流体力学 第四章 量纲分析讲解

合集下载

流体力学4-1.2量纲分析.

流体力学4-1.2量纲分析.
1、定理内容
若某一物理过程包含n个物理量 f (q1 q 2 q3 q n ) 0 其中有m个基本量(量纲独立,不能相互导出的物理 量)则该物理过程可由n个物理量构成的n-m个无量纲项 所表达的关系式来描述
2、解题步骤
F ( 1 n m ) 0
1)确定关系式 根据对所研究的现象的认识,确定影响这个现象的各 个物理量及其关系式
对于不可压缩流体运动, 任一物理量 q的量纲 [q]都 可用3个基本量纲的指数乘积形式表示
[q] M L T
分 类

几何学量纲: = 0,0,=0 运动学量纲: = 0,0,0 动力学量纲:0 面积[A]= 速度 [v] =LT –1 加速度 [a] = LT –2 运动粘滞系数[ν]= L2T-1 L2
q1 q2 q3
1 1 1
qnБайду номын сангаас
a n 3 bn 3 cn 3 q1 q2 q3
q1 q2 q3
2 2
2
4)满足π为无量纲项, 定出上面各项中基本量的指数ai , bi , ci 5)整理方程式
1、简单表述:
凡是正确反映客观规律的物理方程,其各项的量纲 都必须是一致的,即只有方程两边量纲相同,方程才能成 立。
2、重要性
一个方程在量纲上应是和谐的,所以可用来检验物理方 程或经验公式的正确性和完整性 根据量纲和谐原理可用来确定公式中物理量的指数 可用来建立物理方程式的结构形式。为科学地组织实验 过程、整理实验成果提供理论指导
C RJ
1 1/ 6 C R n
[C ] L T
0.5
1
m /s
n作为无量纲量处理P106
6
0.5
[n] L1/ 3T 1

流体力学第四章量纲分析与相似理论

流体力学第四章量纲分析与相似理论
a a a y = Kx1a1 x2 2 x3 3 ...xn n
2、其中的某一个物理量可表示为其它物理量幂乘积形式 其中的某一个物理量可表示为其它物理量幂乘积形式
3、将各变量的量纲化为基本量纲,写出量纲方程式。 将各变量的量纲化为基本量纲,写出量纲方程式。 3、根据量纲和谐条件,列出基本量纲的和谐方程式,联立 根据量纲和谐条件,列出基本量纲的和谐方程式, 解出各变量的指数。 解出各变量的指数。 4、代入原假设的函数式中去,必要时整理简化,即得简明 代入原假设的函数式中去,必要时整理简化, 的反映该物理现象的公式。 的反映该物理现象的公式。
•无量纲数可以是两个同类物理量的比值
例如水力坡度是水头损失与流程长度之比, 例如水力坡度是水头损失与流程长度之比,即
hw J= l
lJw h
其量纲
[J ] =
[ L] = 1 [] [ L]
水力坡度是一个无量纲数。它反映了实际液体总水头沿流程减少的情况。 水力坡度是一个无量纲数。它反映了实际液体总水头沿流程减少的情况。 无论长度单位是选择米还是厘米,只要形成该水力坡度的条件不变, 无论长度单位是选择米还是厘米,只要形成该水力坡度的条件不变,其 数值的大小也不会改变。 数值的大小也不会改变。
科学地组织实验
指导实验结果的整理
建立物理量之间的关系
4.1 量纲分析的概念和原理 4.1.1 量纲
描述流体运动的物理量: 描述流体运动的物理量: 长度、时间、质量、速度、加速度、密度、 长度、时间、质量、速度、加速度、密度、压强等
属性量纲 量度单位
按性质不同分类 1、量纲表征物理量性质和类别的标志,是物理量的质的特征,也称为因次。 量纲表征物理量性质和类别的标志,是物理量的质的特征,也称为因次。 量纲表示 用方括号将表示量纲的字母括起来 长度[L] 时间[T] 质量[M] [L]、 [T]、 长度[L]、时间[T]、质量[M] 采用dimq代表物理量q的量纲,则 采用dimq代表物理量q的量纲, dimq代表物理量 面积的量纲表示为dimA dimA= 面积的量纲表示为dimA=L2

