江苏省常州高级中学2019-2020学年高一下学期期中考试数学试卷Word版含答案
(完整word版)江苏省常州高级中学2018_2019学年高一数学下学期期中试题

江苏省常州高级中学2018-2019学年高一数学下学期期中试题说明:1. 以下题目的答案做在答卷纸上.2. 本卷总分160分,考试时间120分钟.一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相应的位置上..........1.数列中,,则= ▲.2.在△ABC中,已知,则A为▲.3.在函数①,②,③,④中,最小值为2的函数的序号是▲.4.设是等差数列{a n}的前项的和.若,,则的值为▲.5.在中,若,则▲.6.已知数列满足,则的值为▲.7.设正项等比数列{a n}满足.若存在两项a n、a m,使得,则的值为▲.8.在△ABC中,若,,,则△ABC的面积是▲.9.已知数列的通项公式则= ▲.10.在中, ,若该三角形有两解,则的取值范围为▲.11.在△ABC中,已知,则的最小值为▲.12.已知钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图).现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为▲.13.已知数列为公比不为1的等比数列,满足对任意正整数都成立,且对任意相邻三项按某顺序排列后成等差数列,则的值为▲.14.已知则的最大值是▲.二、解答题:本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤.15.(本小题满分14分)在等比数列中,,公比,,且是与的等比中项.(1)求数列的通项公式;(2)设,数列的前项和为,当最大时,求的值.16.(本小题满分14分)在△ABC中,角A,B,C所对的边分别为a,b,c,(1)求角;(2)若,求的值.17.(本小题满分14分)某厂花费2万元设计了某款式的服装.根据经验,每生产1百套该款式服装的成本为1万元,每生产(百套)的销售额(单位:万元)(1)该厂至少生产多少套此款式服装才可以不亏本?(2)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润.(注:利润销售额成本,其中成本设计费生产成本)18.(本小题满分16分)已知,,.(1)当时,求的最小值;(2)当时,求的最小值.19.(本小题满分16分)设数列的前n项和为,已知,().(1)求证:数列为等比数列;(2)若数列满足:,,求数列的通项公式及数列的前n项和.20.(本小题满分16分)已知数列的首项(),其前项和为,设().(1)若,,且数列是公差为3的等差数列,求;(2)设数列的前项和为,满足.①求数列的通项公式;② 若对且,不等式恒成立,求a的取值范围.江苏省常州高级中学2017~2018学年第二学期期中质量检查高一年级数学试卷(附加)命题人:徐惠杰 2018.4 说明:1. 以下题目均为必做题,请将答案写在答卷纸上.2. 本卷总分40分,考试时间30分钟.一、填空题:本大题共4小题,每小题6分,共24分.1.等比数列中,若对任意正整数都有,则▲ .2.在△ABC中, ,则的取值范围是▲ .3.等差数列的前项和为,已知,且数列也为等差数列,则= ▲ .4.正数满足,则的最小值是▲ .二、解答题:本大题共16分,解答时应写出必要的文字说明、证明过程或演算步骤.5.在数列中,,,,为常数,.(1)求的值;(2)设,求数列的通项公式;(3)是否存在正整数(),使得与都为等差数列?若存在,求的值;若不存在,请说明理由.江苏省常州高级中学2017~2018学年第二学期期中质量检查高一年级数学试卷答案1. 2. 3.④ 4. 13 5.6.-37.68.9.10.11. 12.8 13.14.二、解答题15.解:⑴由得.................2分,得因为得, 求得, ...................5分所以 ...........................................7分⑵............................................9分因为对任意,,所以是以4为首项,为公差的等差数列.所以...........................................12分所以最大为. ...................14分16.