的方程为,则直线l的一个法向量为.A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)三、解答题1.本题满分8分.已知关于的实系数一元二次方程有两个虚数根、,若,且,求方程的根、.2.本题满分10分.已知椭圆,椭圆上动点P的坐标为,且为钝角,求的取值范围。

3.(本题满分10分)本题共3个小题,第1小题满分4分,第2小题满分3分,第3小题满分3分.已知直线讨论当实数m为何值时,(1)4.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.已知直线l:与双曲线C:相交于A、B两点.(1)求实数a的取值范围;(2)当实数a取何值时,以线段AB为直径的圆经过坐标原点.5.(本题满分12分)本题共有2个小题,第1小题满分5分,第2小题满分7分.已知抛物线,F是焦点,直线l是经过点F的任意直线.(1)若直线l与抛物线交于两点A、B,且(O是坐标原点,M是垂足),求动点M的轨迹方程;(2)若C、D两点在抛物线上,且满足,求证直线CD必过定点,并求出定点的坐标.上海高二高中数学期末考试答案及解析一、填空题1.计算.【答案】【解析】略2.已知复数,则= .【答案】【解析】略3.经过点的直线l的点方向式方程是.【答案】【解析】略4.已知点,则线段AB的垂直平分线l的点法向式方程是.【答案】【解析】略5.已知方程表示的曲线是圆,则实数a的值是.【答案】【解析】略6.已知两点,则以线段PQ为直径的圆的方程是 .【答案】【解析】略7.双曲线C过点(2,3),且其中一条渐近线是,则双曲线C的标准方程是.【答案】【解析】略8.已知直线与直线的夹角为,则实数k= .【答案】【解析】9.直角坐标平面上点P与点的距离比它到直线的距离小2,则点P的轨迹方程是 .【答案】【解析】略10.直线两点,则以A为焦点,经过B点的椭圆的标准方程是.【答案】【解析】略11.圆与直线的位置关系是.(相交、相切、相离)【答案】【解析】略12.已知直线l与两点,若直线l与线段AB相交,则实数k的取值范围是.【答案】【解析】略二、选择题1.若复数是虚数,则a、b应满足的条件是 . [答]( )【答案】D【解析】略2.已知,则在复平面上所对应的复数是 .[答]( )【答案】D【解析】略3.若过点的直线l与抛物线有且只有一个交点,则这样的直线l共有条. [答]( )A 1B 2C 3D 4【答案】C【解析】略4.下列说法正确的是. [答]( )(1)若直线l的倾斜角为,则;(2)若直线l的一个方向向量为,则直线l的斜率;(3)若直线l的方程为,则直线l的一个法向量为.A.(1)(2)B.(1)(3)C.(2)(3)D.(1)(2)(3)【答案】B【解析】略三、解答题1.本题满分8分.已知关于的实系数一元二次方程有两个虚数根、,若,且,求方程的根、.【答案】当时,解,得,即方程的根为.当时,解,得,即方程的根为.【解析】本题满分8分.解由题可知,是实数,又,……………………………………2分∵是方程的两个虚数根,∴.……………………4分∴,即,解得.……………6分当时,解,得,即方程的根为.…………………7分当时,解,得,即方程的根为.…………………8分2.本题满分10分.已知椭圆,椭圆上动点P的坐标为,且为钝角,求的取值范围。