流体力学-量纲化分析详解

流体力学-量纲化分析详解
第四步:对1, 解得:c1=1,b1=2,a1=0 对2:
解得:c2=0,b2=0,a2=1 对3: 解得:c3=1,b3=1,a3=1
第五步:归纳上述得:


故有关系式:G(1,2,3)=0
因为要求的是压强降p,故此可解出:
而函数 G1 的具体确定可通过试验进行。
流体力学里有几类主要问题:如封闭管道内的流动,带有自由表面的流动(如 河流),没有任何接触面的流动(如喷雾),以及通过物体的绕流(如飞行中的 飞机)等。而表征这些流动的无量纲参数将是非常有意义的。
1.1 量纲分析的提出
现代工程的流体力学问题,往往是十分复杂的。例如飞机与船舶的流体动力特性、 河流的水动力学特性等等。如何解决这些问题?途径有:
(a)进行原型的观察与测量,这需要耗费大量的资金及时间,以及人力与 设备。不仅如此,有时这种测量是无法做到的,例如在十二级台风中怎么到海上 去测量船舶的流体动力特性?同时,原型的实测有时是不符需求的,例如建造一 艘巨型的航空母舰,我们不能等建成之后才知道它的性能,很多产品必须在建成 之前能预见它的性能。
如果已知力 F 和物体质量 M 的量纲,那么加速度 a 的量纲必须满足上述公 式。即 F、M、a 中的二个可以自由选择,而第三个则必须根据已选定的二个物 理量量纲按照其间存在的定律推导出来。由此可见,在物理量中有些量的量纲是 基本的可以独立取定,而另外一些物理量的量纲则是根据物理定律推导出来的。 前者称为基本单位,后者称为导出单位。
在国际单位制(SI)中,七个基本物理量长度、质量、时间、电流、热力学温 度、物质的量、 发光强度的量纲符号分别是 L、M、T、I、Q、N 和 J。
力学中基本单位的量纲有两个系统:
(1)表征长度的量纲[L];时间的量纲[T];质量的量纲[M]。(2)表征力 的量纲[F];时间的量纲[T];长度的量纲[L]。为了应用方便,根据第一个基本 单位的量纲系统将力学中经常遇见的一些物理量的量纲列表如下:

第四章相似和量纲分析分解

第四章相似和量纲分析分解

1.弗劳德模型法
用于重力起主要作用,粘性力可忽略的场合。 相似准则为Fr,有:
1 v 2 惯性力 v2 v '2 Fr ; ; v l2 gl 重力 gl g ' l '
基本比例尺为:
密度比例尺 和长度比例尺 l 。
弗劳德模型法在水利工程上应用广泛。
图表示深为H=4m的水在弧形闸门下的流动,求(1) δρ=1, δl=10的模型上的水深。(2)在模型上测得流量、 收缩断面流速、作用在闸门上的力及力矩分别如下, 求各实物上的量。
作用在单位质 量流体的压力 流体质点的加速度 (惯性力)
0 理想流体,
二、相似准则
模型流动与实物流动如果存在力学相似,则必然存在众多的比例尺。如果一 一检查这些比例尺相似的话,过程及其繁琐。而且也没有必要,下面介绍判 断相似的准则。用他们来判断力学相似。
设符合模型运动不可压缩流体的运动微分方程:
l
qv q qv ' l qv ' 49m 3 / s v v v' l v 4.11m / s F F F ' l F ' 5 104 N
3 1 2
5 2
M M M ' l M ' 75 104 Nm
2 g l
V
p V2 lV
一般情况下,模型与实际流动选用同一种介质。但要做到完全力
学相似是很困难的,实际采用近似模型法。
如果所选择的三个基本比例尺
l , v ,
V l
V ν l
1 2
2 g l
V
弗劳德数 Fr