解:(1)由正弦定理得,中,,所以,................................................3分所以,,,所以;........................6分(2)因为,由正弦定理得,........................8分.............................................................................. .................................12分所以,..................................14分17(1)时,利润................................................................................. ........3分令得,,从而,即..................6分(2)当时,由(1)知,所以当时,(万元). .....................................8分当时,利润....10分因为(当且仅当即时,取“=”),所以(万元). .......................................................... 13分综上,当时,(万元).答:(1)该厂至少生产1百套此款式服装才可以不亏本;(2)该厂生产6百套此款式服装时,利润最大,且最大利润为万元. .......14分18.(1)当时,,.................3分即,,,,.......................................6分当且仅当时,等号成立。
江苏省2019-2020学年高一(下)期中考试数学试卷

高一(下)期中考试数学试卷(本卷满分150分,考试时间120分钟)一、选择题(本大题共有10小题,每题5分,共50分)1、已知点A (1,0),B (-1,1),则直线AB 的斜率为( )A 、21- B 、21C 、2-D 、22、在△ABC 中,︒=∠==60,3,3A b a ,那么∠B 等于( )A 、30°B 、60°C 、30°或150°D 、60°或120°3、直线0632=--y x 在y 轴上的截距为( )A 、3B 、-3C 、2D 、-24、已知正方体棱长为2,则它的内切球的表面积为( )A 、π2B 、π4C 、π8D 、π165、在△ABC 中,角A ,B ,C 的对边分别是c b a ,,,如果7,5,3===c b a ,那么C cos 的值是( )A 、21B 、21-C 、1411D 、14136、在△ABC 中,已知2,30,3=︒==c A b ,则=a Asin ( )A 、41B 、21C 、1D 、27、在△ABC 中,若C B A 222sin sin sin <+,则△ABC 的形状是( )A 、锐角三角形B 、直角三角形C 、钝角三角形D 、不能确定8、设n m ,是两条不同的直线,γβα,,是三个不同的平面,给出下列四个命题:①若γββα⊥⊥,,则γα∥ ②若βαβα⊂⊂⊥n m ,,,则n m ⊥③若αα⊂n m ,∥,则n m ∥ ④若n m ==βγαγβα ,,∥,则n m ∥其中正确命题的序号是( )A 、①④B 、①②C 、④D 、②③④9、如图,在长方体ABCD-A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则异面直线AC 1与BB 1所成角的正弦值为()A 、322 B 、42C 、31D 、2210、在锐角△ABC 中,c b a ,,分别为角A ,B ,C 所对的边,若A =2B ,则b a 的取值范围为( ) A 、[)2,1 B 、()2,1 C 、()3,2 D 、]3,2[ 二、填空题(本大题共有6小题,每题5分,共30分)11、若空间两条直线b a ,没有公共点,则b a ,的位置关系是 .12、直线01=+-y x 的倾斜角是 .13、在△ABC 中,若︒=︒==45,60,2B A b ,则=a .14、过点(3,1),且垂直于x 轴的直线方程是 .15、在△ABC 中,1,3,30==︒=AC AB A ,则△ABC 的面积为 .16、如图,以等腰直角三角形ABC 的斜边BC 上的高AD 为折痕,把△ABD 和△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①BD ⊥AC ;②△BAC 是等边三角形;③三棱锥D-ABC 是正三棱锥;④平面ADC ⊥平面ABC.其中正确的是 .三、解答题(本大题共有6小题,共70分)17、(10分)在△ABC 中,(1)已知33,60,1=︒==c A a ,求C ; (2)已知︒===150,2,33B c a ,求b .18、(12分)已知直线l过点P(2,3),根据下列条件分别求直线l的方程:(1)l的斜率为-1;(2)l与两条坐标轴在第一象限围成的三角形的面积为16.19、(12分)如图,在长方体ABCD-A1B1C1D1中,底面ABCD为正方形,AC为底面ABCD的对角线,E为D1D 的中点.(1)求证: D1B∥平面AEC;(2)求证: 平面DD1B⊥平面AEC.20、(12分)在△ABC 中,bc a c b +=+222.