上海市高二第一学期数学期末考试试卷含答案

上海市高二第一学期数学期末考试试卷含答案

上海市高二第一学期数学期末考试试卷注意:1. 答卷前,考生务必在答题纸上规定的地方作答,写在其它地方一律不予批阅.2. 本试卷共有21道试题,满分100分,练习时间90分钟.一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分.1. 过平面外一点与该平面平行的平面有 个.2. 小王做“投针”实验,记录针压住平行线的次数,所得的数据是_ _.(用“观测数据”或“实验数据”填空)3. 某药物公司实验一种降低胆固醇的新药,在500个病人中进行实验,结果如下表 胆固醇降低的人数没有起作用的人数 胆固醇升高的人数 307 120 73则使用药物后胆固醇降低的经验概率为 .4. 已知球O 的表面积为36π,则该球的体积为 . 5. “二十四节气歌”是以“春、夏、秋、冬”开始的四句诗.某校高二共有学生400名,随机抽查100名学生并提问二十四节气歌,只能说出一句的有45人,能说出两句及以上的有38人,据此估计该校高二年级的400名学生中,对“二十四节气歌”一句也说不出的有____ __人.6. 某校高二(1)班为了调查学生线上授课期间的体育锻炼时间的差异情况,抽取了班级5名同学每周的体育锻炼时间,分别为6,6.5,7,7,8.5(单位:小时),则可以估计该班级同学每周的体育锻炼时间的方差为 .7. 已知一个正方形的边长为2,则它的直观图的面积为 . 8. 已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为 .9.“阿基米德多面体”也称半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.二十四等边体就是一种半多正多面体.如图,棱长为1的正方体截去八个一样的四面体,就得到二十四等边体,则该几何体的体积为 .10. 已知事件A 、B 互斥,()35P A B =,且()()2P A P B =,则()P B = . 11. 小明和小王在课余玩象棋比赛,可以采用“五局三胜制”或“三局两胜制”.相对而言,小明棋艺稍弱 ,每一局赢的概率都仅为0.4. 小明为了让自己在比赛中赢的几率更大些,应该提议采AB 用 .(填选 “三局两胜制”或“五局三胜制”)12. 如图,有一边长为2cm 的正方形ABCO ,D 、E 分别为AO 、AB 的中点.按图中的虚线翻折,使得A 、B 、O 三点重合,制成一个三棱锥,并得到以下四个结论:①三棱锥的表面积为4; ②三棱锥的体积为13; ③三棱锥的外接球表面积为6π; ④三棱锥的内切球半径为1.则以上结论中,正确结论是 . (请填写序号)二、选择题(本大题共有4题,满分12分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分.13.小明同学每天阅读数学文化相关的书籍,他每天阅读的页数分别为:4、5、4.5、5、6、8、7、5、4.5、6(单位:页).下列图形中不利于描述这些数据的是( )A .条形图B .茎叶图C .散点图D .扇形图14.下列说法正确的是( ) A .过球面上任意两点与球心,有且只有一个大圆B .底面是正多边形,侧棱与底面所成的角均相等的棱锥是正棱锥C .用一个平面截圆锥,得到一个圆锥和圆台D .以直角三角形任意一边为旋转轴,其余两边旋转一周所得的旋转体都是圆锥15.某校组织了一次航空知识竞赛,甲、乙两个班级各派8名同学代表参赛.两个班级的数学课代表合作,将甲、乙两班所有参赛同学的得分绘制成如图所示的茎叶图,则下列结论错误的是( )A .甲班参赛同学得分的极差比乙班参赛同学得分的极差小B .甲班参赛同学得分的中位数比乙班参赛同学得分的中位数低C . 甲班参赛同学得分的平均数为84D .乙班参赛同学得分的第75百分位数为8916. 先后抛掷质地均匀的硬币4次,得到以下结论:①可以从不同的观察角度写出不同的样本空间②事件“至少2次正面朝上”与事件”至少2次反面朝上”是互斥事件③事件“至少1次正面朝上”与事件”4次反面朝上”是对立事件④事件“1次正面朝上3次反面朝上”发生的概率是14以上结论中,正确的个数为( )个 A .1个 B .2个C .3个D .4个 三、解答题(本大题共有5题,满分52分)解答下列各题必须写出必要的步骤.17.(本题满分8分,第1小题满分4分,第2小题满分4分)如图,在正方体1111ABCD A B C D -中,E 为1DD 的中点.(1) 求异面直线1BD 与1CC 所成的角;(2)判断1BD 与平面AEC 的位置关系,并说明理由.18.(本题满分10分,第1小题满分5分,第2小题满分5分)不透明的盒子中有标号为1、2、3、4的4个大小与质地相同的球.(1)甲随机摸出一个球,放回后乙再随机摸出一个球,求两球编号均为奇数的概率;(2)甲、乙两人进行摸球游戏,游戏规则是:甲先随机摸出一个球,记下编号,设编号为m ,放回后乙再随机摸出一个球,也记下编号,设编号为n . 如果5m n +>,算甲赢;否则算乙赢. 这种游戏规则公平吗?请说明理由.19.