流体力学相似原理和量纲分析

流体力学相似原理和量纲分析

称为不可压缩流体定常流动的力学相似准则。
11
四、马赫数
当考虑流体压缩性时,弹性力起主要作用 F=EA
在因次上 [F ] [E][A] El2
代入(4 —10)中的 F 时,则
Enln2
nln2Vn2
Emlm2
mlm2Vm2
即 En Em
nVn2 mVm2
对可压缩流体,音速a
E
, 因此
E
1 a2
欲使雷诺数相等,将有 n lm vn m ln vm
1
1
欲使弗劳德数相等,将有
n m
ln lm
2
gn gm
2
v l
l
1 2
v
l 32
这在技术上很难甚至不可能做到。实际中,常常要对所研 究的流动问题作深入的分析找出影响流动问题的主要作用力, 满足一个主要力的相似而忽略其它次要力的相似。
15
例:对于管中的有压流动及潜体绕流等,只要流动的雷 诺数不是特别大,一般其相似条件依赖于雷诺准则数。
m gmlm3
mlm
2 2 m
简化后得
2 n
m2
(4—14)
式中
2
Fr
gnln gmlm
,称为弗劳德 Froude 数。
gl
物理意义:
惯性力与重力之比。
9
三、欧拉数
研究淹没在流体中的物体表面上的压力或压强分布时,
起主要作用的力为压力 F pA 。
在因次上为
F pA Pl 2
将其代替式(4—10)中的F时,则
纲数之间的函数式(4—22),这就是泊金汉 E.Buckingham
定理。因为经常用 表示无量纲数,故又简称 定理。

流体力学量纲分析(课堂PPT)

流体力学量纲分析(课堂PPT)
如质量力、表面力、动量等
几何
相似 流 应
运动

满 足
相似

的 条
动力 似 件
相似
3
一 几何相似(空间相似)
定义: 模型和原型的全部对应线性长度的 比值为一定常数 。
以上标“ '”表 示模型的有关量
L' L h
Cl
(4-1)
Cl :长度比例尺(相似比例常数)
4
面积比例尺: 体积比例尺:
图4-3 动力场相似
力的比例尺:
CF
Fp ' Fp
F 't Ft
W' W
FI ' FI
(4-9)
8
又由牛顿定律可知:
' l'3 v'
CF
t'
l 3
v
C
Cl2C
2 v
t
其中: C
'
为流体的密度比例尺。
力矩(功,能)比例尺:
CM
M' M
F'l' Fl
CFCl
Cl3Cv2C
压强(应力)比例尺:
图4-2速度场相似
时间比例尺: 速度比例尺:
t '1 t1
t'2 t2
t'3 t3
Ct
l'
Cv
v' v
t' l t
Cl Ct
(4-4)
(4-5)
6
加速度比例尺:
Ca
v' a' t ' av
t
Cv Ct
Cv2 Cl
(4-6)
体积流量比例尺:
CqV

流体力学 第四章 量纲分析

流体力学 第四章 量纲分析

v l
F 3 l
3 Fp Fm3 300 20 2400000 N 2400 kN l
5.按雷诺准则和佛劳德准则导出的物理量比尺表 比尺
名称
λυ=1 长度比尺λl 流速比尺λv λl λl-1
雷诺准则 λυ≠1 λl λυλl-1
弗劳德准则 λl λl1/2
加速度比尺λa
取m个基本量,组成(n-m)个无量纲的π项
F 1 , 2 ,, nm 0
例:求有压管流压强损失的表达式 解:步骤
a.找出物理过程中有关的物理量,组成未知的函数关系
f p, ,, l , d , , v 0
b.选取基本量
n7
常取:几何学量l(d),运动学量v,动力学量ρ
vp vm

up um
v λv——速度比尺
l t tm lm vm v
tp lp vp
时间比例尺 加速度比尺
v 2 a v t l
qV p qVm
流量比例尺 q 运动粘度比例尺 角速度比例尺
3 3 l 2l v lm tm t
Re
vl