(1)求角A 的大小;(2)求C B cos sin 3-的最大值.21、(12分)扬州市广陵区拟建一主题游乐园,该游乐园为四边形区域ABCD ,其中三角形区域ABC 为主题活动区,其中m AB ABC ACB 612,45,60=︒=∠︒=∠,AD 、CD 为游客通道(不考虑宽度),且∠ADC =120°,通道AD 、CD 围成三角形区域ADC 为游客休闲中心,供游客休憩.(1)求AC 的长度;(2)记游客通道AD 与CD 的长度和为L ,求L 的最大值.22、(12分)如图,在四棱锥P-ABCD中,底面ABCD是菱形,∠ABC=60°,PA⊥平面ABCD,点M、N分别为BC、PA的中点,且PA=AB=2.(1)证明: BC⊥平面AMN;(2)求三棱锥N-AMC的体积;(3)在线段PD上是否存在一点E,使得MN∥平面ACE,若存在,求出PE的长,若不存在,说明理由.。
2019-2020学年常州高中高一(下)期中数学试卷(含答案解析)

2019-2020学年常州高中高一(下)期中数学试卷一、单空题(本大题共18小题,共94.0分)1. 在数列{a n }及{b n }中,a n+1=a n +b n +√a n 2+b n 2,b n+1=a n +b n −√a n 2+b n 2,a 1=1,b 1.设c n =1a n+1b n,则数列{c n }的前2018项和为______2. 如图:已知三棱柱ABC −A 1B 1C 1的侧棱与底面边长都相等,过顶点A 1作底面ABC 的垂线,若垂足为BC 的中点,则异面直线AB 与CC 1所成的角的余弦值为______ .3. 若对任意x ∈A ,y ∈B ,(A ⊆R,B ⊆R)有唯一确定的f(x,y)与之对应,则称f(x,y)为关于x 、y的二元函数.现定义满足下列性质的二元函数f(x,y)为关于实数x 、y 的广义“距离”; (1)非负性:f(x,y)≥0,当且仅当x =y 时取等号; (2)对称性:f(x,y)=f(y,x);(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)对任意的实数z 均成立. 今给出三个二元函数,请选出所有能够成为关于x 、y 的广义“距离”的序号: ①f(x,y)=|x −y|;②f(x,y)=(x −y)2;③f(x,y)=√x −y . 能够成为关于的x 、y 的广义“距离”的函数的序号是______ .4. 在公差不为0的等差数列{a n }中,a 1,a 3,a 4成等比数列,则该等比数列的公比______.5. 钝角△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,c =1,B =π3,则a 的取值范围是______.6. 数列{a n }满足a 1>32,a n+1=a n 2−a n +1,且∑1a i2017i=1=2,则4a 2018−a 1的最大值为______.7. 已知S n 为数列{a n }的前n 项和,a12+a 23+a 34+⋯+a n−1n=a n −2(n ≥2)且a 1=2,则{a n }的通项公式为______.8.在△ABC中,a=8,c=6,且S△ABC=12√3,则B=______ .9.已知数列{a n},{1a n }的前n项和分别为S n,T n,a1=32,a2=74,S n+1−S n−1=a n2+1(n≥2),记[x]表示不超过x的最大整数,如[0.8]=0,[2.1]=2,则[T2018]=______.10.在中,内角的对边分别为,若,,则。
江苏省常州高级中学数学高一下期中经典题(含答案解析)

一、选择题1.(0分)[ID :12427]已知三棱锥A BCD -中,AB CD ==2==AC BD ,AD BC == )A .32πB .24πCD .6π2.(0分)[ID :12423]已知三棱锥D ABC -的外接球的表面积为128π,4,AB BC AC ===D ABC -体积的最大值为( )A .2732BCD 3.(0分)[ID :12422]已知直线l 过点(1,0),且倾斜角为直线0l :220x y --=的倾斜角的2倍,则直线l 的方程为( )A .4330x y --=B .3430x y --=C .3440x y --=D .4340x y --= 4.(0分)[ID :12407]下列命题正确的是( ) A .经过三点确定一个平面B .经过一条直线和一个点确定一个平面C .两两相交且不共点的三条直线确定一个平面D .四边形确定一个平面5.(0分)[ID :12405]三棱锥P -ABC 中,P A ⊥平面ABC ,AB ⊥BC ,P A =2,AB =BC =1,则其外接球的表面积为( )A .6πB .5πC .4πD .3π 6.