(本题满分10分,第1小题满分6分,第2小题满分4分)如图,在直角AOB 中,π6OAB ∠=,斜边8AB =,D 是AB 中点,现将直角AOB 以直角边AO 为轴旋转一周得到一个圆锥.点C 为圆锥底面圆周上一点,且π2BOC ∠=. (1)求圆锥的体积与侧面积;(2)求直线CD 与平面BOC 所成的角的正切值.20.(本题满分12分,第1小题满分4分,第2小题满分4分,第3小题满分4分)法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们——书籍的作者一一进行交谈,也就是和他们传播的优秀思想进行交流”. 阅读会让精神世界闪光.某大学为了解大一新生的阅读情况,通过随机抽样调查了100位大一新生,对这些学生每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图如图所示:(1) 求a 的值;(2) 根据频率分布直方图,估计该校大一新生每天阅读时间的平均数(精确到0.1)(单位:分钟);(3) 为了进一步了解大一新生的阅读方式,该大学采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的学生中抽取5人,再从中任选2人进行调查,求其中恰好有1人每天阅读时间位于[80,90)的概率.21.(本题满分12分,第1小题满分4分,第2小题满分4分,第3小题满分4分)如图,已知四面体ABCD 中,AB BCD ⊥面,BC CD ⊥.(1)求证:AC CD ⊥;(2)《九章算术》中将四个面都是直角三角形的四面体称为“鱉臑”,若此“鱉臑”中,1AB BC CD ===,有一根彩带经过面ABC 与面ACD ,且彩带的两个端点分别固定在点B 和点D 处,求彩带的最小长度;(3)若在此四面体中任取两条棱,记它们互相垂直的概率为1P ;任取两个面,记它们互相垂直的概率为2P ;任取一个面和不在此面上的一条棱,记它们互相垂直的概率为3P . 试比较概率1P 、2P 、3P 的大小.【教师版】高二数学练习卷答案一、填空题(本大题共有12题,满分36分)只要求直接填写结果,每个空格填对得3分,否则一律得零分.1. 过平面外一点与该平面平行的平面有 1 个.2. 小王做“投针”实验,记录针压住平行线的次数,所得的数据是_“实验数据”_.(用“观测数据”或“实验数据”填空)3. 某药物公司实验一种降低胆固醇的新药,在500个病人中进行实验,结果如下表 胆固醇降低的人数没有起作用的人数 胆固醇升高的人数 307 120 73则使用药物后胆固醇降低的经验概率为 0.614 .4. 已知球O 的表面积为36π,则该球的体积为 36π . 5. “二十四节气歌”是以“春、夏、秋、冬”开始的四句诗.某校高二共有学生400名,随机抽查100名学生并提问二十四节气歌,只能说出一句的有45人,能说出两句及以上的有38人,据此估计该校高二年级的600名学生中,对“二十四节气歌”一句也说不出的有____68___人.6. 某校高二(1)班为了调查学生线上授课期间的体育锻炼时间的差异情况,抽取了班级5名同学每周的体育锻炼时间,分别为6,6.5,7,7,8.5(单位:小时),则可以估计该班级同学每周的体育锻炼时间的方差为 0.7 .7. 已知一个正方形的边长为2,则它的直观图的面积为2 . 8. 已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为 3 . 9.“阿基米德多面体”也称半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.二十四等边体就是一种半多正多面体.如图,棱长为1的正方体截去八个一样的四面体,就得到二十四等边体,则该几何体的体积为 56. 10. 已知事件A 、B 互斥,()35P A B =,且()()2P A P B =,则()P B = 45 . 11. 小明和小王在课余玩象棋比赛,可以采用“五局三胜制”或“三局两胜制”.相对而言,小明棋艺稍弱 ,AB 每一局赢的概率都仅为0.4. 小明为了让自己在比赛中赢的几率更大些,应该提议采用 “三局两胜制” .(填选 “三局两胜制”或“五局三胜制”)12. 如图,有一边长为2cm 的正方形ABCO ,D 、E 分别为AO 、AB 的中点.按图中的虚线翻折,使得A 、B 、O 三点重合,制成一个三棱锥,并得到以下四个结论:①三棱锥的表面积为4; ②三棱锥的体积为13; ③三棱锥的外接球表面积为6π; ④三棱锥的内切球半径为1. 则以上结论中,正确结论是 ① ② ③ . (请填写序号) 二、选择题(本大题共有4题,满分12分)每小题都给出四个选项,其中有且只有一个选项是正确的,选对得 3分,否则一律得零分.13.小明同学每天阅读数学文化相关的书籍,他每天阅读的页数分别为:4、5、4.5、5、6、8、7、5、4.5、6(单位:页).下列图形中不利于描述这些数据的是( C )A .条形图B .茎叶图C .散点图D .扇形图14.下列说法正确的是( B )A .过球面上任意两点与球心,有且只有一个大圆B .底面是正多边形,侧棱与底面所成的角均相等的棱锥是正棱锥C .用一个平面截圆锥,得到一个圆锥和圆台D .