iso1050-CAN隔离芯片-Ti隔离
CAN总线隔离芯片iso1050_C

ISO1050
(1) Product Preview (2) Certifiactions Pending
ORDERING NUMBER ISO1050DUB (rail)
ISO1050DUBR (reel) ISO1050LDW (rail) ISO1050LDWR (reel) ISO1050DW (rail) ISO1050DWR (reel)
ABSOLUTE MAXIMUM RATINGS(1) (2)
VCC1, VCC2 VI VCANH or VCANH IO
ESD
Supply voltage (3)
Voltage input (TXD)
Voltage range at any bus terminal (CANH, CANL)
Receiver output current Human Body Model
ISO1050 ISO1050L
ZHCS321E – JUNE 2009 – REVISED DECEMBER 2011
独立的控制器局域网 (CAN) 收发器
查询样品: ISO1050, ISO1050L
特性
1
•2 5000VRMS隔离 (ISO1050DW) • 2500-VRMS隔离 (ISO1050DUB和ISO1050LDW) • 故障安全输出 • 低回路延迟:150ns (典型值) • 50kV/μs 典型静态抗扰度 • 符合或者超过 ISO11898 规格 • –27V 至 40V 的总线故障保护 • 主超时功能 • IEC 60747-5-2 (VDE 0884,修订版本2) & IEC
±15 mA ±4 kV ±4 kV ±1.5 kV
Machine Model
TJA1050中文资料_数据手册_参数

2003年10月22日 4飞利浦半导体产品SPECI FI CATION高速CAN收发器 TJA1050功能说明 TJA1050是CAN协议之间的接口控制器和物理 总线.它主要用于使用波特率的高速汽车应用 60 KBAUD到1 MBAUD.它提供差分传输总线能力和差分接收器能力 CAN协议控制器.它完 全兼容 “ISO 11898”标准.限流电路保护发射机输出阶段由意外短路造成的损坏虽然电力正常或负电源电压在这种故障状态下功耗会 增加.热保护电路可保护IC免受损坏通过关闭发射机如果结温超过约165的值 C.因为发射机消耗大部分功率和功率 IC的耗散和温度降 低.所有其他 IC功能继续运行.发射机关闭状态当引脚TXD变为高电平时复位.热保护当总线短路时尤其需要电路. CANH和CANL引脚不 受汽车的保护电瞬变(根据 “ISO 7637”;参见图4).控制引脚S允许选择两种工作模式:高速模式或静音模式.高速模式是正常的操作 模式,并且是通过将引脚S连接到地面来选择.这是默认设置模式,如果引脚S未连接.但是,要确保EMI在仅使用高速应用的应用中表现 出色模式,建议将引脚S连接到地面.在静音模式下,发射器被禁用.所有其他 IC功能继续运行.无声模式是 通过连接引脚S到V CC进行 选择 ,可用于防止网络通信被阻塞,到期到一个失控的CAN控制器. “TXD主导超时”定时器电路阻止总线线路被驱动到永久主导状 态(阻塞)所有网络通信)如果引脚TXD被强制由硬件和/或软件永久为低应用失败.定时器由否定触发边沿TXD引脚.如果持续低电平 的话 TXD引脚超过内部定时器值,发送器为残疾,驾驶巴士进入隐性状态.定时器由引脚TXD上的上升沿复位.表格1 CAN收发器的功 能表; X =不在乎 V CC TXD小号 CANH CANL总线状态 RXD 4.75 V至5.25 V低低(或 FL替罪羊)高低优势低 4.75 V至5.25 V X高 0.5V CC 0.5V CC隐性高 4.75 V至5.25 V高( 飞利浦半导体产品SPECI FI CATION高速CAN收发器 TJA1050手册,全页面宽度 50 80 0 020三十 10 MGT231 40 F(MHZ) 20 40 60一个 (D B μV)图9高达50 MHZ的典型电磁发射(峰值幅度测量).数据速率为500千比特/秒.手册,全页面宽度 10 80 0 04 6 2 MGT233 8 F(MHZ) 20 40 60一个 (D B μV)图10高达10 MHZ的典型电磁发射(峰值幅度测量和峰值包络振幅).数据速率为500千比特/秒. 图1方框图.钉扎符号销描述 TXD 1传输数据输入;读入数据从CAN控制器到总线线路司机 GND 2地面 V CC 3电源电压 RXD 4接收数据输 出;读出来从公交线路到公交车的数据 CAN控制器 V REF五参考电压输出 CANL 6低级CAN总线 CANH 7高级CAN总线小号 8选择高速 模式的输入或静音模式手册,HALFPAGE 1 2 3 4 8 7 6五 MGS375 TJA1050T小号 CANH GND CANL VREF RXD VCC TXD图2引脚配置
ISO1050---电容隔离式隔离CAN总线收发器内部原理及应用

电容隔离式隔离型CAN总线收发器ISO1050
要构建一个安全稳定高可靠性的总线网络,我们必须对各个节点与线缆进行隔离,避免各种电气噪声,共模电压,接地环路等等对系统和人员的破坏从而造成安全隐患出现故障,事实上,隔离的方式有多种多样,比如光耦隔离、磁隔离、电容隔离等供用户选择,用以加在控制器与收发器之间进行隔离。
容隔离是在芯片上集成隔离通道,因此他容易与其他功能的芯片进行组合、集成,ISO1050就是一款将隔离通道与CAN收发器集成在一个封装内的隔离型CAN总线收发器。
在减少占用PCB面积的同时还降低了设计难度,不需要再考虑怎么样在控制器与收发器中间插入一个隔离器件进行隔离。
与其他隔离器件一样,需要设计一个隔离电源为他的总线端VCC2供电用以驱动芯片工作,当然如果想让你的工作更为简单,那么ADI有一款集成电源DC-DC电源的隔离式CAN收发器ADM3053,将隔离电源,信号隔离通道,收发器集成到一个芯片内,使得外围电路大大减少。
高速信号数字隔离芯片