(0分)[ID :12399]设圆C :223x y +=,直线l :360x y +-=,点()00,P x y l ∈,若存在点Q C ∈,使得60OPQ ∠=︒(O 为坐标原点),则0x 的取值范围是( )A .1,12⎡⎤-⎢⎥⎣⎦B .60,5⎡⎤⎢⎥⎣⎦C .[]0,1D .16,25⎡⎤-⎢⎥⎣⎦ 7.(0分)[ID :12375]直线20x y ++=截圆222210x y x y a ++-+-=所得弦的长度为4,则实数a 的值是( )A .-3B .-4C .-6D .38.(0分)[ID :12373]已知m 和n 是两条不同的直线,α和β是两个不重合的平面,那么下面给出的条件中一定能推出m ⊥β的是( )A .α⊥β,且m ⊂αB .m ⊥n ,且n ∥βC .α⊥β,且m ∥αD .m ∥n ,且n ⊥β 9.(0分)[ID :12345]若某几何体的三视图(单位:cm )如图所示,则该几何体的体积等于( )A .310cmB .320cmC .330cmD .340cm 10.(0分)[ID :12393]点A 、B 、C 、D 在同一个球的球面上,2,AC=2,若四面体ABCD 体积的最大值为23,则这个球的表面积为( ) A .1256π B .8π C .2516π D .254π 11.(0分)[ID :12391]已知点()1,2-和33⎛⎫ ⎪ ⎪⎝⎭在直线():100l ax y a --=≠的两侧,则直线l 的倾斜角的取值范围是 ( )A .,43ππ⎛⎫⎪⎝⎭ B .2,33ππ⎛⎫ ⎪⎝⎭ C .25,36ππ⎛⎫ ⎪⎝⎭ D .30,,34πππ⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭12.(0分)[ID :12364]已知直线()()():21110l k x k y k R ++++=∈与圆()()221225x y -+-=交于A ,B 两点,则弦长AB 的取值范围是( ) A .[]4,10 B .[]3,5 C .[]8,10 D .[]6,1013.(0分)[ID :12428]在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30,则该长方体的体积为( )A .8B .62C .82D .8314.(0分)[ID :12418]如图,正四面体ABCD 中,,EF 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是线段BD 的动点,则( )A .存在点G ,使PG EF ⊥成立B .存在点G ,使FG EP ⊥成立C .不存在点G ,使平面EFG ⊥平面ACD 成立 D .不存在点G ,使平面EFG ⊥平面ABD 成立15.(0分)[ID :12397]若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3 二、填空题16.(0分)[ID :12489]若直线30ax by +-=与圆22410x y x ++-=相切于点()1,2P -,则a b +=________.17.(0分)[ID :12458]已知圆22(1)16x y ++=,点(1,0),(1,0)E F -,过(1,0)E -的直线1l 与过(1,0)F 的直线2l 垂直且圆相交于,A C 和,B D ,则四边形ABCD 的面积的取值范围是_________.18.(0分)[ID :12525]已知三棱锥P ABC -中,侧面PAC ⊥底面ABC ,90BAC ∠=︒,4AB AC ==,23PA PC ==,则三棱锥P ABC -外接球的半径为______.19.(0分)[ID :12524]已知一束光线通过点()3,5A -,经直线l :0x y +=反射,如果反射光线通过点()2,5B ,则反射光线所在直线的方程是______.20.(0分)[ID :12509]已知三棱锥D ABC -的体积为2,ABC ∆是边长为2的等边三角形,且三棱锥D ABC -的外接球的球心O 恰好是CD 的中点,则球O 的表面积为_______.21.(0分)[ID :12485]三棱锥P ABC -中,5PA PB ==2AC BC ==AC BC ⊥,3PC =,则该三棱锥的外接球面积为________.22.(0分)[ID :12480]已知α∈R ,()ππ2k k Z α≠+∈,设直线:tan l y x m α=+,其中0m ≠,给出下列结论:①直线l 的方向向量与向量()cos , sin a αα=共线; ②若π04α<<,则直线l 与直线y x =的夹角为π4α-; ③直线l 与直线sin cos 0x y n αα-+=(n m ≠)一定平行; 写出所有真命题的序号________23.