以直角三角形任意一边为旋转轴,其余两边旋转一周所得的旋转体都是圆锥15.某校组织了一次航空知识竞赛,甲、乙两个班级各派8名同学代表参赛.两个班级的数学课代表合作,将甲、乙两班所有参赛同学的得分绘制成如图所示的茎叶图,则下列结论错误的是( D )A .甲班参赛同学得分的极差比乙班参赛同学得分的极差小B .甲班参赛同学得分的中位数比乙班参赛同学得分的中位数低C . 甲班参赛同学得分的平均数为84D .乙班参赛同学得分的第75百分位数为8916. 先后抛掷质地均匀的硬币4次,得到以下结论:①可以从不同的观察角度写出不同的样本空间②事件“至少2次正面朝上”与事件”至少2次反面朝上”是互斥事件③事件“至少1次正面朝上”与事件”4次反面朝上”是对立事件④事件“1次正面朝上3次反面朝上”发生的概率是14以上结论中,正确的个数为( C )个 A .1个 B .2个C .3个D .4个 三、解答题(本大题共有5题,满分52分)解答下列各题必须写出必要的步骤.17.(本题满分8分,第1小题满分4分,第2小题满分4分)如图,在正方体1111ABCD A B C D -中,E 为1DD 的中点.(1) 求异面直线1BD 与1CC 所成的角;(2)判断1BD 与平面AEC 的位置关系,并说明理由.解 (1)因为11//BB CC ,所以11B BD ∠就是异面直线1BD 与1CC所成的角或其补角. ……………………………………………………………………2分设1BB a =,则112B D a =,13BD a =,所以11tan 2B BD ∠.……………1分所以异面直线1BD 与1CC 所成的角为arc 263arcsinarccos 33=)……1分 (2)连接BD ,交AC 于O ,在1BDD 中,O 、E 分别为BD 、1DD 中点,OE 为1BDD 的中位线,所以1//OE BD .……………………………………………………………2分因为OE 在平面AEC 上,而1BD 不在平面AEC 上,…………………………1分由直线与平面平行的判定定理得,1BD //平面AEC .18.(本题满分10分,第1小题满分5分,第2小题满分5分)不透明的盒子中有标号为1、2、3、4的4个大小与质地相同的球.(1)甲随机摸出一个球,放回后乙再随机摸出一个球,求两球编号均为奇数的概率;(2)甲、乙两人进行摸球游戏,游戏规则是:甲先随机摸出一个球,记下编号,设编号为m ,放回后乙再随机摸出一个球,也记下编号,设编号为n . 如果5m n +>,算甲赢;否则算乙赢. 这种游戏规则公平吗?请说明理由.解 (1)甲摸出的球编号为奇数的概率是12,…………………………………2分乙摸出的球编号为奇数的概率是12,……………………………………………2分 所以两球编号均为奇数的概率是14.………………………………………1分 (2)()3616P m n +==,………………………………………………………1分 ()2716P m n +==,………………………………………………………………1分 ()1816P m n +==………………………………………………………………1分 所以甲赢的概率为32131616168++=,乙赢的概率为58.……………………1分 所以这种游戏规则不公平. ……………………………………………………1分(也可直接写出样本空间,写出答案,酌情给分)19.(本题满分10分,第1小题满分6分,第2小题满分4分)如图,在直角AOB 中,π6OAB ∠=,斜边8AB =,D 是AB 中点,现将锥底面圆直角AOB 以直角边AO 为轴旋转一周得到一个圆锥.点C 为圆周上一点,且π2BOC ∠=. (1)求圆锥的体积与侧面积;(2)求直线CD 与平面BOC 所成的角的正切值.解 (1)由题,4,3OB OA ==1分 所以圆锥的体积为221164ππ4433π333V OB OA =⋅⋅=⋅⋅=.……………………2分 圆锥的侧面积为32πS rl π==侧.……………………………………………………2分(2)取BO 中点BH ,在AOB 中,中位线//DH AO ,可得DH ⊥平面BOC ,所以DCH ∠即直线CD 与平面BOC 所成的角. …………………………………2分222315tan 542DH DCH HC ∠===+.……………………………………………2分 所以直线CD 与平面BOC 所成的角的正切值为155.……………………………1分 20.(本题满分12分,第1小题满分4分,第2小题满分4分,第3小题满分4分)法国著名的数学家笛卡尔曾经说过:“阅读优秀的书籍,就是和过去时代中最杰出的人们——书籍的作者一一进行交谈,也就是和他们传播的优秀思想进行交流”. 阅读会让精神世界闪光.某大学为了解大一新生的阅读情况,通过随机抽样调查了100位大一新生,对这些学生每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图如图所示:(1) 求a 的值;(2) 根据频率分布直方图,估计该校大一新生每天阅读时间的平均数(精确到0.1)(单位:分钟);(3) 为了进一步了解大一新生的阅读方式,该大学采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70)和[80,90)的学生中抽取5人,再从中任选2人进行调查,求其中恰好有1人每天阅读时间位于[80,90)的概率. 