Isolated High-Speed CAN Transceiver Functional DiagramTxD RxDCANHCANLIL41050SV DD2 (V) TxD(1)S CANH CANL BusState RxD 4.75 to 5.25 ↓ Low(2) High Low Dominant Low 4.75 to 5.25 X High V DD2/2 V DD2/2 Recessive High 4.75 to 5.25 ↑ XV DD2/2 V DD2/2 Recessive High<2V (no pwr) X X 0<V<2.5 0<V<2.5 Recessive High 2>V DD2<4.75 >2V X 0<V<2.5 0<V<2.5 Recessive High Table 1. Function table.Notes:1. TxD input is edge triggered: ↑ = Logic Lo to Hi, ↓ = Hi to Lo2. Valid for logic state as described or open circuitX = don’t care. Features• Single-chip isolated CAN/DeviceNet transceiver• Fully compliant with the ISO 11898 CAN standard• Best-in-class loop delay (180 ns)• 3.0 V to 5.5 V input power supplies• >110-node fan-out• High speed (up to 1 Mbps)• 2,500 V RMS isolation (1 minute)• Very low Electromagnetic Emission (EME)• Differential signaling for excellent Electromagnetic Immunity (EMI)• 30 kV/µs transient immunity• Silent mode to disable transmitter• Unpowered nodes do not disturb the bus• Transmit data (TxD) dominant time-out function• Edge triggered, non-volatile input improves noise performance • Bus pin transient protection for automotive environment• Thermal shutdown protection• Short-circuit protection for ground and bus power• −55°C to +125°C operating temperature• JEDEC-standard 16-pin SOIC package• UL1577 and IEC 61010-2001 approvedApplications• Noise-critical CAN• Partially-powered CAN• DeviceNet• Factory automationDescriptionThe IL41050 is a galvanically isolated, high-speed CAN (Controller Area Network) transceiver, designed as the interface between the CAN protocol controller and the physical bus. The IL41050 provides isolated differential transmit capability to the bus and isolated differential receive capability to the CAN controller via NVE’s patented* IsoLoop spintronic Giant Magnetoresistance (GMR) technology.Advanced features facilitate reliable bus operation. Unpowered nodes do not disturb the bus, and a unique non-volatile programmable power-up feature prevents unstable nodes. The devices also have a hardware-selectable silent mode that disables the transmitter. Designed for harsh CAN and DeviceNet environments, IL41050T transceivers have transmit data dominant time-out, bus pin transient protection, thermal shutdown protection, and short-circuit protection, Unique edge-triggered inputs improve noise performance. Unlike optocouplers or other isolation technologies, IsoLoop isolators have indefinite life at high voltage.IsoLoop® is a registered trademark of NVE Corporation. REV. CAbsolute Maximum Ratings (1) (2)ParametersSymbol Min. Typ. Max. Units Test Conditions Storage temperatureT S −55 150 °C Ambient operating temperatureT A −40 135 °CDC voltage at CANH and CANL pins V CANH V CANL −27 40 V0 V< V DD2 < 5.25 V;indefinite durationSupply voltageV DD 1 , V DD 2 −0.5 6 V Digital input voltage V TxD , V S −0.3 V DD + 0.3 V Digital output voltage V RxD −0.3 V DD + 0.3 V DC voltage at V REFV REF −0.3 V DD + 0.3 V Transient Voltage at CANH or CANL V trt(CAN) −200 200 V Electrostatic discharge at all pins V esd −4,000 4,000 V Human body model Electrostatic discharge at all pinsV esd −200 200 V Machine modelRecommended