(0分)[ID :12500]如图,AB 是底面圆O 的直径,点C 是圆O 上异于A 、B 的点,PO 垂直于圆O 所在的平面,且1,2PO OB BC ===,点E 在线段PB 上,则CE OE +的最小值为________.24.(0分)[ID :12472]已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为________.25.(0分)[ID :12450]已知球的表面积为20π,球面上有A 、B 、C 三点.如果2AB AC ==,22BC =,则球心到平面ABC 的距离为__________.三、解答题26.(0分)[ID :12595]如图,在三棱锥S ABC -中,SAC ∆为等边三角形,4AC =,43BC =,BC AC ⊥,3cos 4SCB ∠=-,D 为AB 的中点.(1)求证:AC SD ⊥;(2)求直线SD 与平面SAC 所成角的大小.27.(0分)[ID :12592]如图,在直三棱柱111ABC A B C -中,AD ⊥平面1A BC ,其垂足D 落在直线1A B 上.(Ⅰ)求证:1BC A B ⊥;(Ⅱ)若P 是线段AC 上一点,3,2AD AB BC ===,三棱锥1A PBC -的体积为33,求AP PC 的值. 28.(0分)[ID :12578]在三棱锥S ABC -中,平面SAB ⊥平面SBC ,AB BC ⊥,AS AB =,过A 作AF SB ⊥,垂足为F ,点E ,G 分别是棱SA ,SC 的中点. (1)求证:平面EFG ∥平面ABC .(2)求证:BC SA ⊥.29.(0分)[ID :12552]如图,ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ⊥平面ABCD ,33DE AF ==.(1)证明:平面//ABF 平面DCE ;(2)在DE 上是否存在一点G ,使平面FBG 将几何体ABCDEF 分成上下两部分的体积比为3:11?若存在,求出点G 的位置;若不存在,请说明理由.30.(0分)[ID :12579]如图,在三棱柱111ABC A B C -中,1C C ⊥底面ABC ,AC BC ⊥,1AC BC CC ==,M 、N 分别是1A B 、11B C 的中点.(1)求证:MN ⊥平面1A BC ;(2)求直线1BC 和平面1A BC 所成角的大小.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.C2.D3.D4.C5.A6.B7.A8.D9.B10.D11.D12.D13.C14.C15.B二、填空题16.3【解析】【分析】根据题意先由圆的方程求出圆心为根据直线和圆相切的性质列出方程组求出即得解【详解】根据题意的圆心为:若直线与圆相切于则有故答案为:3【点睛】本题考查了直线和圆的位置关系考查了学生转化17.【解析】【分析】由题可知而过的弦过圆心时最长与垂直时最短据此则可以确定四边形的面积的取值范围【详解】由题知直线过圆心故设圆心到直线的距离为则所以所以四边形的面积;故答案为:【点睛】本题主要考查直线与18.【解析】【分析】设三棱锥外接球球心为半径为如图所示作辅助线设则解得答案【详解】设三棱锥外接球球心为半径为故在平面的投影为中点为中点故侧面底面故底面连接作于易知为矩形设则解得故答案为:【点睛】本题考查19.【解析】【分析】计算关于直线的对称点为计算直线得到答案【详解】设关于直线的对称点为故故故反射光线为:化简得到故答案为:【点睛】本题考查了直线的反射问题找出对称点是解题的关键20.【解析】【分析】如图所示根据外接球的球心O恰好是的中点将棱锥的高转化为点到面的距离再利用勾股定理求解【详解】如图所示:设球O的半径为R球心O到平面的距离为d由O是的中点得解得作平面ABC垂足为的外心21.【解析】【分析】由已知数据得两两垂直因此三棱锥外接球直径的平方等于这三条棱长的平方和【详解】∵∴∴又以作长方体则长方体的外接球就是三棱锥的外接球设外接球半径为则球表面积为故答案为:【点睛】本题考查球22.①②【解析】【分析】①求出直线l的方向向量判断它与向量共线;②求出直线l和直线y=x的斜率与倾斜角即可得出两直线的夹角;②根据两直线的斜率与在y轴上的截距得出两直线不一定平行【详解】对于①直线l的方23.【解析】【分析】首先求出即有将三棱锥展开当三点共线时值最小可证为中点从而可求从而得解【详解】在中所以同理所以在三棱锥中将侧面绕旋转至平面使之与平面共面如图所示当共线时取得最小值又因为所以垂直平分即为24.28【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可【详解】由棱台的体积公式可得棱台的体积:故答案为:28【点睛】本题主要考查棱台的体积公式及其应用意在考查学生的转化能力和计算求解能力25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】作出三棱锥A BCD -的外接长方体AEBF GDHC -,计算出该长方体的体对角线长,即可得出其外接球的半径,然后利用球体体积公式可计算出外接球的体积.