解 (1)因为频率分布直方图的所有矩形面积之和为1,所以(0.0100.0450.005)101a a ++++⨯=,……………………………2分得0.02a =,…………………………………………………………………2分(2) 各区间的中点值为55、65、75、85、95 ……………………………1分对应的频数分别为10、20、45、20、5…………………………………………1分这100名大一新生每天阅读时间的平均数为551065207545852095574.0100⨯+⨯+⨯+⨯+⨯=…………………1分所以估计该校大一新生每天阅读时间的平均数为74分钟. …………………1分(3)由题意,阅读时间位于分组[50,60),[60,70)和[80,90)的学生数分别为10人、20人、20人,因此每组中抽取的人数分别为1人、2人、2人. ………………2分因此,再从中任选2人进行调查,其中恰好有1人每天阅读时间位于[80,90)的概率为323P=105⨯=.………………………………………………………………………2分21.(本题满分12分,第1小题满分4分,第2小题满分4分,第3小题满分4分)如图,已知四面体ABCD 中,AB BCD ⊥面,BC CD ⊥.(1)求证:AC CD ⊥(2)《九章算术》中将四个面都是直角三角形的四面体称为“鱉与臑”,若此“鱉臑”中,1AB BC CD ===,有一根彩带经过面ABC小面ACD ,且彩带的两个端点分别固定在点B 和点D 处,求彩带的最长度.(3)若在此四面体中任取两条棱,记它们互相垂直的概率为1P ;任取两个面,记它们互相垂直的概率为2P ;任取一个面和不在此面上的一条棱,记它们互相垂直的概率为3P . 试比较概率1P 、2P 、3P 的大小(1)证明 因为AB BCD ⊥面,所以AB CD ⊥,…………………………………1分又BC CD ⊥,所以CD ABC ⊥面………………………………………………………2分所以AC CD ⊥……………………………………………………………………………1分(2)将面ABC 与面ACD 沿AC 展开成如图所示的平 面图形,由题,3π4BCD ∠=,……………………1分 所以彩带的最小长度为此平面图中BD 长. 又22311211cos π224BD =+-⨯⨯⨯=+…………2分 22+…………………………1分(3) 由题,151153P ==…………………………1分 23162P ==……………………………………………1分 321126P ==……………………………………………1分 所以312P P P <<.………………………………………1分【附加题】单选题1.过坐标原点O 作直线:(2)(1)60l a x a y -+++=的垂线,垂足为(,)H m n ,则22m n +的取值范围是( )A .0,⎡⎣B .(0,C .[]0,8D .(]0,8 【提示】求出直线直线()():2160l a x a y -+++=过的定点A ,由题意可知垂足是落在以OA 为直径的圆上,由此可利用22m n +的几何意义求得答案;【答案】D【解析】直线()():2160l a x a y -+++=,即()260a x y x y +-++= , 令0260x y x y +=⎧⎨-++=⎩ ,解得22x y =⎧⎨=-⎩ , 即直线()():2160l a x a y -+++=过定点(2,2)A - ,由过坐标原点O 作直线()():2160l a x a y -+++=的垂线,垂足为(,)H m n ,可知:(,)H m n 落在以OA 为直径的圆上,而以OA 为直径的圆为22(1)(1)2x y ++-= ,如图示:故22m n +可看作是圆上的点(,)H m n 到原点距离的平方, 而圆过原点,圆上点到原点的最远距离为||22OA = ,但将原点坐标代入直线:(2)(1)60l a x a y -+++=中,60= 不成立,即直线l 不过原点,所以(,)H m n 不可能和原点重合,故22(0,8]m n +∈,故选:D2.在平面直角坐标系中,O 为坐标原点,A 、B 为平面上两点,且0OA OB ⋅=,M 为线段AB 中点,其坐标为(),a b 524a b =+-,则OM 的最小值为( ) A 5 B 25 C .33D 5【提示】由已知可得以AB 为直径的圆过点O ,对条件变形得到245a b OM +-=圆M 与直线240x y +-=相切,从而得到圆M 的半径最小值为点O 到直线240x y +-=的距离的一半,利用点到直线距离公式进行求解.【答案】B【解析】因为0OA OB ⋅=,所以OA OB ⊥,即以AB 为直径的圆过点O ,因为M 为线段AB 中点,坐标为(),a b 524a b =+-, 则245a b OM +-=几何意义为圆M 的半径与点M 到直线240x y +-=的距离相等, 即圆M 与直线240x y +-=相切,则圆M 的半径最小值为点O 到直线240x y +-=的距离的一半,125=.故选:B。