Operating ConditionsParameters Symbol Min. Typ. Max. Units Test ConditionsSupply voltageV DD 1 V DD 2 3.0 4.75 5.55.25 VInput voltage at any bus terminal (separately or common mode) V CANHV CANL−12 12 VHigh-level digital input voltage (3) (4) V IH 2.0 2.4 2.0 V DD 1V DD 1V DD 2 V V DD 1 = 3.3 V V DD 1 = 5.0 V V DD 2 = 5.0 VLow-level digital input voltage (3) (4) V IL 0 0.8 V Digital output current (RxD) I OH −8 8 mA V DD1 = 3.3V to 5V Ambient operating temperatureT A −40 125 °C Digital input signal rise and fall timest IR , t IF 1 μsInsulation SpecificationsParametersSymbol Min. Typ. Max. Units Test ConditionsCreepage distance (external)8.08 mmBarrier impedance > 1014|| 7 Ω || pF Leakage current0.2 μA RMS 240 V RMS , 60 HzSafety and ApprovalsIEC61010-2001TUV Certificate Numbers:N1502812 (pending)Classification: Reinforced InsulationModelPackage Pollution Degree Material Group Max. Working VoltageIL41050SOIC (0.3")II III 300 V RMSUL 1577Component Recognition Program File Number: E207481 (pending) Rated 2,500V RMS for 1 minuteSoldering ProfilePer JEDEC J-STD-020CMoisture Sensitivity Level: MSL=2Notes:1. Absolute Maximum specifications mean the device will not be damaged if operated under these conditions. It does not guarantee performance.2. All voltages are with respect to network ground except differential I/O bus voltages.3. The TxD input is edge sensitive. Voltage magnitude of the input signal is specified, but edge rate specifications must also be met.4. The maximum time allowed for a logic transition at the TxD input is 1 μs.Pin Connections1 V DD1 V DD1 power supply input2 GND1 V DD1 power supply ground return (pin 2 is internally connected to pin 8)3 TxD Transmit Data input4 NCNo internal connection5 RxD Receive Data output6 NC No internal connection7 NC No internal connection8 GND1 V DD1 power supply ground return (pin 8 is internally connected to pin 2)9 GND2 V DD2 power supply ground return (pin 9 is internally connected to pin 15)10 V REF Reference voltage output11 V DD2 V DD2 power supply input12 CANL Low level CANbus line13 CANH High level CANbus line14 S Mode select input (high speed/silent select)15 GND2 V DD2 power supply ground return (pin 15 is internally connected to pin 9)16 V DD2 V DD2 power supply inputNCVDD2GND1NCGND2SCANH RxD CANLV REFGND1VDD1GND2 TxDNCVDD2SpecificationsSpecifications (...cont.)Electrical Specifications are T min to T max and V DD1, V DD2= 4.5 V to 5.5 V unless otherwise stated.Differential input capacitance C i(dif) 3.7510 pFV TxD = V DD1Input leakage current at CANH I LI(CANH) 100 170 250 μA V CANH= 5 V, V DD2= 0 V Input leakage current at CANL I LI(CANL) 100 170 250 μA V CANL= 5 V, V DD2= 0 V Thermal ShutdownShutdown junction temperature T j(SD) 155 165 180 °CTiming CharacteristicsTxD to bus active delay t d(TxD-BUSon)29326366125128nsV S= 0 V; V DD1 = 5 VV S = 0 V; V DD1 = 3.3 VTxD to bus inactive