【详解】作出三棱锥A BCD -的外接长方体AEBF GDHC -,如下图所示:设DG x =,DH y =,DE z =,则2223AD x z =+=,2224DB y z =+=,2225DC x y =+=,上述三个等式相加得()222222234512AD BD CD x y z ++=++=++=, 所以,该长方体的体对角线长为2226x y z ++=,则其外接球的半径为62R =, 因此,此球的体积为346632ππ⎛⎫⨯= ⎪ ⎪⎝⎭. 故选:C.【点睛】本题考查三棱锥外接球体积的计算,将三棱锥补成长方体,利用长方体的体对角线作为外接球的直径是解题的关键,考查空间想象能力与计算能力,属于中等题. 2.D解析:D【解析】【分析】先求出球心O 到底面距离的最大值,从而可求顶点D 到底面的距离的最大值,利用该最大值可求体积的最大值.【详解】设外接球的球心为O ,半径为R ,则24128R ππ=,故42R =设球心O 在底面上的投影为E ,因为OA OC OB ==,故E 为ABC ∆的外心.因为4AB BC ==,AC =222AC AB BC =+,故ABC ∆为直角三角形,故E 为AC 的中点,所以OE ==,设D 到底面ABC 的距离为h ,则h OE R ≤+=所以三棱锥D ABC -的体积的最大值为(114432⨯⨯⨯⨯=. 故选:D.【点睛】几何体的外接球、内切球问题,关键是球心位置的确定,必要时需把球的半径放置在可解的几何图形中,注意球心在底面上的投影为底面外接圆的圆心.如果球心的位置不易确定,则可以把该几何体补成规则的几何体,便于球心位置和球的半径的确定. 3.D解析:D【解析】设直线0l 的倾斜角为α,则斜率01tan 2k α==,所以直线l 的倾斜角为2α,斜率22tan 4tan 21tan 3k ααα===-,又经过点(1,0),所以直线方程为4(1)3y x =-,即4340x y --=,选D.4.C解析:C【解析】【分析】根据确定一个平面的公理及推论即可选出.【详解】A 选项,根据平面基本性质知,不共线的三点确定一个平面,故错误;B 选项,根据平面基本性质公理一的推论,直线和直线外一点确定一个平面,故错误;C 选项,根据公理一可知,不共线的三点确定一个平面,而两两相交且不共点的三条直线,在三个不共线的交点确定的唯一平面内,所以两两相交且不共点的三条直线确定一个平面,正确;选项D,空间四边形不能确定一个平面,故错误;综上知选C.【点睛】本题主要考查了平面的基本性质公理一及其推论,属于中档题.5.A解析:A【解析】分析:将三棱锥的外接球转化为以,,AP AB BC 为长宽高的长方体的外接球,从而可得球半径,进而可得结果.详解:因为PA ⊥平面AB ,,AB BC ⊂平面ABC ,PA BC ∴⊥,,PA AB AB BC ⊥⊥,所以三棱锥的外接球,就是以,,AP AB BC 为长宽高的长方体的外接球,外接球的直径等于长方体的对角线,即2R ==246R ππ=,故选A.点睛:本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径) ③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.6.B解析:B【解析】【分析】圆O 外有一点P ,圆上有一动点Q ,OPQ ∠在PQ 与圆相切时取得最大值.如果OP 变长,那么OPQ ∠可以获得的最大值将变小.因为sin QO OPQ PO∠=,QO 为定值,即半径,PO 变大,则sin OPQ ∠变小,由于(0,)2OPQ π∠∈,所以OPQ ∠也随之变小.可以得知,当60OPQ ∠=︒,且PQ 与圆相切时,2PO =,而当2PO >时,Q 在圆上任意移动,60OPQ ∠<︒恒成立.因此,P 的取值范围就是2PO ,即满足2PO ,就能保证一定存在点Q ,使得60OPQ ∠=︒,否则,这样的点Q 是不存在的.【详解】由分析可得:22200PO x y =+ 又因为P 在直线l 上,所以00(36)x y =--要使得圆C 上存在点Q ,使得60OPQ ∠=︒,则2PO故22220000103634PO x y y y ==+-+ 解得0825y ,0605x 即0x 的取值范围是6[0,]5,故选:B .【点睛】解题的关键是充分利用几何知识,判断出2PO ,从而得到不等式求出参数的取值范围. 7.A解析:A【解析】【分析】求出圆心坐标和半径,根据圆的弦长公式,进行求解即可.【详解】由题意,根据圆的方程222210x y x y a ++-+-=,即22(1)(1)2x y a ++-=-,则圆心坐标为(1,1)-,半径r =又由圆心到直线的距离为d ==所以由圆的弦长公式可得4=,解得3a =-,故选A.