上海高二高中数学期末考试带答案解析

上海高二高中数学期末考试带答案解析

上海高二高中数学期末考试班级:___________ 姓名:___________ 分数:___________一、填空题1.直线的倾斜角为,则的值是___________.2.若实数满足不等式组,则的最大值为 .3.设复数满足,则.4.已知直线与圆相切,则的值为__ ___.5.已知方程表示椭圆,则的取值范围为__ ____.6.若直线经过原点,且与直线的夹角为300,则直线方程为___________________.7.过点且方向向量为的直线与双曲线仅有一个交点,则实数的值为__________. 8.已知点P 是椭圆上的在第一象限内的点,又、,O 是原点,则四边形OAPB 的面积的最大值是_________. 9.若点O 和点F 分别为双曲线的中心和左焦点,点P 为双曲线右支上的任意一点,则的取值范围为__________. 10.双曲线的焦点为F 1、F 2,,P 在双曲线上 ,且满足:,则的面积是 . 11.若点在直线上的射影是,则的轨迹方程是 . 12.已知点在直线上,点在直线上,PQ 的中点为,且,则的取值范围是 .二、选择题1.设,是虚数单位,则“”是“复数为纯虚数的”( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件2.与双曲线有共同的渐近线,且过点(2,2)的双曲线标准方程为( )A .B .C .D .3.设曲线C 的参数方程为为参数,直线 的方程为,则曲线C 上到直线 的距离为的点的个数为( )A .1B . 2C .3D .44.已知曲线:(),下列叙述中正确的是()A.垂直于轴的直线与曲线存在两个交点B.直线()与曲线最多有三个交点C.曲线关于直线对称D.若为曲线上任意两点,则有三、解答题1.求以抛物线的焦点为圆心,且过坐标原点的圆的标准方程.2.设是方程的一个根.(1)求;(2)设(其中为虚数单位,),若的共轭复数满足,求.3.如图, 直线y=x与抛物线y=x2-4交于A、B两点, 线段AB的垂直平分线与直线y=-5交于Q点.(1)求点Q的坐标;(2)当P为抛物线上位于线段AB下方(含A、B) 的动点时, 求ΔOPQ面积的最大值.4.在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市O(如图)的东偏南方向的海面P处,并以的速度向西偏北方向移动. 台风侵袭的范围为圆形区域,当前半径为,并以的速度不断增大. 问几小时后该城市开始受到台风的侵袭?5.椭圆和椭圆满足椭圆,则称这两个椭圆相似,m称为其相似比.(1)求经过点,且与椭圆相似的椭圆方程;(2)设过原点的一条射线L分别与(1)中的两个椭圆交于A、B两点(其中点A在线段OB上),求的最大值和最小值;(3)对于真命题“过原点的一条射线分别与相似比为2的两个椭圆和交于A、B两点,P为线段AB上的一点,若,,成等比数列,则点P的轨迹方程为”。