delay t d(TxD-BUSoff)29326871110113nsV S = 0 V; V DD1 = 5 VV S = 0 V; V DD1 = 3.3 VBus active to RxD delay t d(BUSon-RxD)24275861125128nsV S = 0 V; V DD1 = 5 VV S = 0 V; V DD1 = 3.3 VBus inactive to RxD delay t d(BUSoff-RxD)4952103106170173nsV S = 0 V; V DD1 = 5 VV S = 0 V; V DD1 = 3.3 VTxD dominant time for timeout T dom(TxD) 250 457 765 μs V TxD = 0 V3.0 V > V DD1 < 5.5 VMagnetic Field Immunity(3)V DD1 = 5 V, V DD2 = 5 VPower frequency magnetic immunity H PF2,500 3,000 A/m 50 Hz/60 HzPulse magnetic field immunity H PM 3,000 3,500 A/m t p = 8 µsCross-axis immunity multiplier K X 1.8 Figure1V DD1 = 3.3 V, V DD2 = 5 VPower frequency magnetic immunity H PF1,000 1,500 A/m 50 Hz/60 HzPulse magnetic field immunity H PM 1,800 2,000 A/m t p = 8 µsCross-axis immunity multiplier K X 1.5 Figure1 Notes:1. The TxD input is edge sensitive. Voltage magnitude of the input signal is specified, but edge rate specifications must also be met.2. The maximum time allowed for a logic transition at the TxD input is 1 μs.3. Uniform magnetic field applied across the pins of the device. Cross-axis multiplier effective when field is applied perpendicular to the pins. Electrostatic Discharge SensitivityThis product has been tested for electrostatic sensitivity to the limits stated in the specifications. However, NVE recommends that all integrated circuits be handled with appropriate care to avoid damage. Damage caused by inappropriate handling or storage could range from performance degradation to complete failure.Electromagnetic CompatibilityThe IL41050 is fully compliant with generic EMC standards EN50081, EN50082-1 and the umbrella line-voltage standard for Information Technology Equipment (ITE) EN61000. The IsoLoop Isolator’s Wheatstone bridge configuration and differential magnetic field signaling ensure excellent EMC performance against all relevant standards. NVE conducted compliance tests in the categories below:EN50081-1Residential, Commercial & Light IndustrialMethods EN55022, EN55014EN50082-2: Industrial EnvironmentMethods EN61000-4-2 (ESD), EN61000-4-3 (Electromagnetic Field Immunity), EN61000-4-4 (Electrical Transient Immunity),EN61000-4-6 (RFI Immunity), EN61000-4-8 (Power Frequency Magnetic Field Immunity), EN61000-4-9 (Pulsed MagneticField), EN61000-4-10 (Damped Oscillatory Magnetic Field)ENV50204Radiated Field from Digital Telephones (Immunity Test)Immunity to external magnetic fields is higher if the field direction is “end-to-end” (rather than to “pin-to-pin”) as shown in thediagram at right. Fig. 1Application InformationPower Supply DecouplingBoth V DD1 and V DD2 must be bypassed with 100 nF ceramic capacitors. These supply the dynamic current required for the isolator switching and should be placed as close as possible to V DD and their respective ground return pins.Dominant Mode Time-out and Failsafe Receiver FunctionsCAN bus latch up is prevented