【点睛】本题主要考查了直线与圆的位置关系的因公,以及弦长公式的应用,其中根据圆的方程,求得圆心坐标和半径,合理利用圆的弦长公式列出方程求解是解答的关键,着重考查了推理与运算能力.8.D解析:D【解析】【分析】根据所给条件,分别进行分析判断,即可得出正确答案.【详解】解:αβ⊥且m α⊂⇒m β⊂或//m β或m 与β相交,故A 不成立;m n ⊥且//n β⇒m β⊂或//m β或m 与β相交,故B 不成立;αβ⊥且//m α⇒m β⊂或//m β或m 与β相交,故C 不成立;//m n 且n β⊥⇒m β⊥,故D 成立;故选:D【点睛】本题考查直线与平面的位置关系,线面垂直判定,属于基础题.9.B解析:B【解析】【分析】【详解】试题分析:. 由三视图知几何体为三棱柱削去一个三棱锥如图:棱柱的高为5;底面为直角三角形,直角三角形的直角边长分别为3、4,∴几何体的体积V =×3×4×5﹣××3×4×5=20(cm 3).考点:1.三视图读图的能力;2.几何体的体积公式.10.D解析:D【解析】试题分析:根据题意知,ABC 是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC 的中点上,设小圆的圆心为Q ,若四面体ABCD 的体积的最大值,由于底面积ABC S 不变,高最大时体积最大,所以,DQ 与面ABC 垂直时体积最大,最大值为12·33ABC S DQ =,即12133DQ ⨯⨯=,∴2DQ =,设球心为O ,半径为R ,则在直角AQO 中,222OA AQ OQ =+,即()22212R R =+-,∴54R =,则这个球的表面积为:2525444S ππ⎛⎫== ⎪⎝⎭;故选D. 考点:球内接多面体,球的表面积. 11.D解析:D【解析】设直线l 的倾斜角为θ∈[0,π).点A (1,−2),B 3 直线l :ax −y −1=0(a ≠0)经过定点P (0,−1). ()121, 3.01303PA PB k k ---==-==-- ∵点(1,−2)和3在直线l :ax −y −1=0(a ≠0)的两侧, ∴k P A <a <k PB ,∴−1<tanθ3tanθ≠0. 解得30,34ππθθπ<<<<.本题选择D 选项.12.D解析:D【解析】【分析】由直线()()21110k x k y ++++=,得出直线恒过定点()1,2P -,再结合直线与圆的位置关系,即可求解.【详解】由直线()()():21110l k x k y k R ++++=∈,可得()210k x y x y ++++=, 又由2010x y x y +=⎧⎨++=⎩,解得12x y =⎧⎨=-⎩,即直线恒过定点()1,2P -,圆心()1,2C , 当CP l ⊥时弦长最短,此时2222AB CP r ⎛⎫+= ⎪⎝⎭,解得min 6AB =, 再由l 经过圆心时弦长最长为直径210r =, 所以弦长AB 的取值范围是[]6,10.故选:D.【点睛】本题主要考查了直线系方程的应用,以及直线与圆的位置关系的应用,其中解答中熟练利用直线的方程,得出直线恒过定点,再结合直线与圆的位置关系求解是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.13.C解析:C【解析】【分析】首先画出长方体1111ABCD A B C D -,利用题中条件,得到130AC B ∠=,根据2AB =,求得1BC =,可以确定1CC =,之后利用长方体的体积公式求出长方体的体积.【详解】在长方体1111ABCD A B C D -中,连接1BC ,根据线面角的定义可知130AC B ∠=,因为2AB =,所以123BC =,从而求得122CC =, 所以该长方体的体积为222282V =⨯⨯= C.【点睛】该题考查的是长方体的体积的求解问题,在解题的过程中,需要明确长方体的体积公式为长宽高的乘积,而题中的条件只有两个值,所以利用题中的条件求解另一条边的长就显得尤为重要,此时就需要明确线面角的定义,从而得到量之间的关系,从而求得结果.14.C解析:C【解析】【分析】利用空间中线线、线面、面面间的位置关系对选项进行一一验证,即可得答案.【详解】正四面体ABCD 中,,E F 分别是线段AC 的三等分点,P 是线段AB 的中点,G 是直线BD 的动点,在A 中,不存在点G ,使PG EF ⊥成立,故A 错误;在B 中,不存在点G ,使FG EP ⊥成立,故B 错误;在C 中,不存在点G ,使平面EFG ⊥平面ACD 成立,故C 正确;在D 中,存在点G ,使平面EFG ⊥平面ABD 成立,故D 错误.故选:C.【点睛】本题考查命题真假的判断、考查空间中线线、线面、面面间的位置关系,考查转化与化归思想,考查空间想象能力.15.