上海市实验学校2025届高二数学第一学期期末联考试题含解析

上海市实验学校2025届高二数学第一学期期末联考试题含解析

21.(12 分)用长度为 80 米的护栏围出一个一面靠墙的矩形运动场地,如图所示,运动场地的一条边记为 x (单位:
米),面积记为 S (单位:平方米)
(1)求 S 关于 x 的函数关系;
(2)求 S 的最大值
22.(10
分)已知函数
f
(x)
x2 ex
(1)求函数 f (x) 的单调区间;
(2)求函数
当 n=3 时,a 27 27 81 ,b=8,满足进行循环的条件, 488
当 n=4 时,a 81 81 243 ,b=16,不满足进行循环的条件, 8 16 16
故输出的 n 值为 4, 故选:B 【点睛】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答 4、D 【解析】分析:根据函数单调性、极值与导数的关系即可得到结论.
【详解】依题意,令 g(x) x2 f (x) ,因 f (x) 是 R 上的奇函数,则 g(x) (x)2 f (x) x2 f (x) g(x) ,即 g(x)
是 R 上的奇函数,
当 x 0 时, g(x) 2xf (x) x2 f (x) x[2 f (x) xf (x)] 0 ,则有 g(x) 在 (0, ) 单调递增,
又函数 g(x) 在 R 上连续,因此,函数 g(x) 在 R 上单调递增,
不等式 (x 2022)2 f (x 2022) 4 f (2) 0 g(x 2022) g(2) 0 g(x 2022) g(2) ,
于是得 x 2022 2 ,解得 x 2024,
所以原不等式的解集是 (, 2024) .
(2)当 8 v 20时,为了使全程燃料费最省,船的实际前进速度应为多少? (3)当 8 v x (x 为大于 8 的常数)时,为了使全程燃料费最省,船的实际前进速度应为多少? 18.(12 分)已知函数 f (x) 的导函数为 f (x) ,且满足 f (x) 2xf (e) ln x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016上海市高二数学期末试卷 (共150分,时间120分钟)
一、选择题(每小题5 分,共12小题,满分60分) 1.对抛物线24y x =,下列描述正确的是( ) A 开口向上,焦点为(0,1) B 开口向上,焦点为1(0,
)16 C 开口向右,焦点为(1,0)
D 开口向右,焦点为1
(0,)16
2.已知A 和B 是两个命题,如果A 是B 的充分条件,那么A ⌝是B ⌝的 ( ) A 充分条件 B 必要条件 C 充要条件 D 既不充分也不必要条件
3.椭圆2255x ky +=的一个焦点是(0,2),那么实数k 的值为( ) A 25-
B 25
C 1-
D 1
4.在平行六面体ABCD-A 1B 1C 1D 1中,M 为AC 与BD 的交点,若11A B a =, b D A =11,
c A A =1,则下列向量中与M B 1相等的向量是( )
A c b a ++-2121
B
c b a ++2121 C c b a +-2121 D c b a +--2
1
21 5.空间直角坐标系中,O 为坐标原点,已知两点A (3,1,0),B (-1,3,0),
若点C 满足OC =αOA +βOB ,其中α,β∈R ,α+β=1,则点C 的轨迹为( ) A 平面 B 直线 C 圆 D 线段 6.给出下列等式:命题甲:2
2,2,)2
1
(1x x x -成等比数列,命题乙:)3lg(),1lg(,lg ++x x x 成等差数列,则甲是乙的( ) A 充分非必要条件 B 必要非充分条件 C 充要条件
D 既非充分又非必要条件
7.已知a =(1,2,3),b =(3,0,-1),c =⎪⎭

⎝⎛--53,1,5
1给出下列等式:
①∣c b a ++∣=∣c b a --∣ ②c b a ⋅+)( =)(c b a +⋅ ③2)(c b a ++=2
22c b a ++
④c b a ⋅⋅)( =)(c b a ⋅⋅
其中正确的个数是 ( ) A 1个 B 2个 C 3个 D 4个 8.设[]0,απ∈,则方程22sin cos 1x y αα+=不能表示的曲线为( ) A 椭圆
B 双曲线
C 抛物线
D 圆
9.已知条件p :1-x <2,条件q :2x -5x -6<0,则p 是q 的( ) A 充分必要条件 B 充分不必要条件 C 必要不充分条件 D 既不充分又不必要条件
10.椭圆122222=+b
y a x 与双曲线1222
22=-b y a x 有公共焦点,则椭圆的离心率是
A
23
B 315
C 46
D 6
30
11.下列说法中错误..
的个数为 ( ) ①一个命题的逆命题为真,它的否命题也一定为真;②若一个命题的否命题
为假,则它本身一定为真;③12x y >⎧⎨>⎩是32
x y xy +>⎧⎨>⎩的充要条件;④a b =与a b
=是等价的;⑤“3x ≠”是“3x ≠”成立的充分条件. A 2 B 3 C 4 D 5
12.已知(1,2,3)OA =,(2,1,2)OB =,(1,1,2)OP =,点Q 在直线OP 上运动,则当QA QB ⋅ 取得最小值时,点Q 的坐标为 ( ) A
131(
,,)243
B
123(
,,)234
C
448(
,,)333 D 447(,,)333
二、填空题(每小题6分,共5小题,满分30分)
13.已知k j i b a +-=+82,k j i b a 3168-+-=-(k j i ,,两两互相垂直),那么
b a ⋅= 。

14.以(1,1)-为中点的抛物线28y x =的弦所在直线方程为: .
15.已知M 1(2,5,-3),M 2(3,
-2,-5),设在线段M 1M 2的一点M 满足21M M =24MM ,则向量OM 的坐标为 。