by an integrated Dominant mode timeout function. If the TxD pin is forced permanently low by hardware or software application failure, the time-out returns the TxD output to the high state no more than 765 μs after TxD is asserted dominant. The timer is triggered by a negative edge on TxD. If the duration of the low is longer than the internal timer value, the transmitter is disabled, driving the bus to the recessive state. The timer is reset by a positive edge on pin TxD.If power is lost on Vdd2, the IL41050 asserts the RxD output high when the supply voltage falls below 3.8 V. RxD will return to normal operation as soon as Vdd2 rises above approximately 4.2 V.The Isolation AdvantageBattery fire caused by over or under charging of individual lithium ion cells is a major concern in multi-cell high voltage electric and hybrid vehicle batteries. To combat this, each cell is monitored for current flow, cell voltage, and in some advanced batteries, magnetic susceptibility. The IL41050 allows seamless connection of the monitoring electronics of every cell to a common CAN bus by electrically isolating inputs from outputs, effectively isolating each cell from all other cells. Cell status is then monitored via the CAN controller in the Battery Management System (BMS).Another major advantage of isolation is the tremendous increase in noise immunity it affords the CAN node, even if the power source is a battery. Inductive drives and inverters can produce transient swings in excess of 20 kV/μs. The traditional, non-isolated CAN node provides some protection due to differential signaling and symmetrical driver/receiver pairs, but the IL41050 typically provides more than twice the dV/dt protection of a traditional CAN node.SJA1000IL41050Fig. 2. Isolated CAN node using the IL41050 and an SJA1000 MCU.Programmable Power-UpA unique non-volatile programmable power-up feature prevents unstable nodes. A state that needs to be present at node power up can be programmed at the last power down. For example if a CAN node is required to “pulse” dominant at power up, TxD can be sent low by the controller immediately prior to power down. When power is resumed, the node will immediately go dominant allowing self-check code in the microcontroller to verify node operation. If desired, the node can also power up silently by presetting the TxD line high at power down. At the next power on, the IL41050 will remain silent, awaiting a dominant state from the bus.The microcontroller can check that the CAN node powered down correctly before applying power at the next “power on” request. If the node powered down as intended, RxD will be set high and stored in IL41050’s non-volatile memory. The level stored in the RxD bit can be read before isolated node power is enabled, avoiding possible CAN bus disruption due to an unstable node.Package Drawings, Dimensions and SpecificationsOrdering