雷诺数——粘性力的相似准数
(2)佛劳德准则——重力是主要的力
FGP FIP FGm FIm
改成
FIm FIP FGP FGm
FG mg gl 3
FI l 2v 2
2 vm g p l p g m lm
v2 p
无量纲数
v2 Fr gl
佛劳德数——重力的相似准数 (3)欧拉准则——压力是主要的力
20 vm v p 300 6000km / h lm 1 lp
难以实现,要改变实验条件

流体力学4-1.2量纲分析

流体力学4-1.2量纲分析
由定理,选v、d、ρ为基本量,组成各π项
D 1 a1 b1 c1 d
2
d
a2 b2 c2
12
按π项无量纲,决定各基本量指数
阻力
1 1
[ D] [ ] [d ] [ ]
a1 b1
c1
1 3 c1
M LT
2
LT
1
1 a1
L M L
力[F ]= MLT-2 应力[p]= M L-1T-2 动力粘滞系数[μ]=ML-1T-1
4
二、无量纲量
2、产生途径
[q] M L T

1、定义 当量纲公式中各量纲指数α=β=γ=0时,
则[q]= 1,此时q为无量纲数,即为纯数 由两个具有相同量纲的物理量相比得到 线应变ε=⊿l/l 相对粗糙度ks/d 水力坡度J=hf /l 底坡i 几个有量纲量乘除组合得到 1 2/gh ,弗劳德数 Fr =v d ( LT ) L 雷诺数
16
进行量纲分析,则有 a1 = 0 , a2 = 1 , a3 = 0 , a4 = 2 , b1= 0, b2= 1, b3 = 1, b4 = - 1, c1 = 0 c2 = 1 c3 = 0 c4 = 0
1 h f / L
ks gd F ( , Re, , 2 ) 0 L d
基本量纲:具有独立性,不能由其他量纲推导出来 导出量纲:可由基本量纲导出的量纲 力学的基本量纲体系[M- L-T]: 取质量M,长度L、时间T。 七种量纲构成所有物理量 (对应国际单位制中m 、kg、s、A、K、mol、cd ) [ F ]= MLT -2 3 [A]= L2 [ρ]= ML-3
4、量纲公式:
1 b1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

改成
FIP FIm FGP FGm
FG mg gl 3
FI l 2v2
v
2 p

vm2
g plp gmlm
无量纲数
Fr

v2 gl
佛劳德数——重力的相似准数 (3)欧拉准则——压力是主要的力
FPP FIP FPm FIm
改成
FPP FPm FIP FIm
FP l 2 FI l 2v2
385km/ h
(3)改变压强(30at),温度不变
等温过程p∝ρ,且μ相同
Re vl pvl
ppvpl p pmvmlm
vm
vp
lp pp lm Pm
300 20 1 200km/ h 1 30
例3:溢水堰模型,λl=20,测得模型流量为300L/s,水 的推力为300N,求实际流量和推力
vp
lp lm
300 20 1
60
水 1.007 10 6 m2 / s 空气 15.7 10 6 m2 / s
vpl p vmlm
p m
vm
vp
l pm lm p
201.007106 300 115.7 106
PP
P vP2

Pm
m vm2
无量纲数
Eu

p
v 2
p
v 2
欧拉数——压力的相似准数
(4)柯西准则——弹性力是主要的力
FEP FIP FEm FIm
改成
FIP FIm FEP FEm
FE El 2 E——弹性模量 FI l 2v2

P
v
2 p

mvm2
Ep
Em
(*)
高为10/5=2m,风口直径为0.6/5=0.12m 原型是空气υp=15.7×10-6m2/s Re vd 3107 属阻力平方区(自模区)