16.下列命题
①命题“事件A 与B 互斥”是“事件A 与B 对立”的必要不充分条件. ② “am 2<bm 2”是“a <b ”的充分必要条件. ③ “矩形的两条对角线相等”的否命题为假.
④在ABC ∆中,“︒=∠60B ”是C B A ∠∠∠,,三个角成等差数列的充要条件. ⑤ABC ∆中,若sin cos A B =,则ABC ∆为直角三角形. 判断错误的有___________
17.在直三棱柱111ABC A B C -中,11BC AC ⊥.有下列条件: ①
AB AC BC ==; ②AB AC ⊥; ③AB AC =.
其中能成为11BC AB ⊥的充要条件的是________.(填上序号) 三、解答题(共4小题,每小题15分,共60分)
18.(本题满分15分)求ax 2+2x +1=0(a ≠0)至少有一负根的充要条件.
19.(本题满分15分)已知命题p :不等式|x -1|>m -1的解集为R ,命题q :
f(x)=-(5-2m)x 是减函数,若p 或q 为真命题,p 且q 为假命题,求实数m 的取值范围.
20.(本题满分15分)直线l :1y kx =+与双曲线C :2231x y -=相交于不同的A 、
B 两点.
(1)求AB 的长度;
(2)是否存在实数k ,使得以线段AB 为直径的圆经过坐标第原点?若存在,求出k 的值;若不存在,写出理由.
21、(本题满分15分)如图,直三棱柱ABC-A 1B 1C 1底面△ABC , 中,CA=CB=1∠BCA=90°,棱AA 1=2M ,N 分别是A 1B 1, A
1A 的中点。

(1)求BN 的长度;
(2)求cos (1BA ,1CB )的值; (3)求证:A 1B ⊥C 1M 。

参考答案
一、选择题(每小题5 分,共12小题,满分60分)
1、B
2、C
3、D
4、A
5、B
6、B
7、D
8、C
9、B 10、B 11、C 12、C
二、填空题(每小题6分,共5小题,满分30分) 13、- 65 14、430x y +-= 15、⎪⎭⎫

⎛--29,41,411 16、②⑤ 17、①、③
三、解答题(共5小题,满分74分)
18、(本题满分14分)解:若方程有一正根和一负根,等价于121
0x x a
=<⇒ a <0
若方程有两负根,等价于440201
0Δa a a

⎪=-≥⎪⎪-<⇒⎨⎪⎪>⎪⎩0<a ≤1
综上可知,原方程至少有一负根的必要条件是a <0或0<a ≤1
由以上推理的可逆性,知当a <0时方程有异号两根;当0<a ≤1时,方程有两负根.
故a <0或0<a ≤1是方程ax 2+2x+1=0至少有一负根的充分条件. 所以ax 2+2x+1=0(a ≠0)至少有一负根的充要条件是a <0或0<a ≤1 19、(本题满分15分)解:不等式|x -1|<m -1的解集为R ,须m -1<0
即p 是真 命题,m<1
f(x)=-(5-2m)x 是减函数,须5-2m>1即q 是真命题,m<2 由于p 或q 为真命题,p 且q 为假命题
故p 、q 中一个真,另一个为假命题 因此,1≤m<2
20、(本题满分15分)
联立方程组⎩⎨⎧=-+=1
31
22y x ax y 消去y 得()022322=---ax x a ,因为有两个交点,所以
{()
3840
3222
>-+=∆≠-a a a
,解得2
212212232
,32,3,6a
x x a a x x a a --=-=
+≠<且。

(1)
)36(3
6
524)(1122224212
212
212≠<-++-=
-++=-+=a a a a a x x x x a
x x a AB 且。

(2)由题意得 0)1)(1(,0,121212121=+++=+-=ax ax x x y y x x k k ob oa 即即 整 理得1,12±==a a 符合条件,所以 21、(本题满分15分)如图,
轴,z 轴建
解:以C 为原点,1CC CB CA ,,分别为x 轴,y 立空间直角坐标系。

(1) 依题意得出
3101010=∴BN N B ),,,(),,,(;
(2) 依题意得出
),,
(),,,(),,,(),,(21000001020111B C B A 563210211111111===⋅=-=∴CB BA CB BA CB BA ,,),,,(),,,(
∴cos ﹤11CB BA ,﹥=
3010
1
1
111=
⋅⋅CB BA CB BA (3) 证明:依题意将,,,),,,(,,,),,,(⎪⎭

⎝⎛=--=⎪⎭
⎫ ⎝⎛021*******
1212001
111M C B A M C M
C B A M C B A M C B A 1111110021
21⊥∴⊥∴=++-=⋅∴,。

相关文档
最新文档