Information and Valid Part NumbersBulk Packaging Blank = TubeTR13 = 13'' Tape and Reel PackageE = RoHS Compliant Temperature RangeT = Extended (-55˚C to +125˚C)Channel Configuration 1050 = CAN Transceiver Base Part Number4 = Isolated Transceiver Product Family IL = IsolatorsValid Part Numbers IL41050TEIL4150TE TR13RoHSCOMPLIANTRevision HistoryISB-DS-001-IL41050-C February 2010 Changes• Min. operating temperature changed to −55°C • Misc. changes and clarifications for final release.ISB-DS-001-IL41050-B January 2010 Change• Clarified TxD edge trigger mode. Added information to Applications section. Tightened timing specifications.ISB-DS-001-IL41050-A January 2010 Change• Initial release.About NVEAn ISO 9001 Certified CompanyNVE Corporation manufactures innovative products based on unique spintronic Giant Magnetoresistive (GMR) technology. Products include Magnetic Field Sensors, Magnetic Field Gradient Sensors (Gradiometers), Digital Magnetic Field Sensors, Digital Signal Isolators, and Isolated Bus Transceivers.NVE pioneered spintronics and in 1994 introduced the world’s first products using GMR material, a line of ultra-precise magnetic sensors for position, magnetic media, gear speed and current sensing.NVE Corporation11409 Valley View RoadEden Prairie, MN 55344-3617 USATelephone: (952) 829-9217Fax: (952) 829-9189Internet: e-mail: isoinfo@The information provided by NVE Corporation is believed to be accurate. However, no responsibility is assumed by NVE Corporation for its use, nor for any infringement of patents, nor rights or licenses granted to third parties, which may result from its use. No license is granted by implication, or otherwise, under any patent or patent rights of NVE Corporation. NVE Corporation does not authorize, nor warrant, any NVE Corporation product for use in life support devices or systems or other critical applications, without the express written approval of the President of NVE Corporation.Specifications are subject to change without notice.ISB-DS-001-IL41050-CFebruary 2010。
CAN收发器—TJA1040与TJA1050区别

CAN 收发器 TJA1040与TJA1050对比报告1.简介CAN总线,它是一种多主方式的串行通讯总线,基本设计规范要求有较高的位速率,高抗干扰性,而且能够检测出产生的任何错误。
信号传输距离达到10Km时,仍然可提供高达5Kbps的数据传输速率。
由于CAN串行通讯总线具有这些特性,它很自然的在汽车、制造业以及航空工业中受到广泛应用。
与CAN协议相关的芯片主要有两类,一类是:CAN控制器芯片,一类是:CAN收发器芯片,如TJA1040,TJA1050。
CAN控制器用于实现CAN总线的协议底层以及数据链路层,用于生成CAN帧并以二进制码流的方式发送,在此过程中进行位填充、添加CRC校验、应答检测等操作;将接收到的二进制码流进行解析并接收,在此过程中进行收发比对、去位填充、执行CRC校验等操作。
此外还需要进行冲突判断、错误处理等诸多任务。
图1 CAN收发器在CAN总线应用系统中的位置CAN收发器是CAN协议控制器和物理总线(双绞线)之间的接口,用于将二进制码流转换为差分信号发送,将差分信号转换为二进制码流接收,主要实现逻辑电平与“显性”,“隐性”的转换。
它可以为总线提供差动的发送功能,为控制器提供差动的接收功能,是CAN-Bus 网络中的必须设备。
常见的CAN控制器芯片与CAN收发器芯片型号参见第5部分。
目前还没有看到把CAN控制器和CAN收发器集成在一起的CAN协议芯片,目前主要是独立的CAN控制器,独立的CAN接收器,集成CAN控制器的微处理器三类。
因为CAN收发器和CAN控制器之间有时需要添加隔离单元。
总结:CAN通信协议主要有CAN控制器完成,CAN控制器主要有实现CAN协议的电路和实现与微处理器接口的电路组成。
CAN收发器在CAN总线应用系统中的位置如下图所示。
图2 CAN收发器的典型应用电路TJA1050 的设计采用了先进的绝缘硅SOI技术进行处理,以及最新的EMC技术,所以TJA1050具有优良的EMC性能。