因此采用粗糙度较大的管子,提前进入自模区 (Re=50000)
Re

vm 0.12 15.7 106
50000
vm
6.5m / s
此时
v

8 6.5
1.23
例2:弦长为3m的机翼以300km/h的速度在温度为20℃、 压强为1at的静止空气中飞行,用λl=20的模型在风洞中 作试验:(1)如果风洞中空气的温度和压强不变,风 洞中空气速度应为多少?
解:风洞实验中粘性力是主要的——雷诺准则
υ相同
vpl p vmlm
vm
运动相似只有一个速度比尺,运动相似是实验 的目的
(3)动力相似
密度比例尺 质量比例尺


p m
m

mp mm

pVp mVm
3l
力的比尺
F

Fp Fm
ma
l22v
力多边形法则: FT FG FP FE FI 0 动力相似→对应点 上的力的封闭多边 形相似
动力相似是运动相似的保证
动力粘度的比例尺
lv
无量纲系数的比例尺
C 1
相同介质重力加速度的比例尺
g 1
2.相似准则 常选惯性力为特征力,将其它作用力与惯性力相比,组 成一些准则,由这些准则得到的准则数(准数)在相似 流动中应该是相等的
(1)雷诺准则——粘性力是主要的力

up um
v
λv——速度比尺
时间比例尺
t
tp tm
lp lm
vp vm
l v
加速度比尺
a

v t

v2 l
流量比例尺
q

qV p qVm

l
3 p
lm3
tp tm
3l t
2lv
运动粘度比例尺 角速度比例尺
lv


v l
解:溢水堰受到的主要作用力是重力,用佛劳德准则
Q vA vl 2 Q vl2
佛劳德准则: v l
Q

5 2 l
Qp Qm5l 2 300 205 2 537000L / s 537m3 / s
无量纲数
Ca

v2
E
柯西数——弹性力的相似准数
气体:将 a E 代入(*)式,得

vP vm aP am
无量纲数 M v a
马赫数——弹性力的相似准数
(5)其它准数
W v2l

表惯面性张力力
韦伯数——表面张力的相似准数
Sr

l
v
vt l

时位变变惯惯性性力力
10 2
υp——水 υm——很困难
如果υp——空气(15.7×10-6m2/s) 自模区——阻力平方区
υm——水(1.007×10-6m2/s)
(与Re无关)
l 6.24
结论:根据影响流动的主要作用力,正确选择 相似准则,是模型实验的关键
4.例1:某车间长30m,宽15m,高10m,用直径为0.6m 的风口送风,要求风口风速8m/s,如取λl=5,确定模型 尺寸及模型的出口风速 解:λl=5,则模型长为30/5=6m,宽为15/5=3m,
第四章 相似原理和量纲分析
§4-1相似原理
1.力学相似的基本概念
(1)几何相似
lp lm

dp dm
l
p m
λl——长度比尺
Ap Am

l
2 p
lm2
l2
vp vm

l
3 p
lm3
3l
几何相似只有一个长度比尺,几何相似是力学 相似的前提
(2)运动相似
vp vm
斯特洛哈尔数——脉动角频率的相似准数
Ar

gd0T0
v02Te

浮力与重力之差(有效 惯性力
重力)
阿基米德准数——温差、浓差射流的轴线弯曲的相似准数

3.准则的选择
很难实现同时满足两个以上准数相等
例:若同时满足Re数相等和Fr数相等
(1)同种介质(υp=υm)
Re:vpl p vmlm
FTP FIP FTm FIm
改成
FIP FIm FTP FTm
FT

A dv
dy

lv

lv
FI ma l 2v2
vpl p vmlm
p m
无量纲数 Re vl

雷诺数——粘性力的相似准数
(2)佛劳德准则——重力是主要的力
FGP FIP FGm FIm

v

1
l
Fr(gp=gm):
v
2 p
vm2
lp lm
v l
1
l
l
l 1 失去模型实验的价值
(2)不同介质(υp≠υm)
Re:vplp vmlm
p m

v

l
Fr:
3
l2
v l
取 l 10
m

p
3

p
31.62
相关文档
最新文档