tja1050工作原理 -回复

tja1050工作原理-回复工作原理:TJA1050是一种用于CAN总线通讯的收发器芯片。
它采用了高度集成的CMOS技术,能够实现低功耗、高速率的数据传输。
具体来说,TJA1050的工作原理可以分为以下几个步骤:第一步:电源供给和初始化在使用TJA1050之前,需要为芯片提供电源。
TJA1050的电源需求为5V,电流不超过15mA。
一旦电源接入,芯片会进入初始化状态。
在初始化状态下,芯片会自动调整自身以适应CAN总线的工作条件,并开始进行通讯准备工作。
第二步:发送数据在CAN总线中,每个节点都可以发送和接收数据。
对于发送数据的节点来说,它们需要将待发送的数据通过TJA1050发送出去。
具体过程如下:首先,发送节点将要发送的数据写入芯片内部的发送缓冲器,然后使能发送(TX)引脚,将待发送的数据通过总线发送出去。
第三步:接收数据对于接收数据的节点来说,它们需要通过TJA1050接收来自总线上的数据。
具体过程如下:首先,接收节点监听总线上的通讯,当有新的数据传输时,TJA1050会将数据写入芯片内部的接收缓冲器。
接收节点可以通过读取接收缓冲器中的数据来获取总线上接收到的数据。
第四步:错误检测和处理在CAN总线通讯中,由于环境干扰或其他原因,很可能会出现错误的数据传输。
TJA1050能够实时检测和处理这些错误。
具体来说,TJA1050会检测传输过程中是否发生了错误,并通过错误标志位来指示错误类型。
在发生错误时,可以通过读取错误标志位并采取相应的措施进行错误处理。
第五步:自动重传机制当一个节点发送数据时,其他节点需要接收并确认该数据。
如果发送节点没有收到其他节点的确认信息,它会认为数据没有成功发送,此时会进行自动重传。
TJA1050能够根据重传机制自动进行数据的重发,以确保数据的可靠传输。
总结:TJA1050是一种用于CAN总线通讯的收发器芯片,通过实现低功耗、高速率的数据传输来满足CAN总线通讯的需求。
接口收发器iso1050dwr的原理

接口收发器ISO1050DWR的基本原理1. 概述接口收发器ISO1050DWR是一种用于控制器局域网(CAN)通信的集成电路,它提供了CAN总线和微控制器之间的物理层接口。
ISO1050DWR在CAN总线上实现了信号的传输和接收,使得微控制器能够与其他CAN节点进行通信。
2. CAN总线介绍CAN总线是一种常用于工业控制和汽车电子系统中的串行通信协议。
它具有高可靠性、抗干扰能力强、传输速率快等特点。
CAN总线由两根线组成:CAN_H和CAN_L,它们分别用于传输高电平和低电平信号。
3. ISO1050DWR的功能ISO1050DWR作为接口收发器,主要具有以下功能: - CAN信号的传输:ISO1050DWR负责将微控制器产生的CAN信号转换成CAN总线上的电压信号进行传输。
- CAN信号的接收:ISO1050DWR负责将CAN总线上的电压信号转换成微控制器能够识别的信号。
- 电气隔离:ISO1050DWR内部集成了电气隔离电路,能够隔离CAN总线和微控制器之间的电气信号,提高系统的稳定性和安全性。
4. ISO1050DWR的工作原理ISO1050DWR的工作原理可以分为发送和接收两个过程。
4.1 发送过程发送过程中,微控制器将CAN信号通过ISO1050DWR发送到CAN总线上。
具体步骤如下: 1. 微控制器将CAN信号输入到ISO1050DWR的发送引脚(TxD)。
2.ISO1050DWR内部的发送器将CAN信号转换为差分信号。
3. 差分信号经过ISO1050DWR内部的驱动器,将信号转换为CAN总线上的电压信号。
4. CAN总线上的其他节点接收到电压信号后,通过CAN收发器将其转换为微控制器能够识别的信号。
4.2 接收过程接收过程中,ISO1050DWR将CAN总线上的信号转换为微控制器能够识别的信号。
具体步骤如下: 1. ISO1050DWR的接收器接收到CAN总线上的电压信号。
双向数字隔离芯片

双向数字隔离芯片双向数字隔离芯片(Dual-Digital Isolation Chip)是一种电子元器件,主要用于电路隔离和信号传输。
它能够将输入信号与输出信号进行双向隔离,以保证信号的安全性和稳定性。
本文将从原理、应用和未来发展等方面介绍双向数字隔离芯片。
一、原理双向数字隔离芯片是通过采用数字隔离技术实现信号的隔离和传输。
其基本原理是利用光电隔离器或磁电隔离器将输入信号和输出信号分别转换为光信号或磁信号,然后再进行传输。
通过这种方式,可以实现输入信号与输出信号之间的电气隔离,避免信号干扰和电流回路的相互影响,提高系统的稳定性和可靠性。
二、应用双向数字隔离芯片在许多领域都有广泛的应用。
以下是几个常见的应用场景:1. 工业控制系统:在工业自动化领域,双向数字隔离芯片常用于隔离输入和输出信号,以保护控制系统免受电磁干扰和高电压的影响。
它能够确保输入信号的准确性和稳定性,并将输出信号隔离开来,以防止系统故障。
2. 医疗设备:在医疗设备中,双向数字隔离芯片常用于隔离高压和低压电路,以确保患者和医护人员的安全。
它可以将高压信号隔离开来,防止电流回路的相互干扰,同时保证信号的传输质量和精确性。
3. 电力系统:在电力系统中,双向数字隔离芯片用于隔离电力传输线路和控制系统,以提高系统的安全性和稳定性。
它可以隔离高压和低压信号,避免电流的回路相互影响,从而确保电力系统的正常运行。
4. 通信设备:在通信设备中,双向数字隔离芯片常用于隔离输入和输出信号,以保护设备免受电磁干扰和高电压的影响。
它可以确保输入信号的准确性和稳定性,并将输出信号隔离开来,以防止设备故障和数据损坏。
三、未来发展随着科技的不断发展,双向数字隔离芯片在未来将有更广阔的应用前景。
以下是几个可能的发展方向:1. 高速传输:随着通信和数据传输的需求增加,双向数字隔离芯片将迎来更高的传输速度要求。
未来的研发重点可能会放在提高芯片的数据传输速率和带宽上,以满足高速通信和数据处理的需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Vcc1 1 GND1 2
RXD 3 nc 4 nc 5
TXD 6 GND1 7 GND1 8
16 Vcc2 15 GND2 14 nc 13 CANH 12 CANL 11 nc 10 GND2 9 GND2
RXD TXD
Vcc1 1 RXD 2 TXD 3 CANH GND1 4 CANL
8 Vcc2 7 CANH 6 CANL 5 GND2
circuits from entering the local ground and interfering with or damaging sensitive circuitry.
As a CAN transceiver, the device provides differential transmit capability to the bus and differential receive capability to a CAN controller at signaling rates up to 1 megabit per second (Mbps). Designed for operation in especially harsh environments, the device features cross-wire, overvoltage and loss of ground protection from –27 V to 40 V and over-temperature shut-down, as well as –12 V to 12 V common-mode range.
DESCRIPTION
The ISO1050 is a galvanically isolated CAN transceiver that meets or exceeds the specifications of the ISO
11898 standard. The device has the logic input and output buffers separated by a silicon oxide (SiO2) insulation barrier that provides galvanic isolation of up to 5000 VRMS for DW Package and 2500 VRMS for DUB package. Used in conjunction with isolated power supplies, the device prevents noise currents on a data bus or other
61010-1 Approved • UL 1577, IEC 60950-1 and CSA Approvals
Pending • 3.3-V Inputs are 5-V Tolerant
• Typical 25-Year Life at Rated Working Voltage (see Application Report SLLA197 and Figure 15)
ISO1050
ISOLATED CAN TRANSCEIVER
Check for Samples: ISO1050
SLLS983C – JUNE 2009 – REVISED JULY 2010
FEATURES
1
•2 5000-VRMS Isolation (DW Package) • 2500-VRMS Isolation (DUB Package) • Failsafe Outputs • Low Loop Delay: 150 ns Typical • 50 kV/ms Typical Transient Immunity • Meets or Exceeds ISO 11898 requirements • Bus-Fault Protection of –27 V to 40 V • Dominant Time-Out Function • IEC 60747-5-2 (VDE 0884, Rev. 2) & IEC
ABSOLUTE MAXIMUM RATINGS(1) (2)
VCC1, VCC2 VI VCANH or VCANH IO
ESD
Supply voltage (3) Voltage input (TXD) Voltage range at any bus terminal (CANH, CANL) Receiver output current
(4) Tested while connecteECOMMENDED OPERATING CONDITIONS
MIN NOM MAX UNIT
VCC1 VCC2 VI or VIC VIH VIL VID
IOH
Supply voltage, controller side
Copyright © 2009–2010, Texas Instruments Incorporated
ISO1050
SLLS983C – JUNE 2009 – REVISED JULY 2010
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.
SUPPLY CURRENT
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
ICC1
VCC1 Supply current
Human Body Model
JEDEC Standard 22, Method A114-C.01
Charged Device Model JEDEC Standard 22, Test Method C101
Bus pins and GND2 (4) All pins All pins
VALUE / UNIT –0.5 V to 6 V –0.5 V to 6 V –27 V to 40 V
2
PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.
(3) All input and output logic voltage values are measured with respect to the GND1 logic side ground. Differential bus-side voltages are measured to the respective bus-side GND2 ground terminal.
The ISO1050 is characterized for operation over the ambient temperature range of –55°C to 105°C.
DW PACKAGE
FUNCTION DIAGRAM
DUB PACKAGE
GALVANIC ISOLATION
High-level output current
Driver Receiver
3 4.75 –12 (1)
2 0 –7 –70 –4
5.5 V 5 5.25 V
12 V 5.25 V
0.8 V 7V
mA
Driver
IOL
Low-level output current
Receiver
70 mA
4
TA
1
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. DeviceNet is a trademark of others.
Supply voltage, bus side
Voltage at bus pins (separately or common mode)
High-level input voltage
TXD
Low-level input voltage
TXD
Differential input voltage
Ambient Temperature
TJ
Junction temperature (see THERMAL CHARACTERISTICS)
-55
105 °C
-55
125 °C
(1) The algebraic convention, in which the least positive (most negative) limit is designated as minimum is used in this data sheet.