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】 解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增, ()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题.二、填空题16.3【解析】【分析】根据题意先由圆的方程求出圆心为根据直线和圆相切的性质列出方程组求出即得解【详解】根据题意的圆心为:若直线与圆相切于则有故答案为:3【点睛】本题考查了直线和圆的位置关系考查了学生转化解析:3【解析】【分析】根据题意,先由圆的方程求出圆心为()2,0-,根据直线和圆相切的性质列出方程组,求出,a b ,即得解.【详解】根据题意22410x y x ++-=的圆心为:()2,0-,若直线30ax by +-=与圆22410x y x ++-=相切于()1,2P -,则有 2301,2302()1(2)(1)a b a b a b a b -+-=⎧⎪∴==∴+=-⎨⨯-=-⎪---⎩故答案为:3【点睛】本题考查了直线和圆的位置关系,考查了学生转化与划归,数学运算的能力,属于中档题.17.【解析】【分析】由题可知而过的弦过圆心时最长与垂直时最短据此则可以确定四边形的面积的取值范围【详解】由题知直线过圆心故设圆心到直线的距离为则所以所以四边形的面积;故答案为:【点睛】本题主要考查直线与解析:⎡⎤⎣⎦【解析】【分析】由题可知8AC =,而过(1,0)F 的弦BD 过圆心时最长,与EF 垂直时最短,据此则可以确定四边形ABCD 的面积的取值范围.【详解】由题知,直线1l 过圆心(1,0)E -,故8AC =,设圆心(1,0)E -到直线2l 的距离为d ,则02d EF ≤≤=,所以BD ⎡⎤=⎣⎦, 所以四边形ABCD的面积12S AB CD ⎡⎤=⋅⋅∈⎣⎦; 故答案为:⎡⎤⎣⎦.【点睛】本题主要考查直线与圆相交时的弦长、面积问题,解题关键是明确:过圆内一点的作弦,弦过圆心时最长,与最长的弦垂直时弦最短.18.【解析】【分析】设三棱锥外接球球心为半径为如图所示作辅助线设则解得答案【详解】设三棱锥外接球球心为半径为故在平面的投影为中点为中点故侧面底面故底面连接作于易知为矩形设则解得故答案为:【点睛】本题考查【分析】设三棱锥P ABC -外接球球心为O ,半径为R ,如图所示作辅助线,设1OO h =,则()2222221R PD h OH R h CO ⎧=-+⎪⎨=+⎪⎩,解得答案. 【详解】设三棱锥P ABC -外接球球心为O ,半径为R ,90BAC ∠=︒,故O 在平面ABC 的投影为BC 中点1O ,D 为AC 中点,PA PC =,故PD AC ⊥,侧面PAC ⊥底面ABC ,故PD ⊥底面ABC .连接1O D ,作OH PD ⊥于H ,易知1OO DH 为矩形,设1OO h =,则()2222221R PD h OH R h CO ⎧=-+⎪⎨=+⎪⎩,22PD =,12OH DO ==,122CO ,解得342R =. 故答案为:342.【点睛】本题考查了三棱锥的外接球问题,意在考查学生的计算能力和空间想象能力.19.【解析】【分析】计算关于直线的对称点为计算直线得到答案【详解】设关于直线的对称点为故故故反射光线为:化简得到故答案为:【点睛】本题考查了直线的反射问题找出对称点是解题的关键解析:27310x y -+=【解析】计算()3,5A -关于直线0x y +=的对称点为()15,3A -,计算直线1A B 得到答案.【详解】设()3,5A -关于直线0x y +=的对称点为()1,A x y ,故51335022y x x y -⎧=⎪⎪+⎨-+⎪+=⎪⎩,故()15,3A -. 故反射光线为1A B :()532525y x -=-++,化简得到27310x y -+=. 故答案为:27310x y -+=. 【点睛】本题考查了直线的反射问题,找出对称点是解题的关键.20.【解析】【分析】如图所示根据外接球的球心O 恰好是的中点将棱锥的高转化为点到面的距离再利用勾股定理求解【详解】如图所示:设球O 的半径为R 球心O 到平面的距离为d 由O 是的中点得解得作平面ABC 垂足为的外心解析:523π 【解析】【分析】 如图所示,根据外接球的球心O 恰好是CD 的中点,将棱锥的高,转化为点到面的距离,再利用勾股定理求解.【详解】如图所示:设球O 的半径为R ,球心O 到平面ABC 的距离为d ,由O 是CD 的中点得221322232D ABC O ABC V V --==⨯⨯=,解得d =作1OO ⊥平面ABC ,垂足1O 为ABC ∆的外心,所以13CO =,所以222133R =+=⎝⎭,所以球O 的表面积为25243R ππ=. 故答案为:523π 【点睛】本题主要考查三棱锥的外接球的体积,还考查了转化化归的思想和运算求解的能力,属于中档题. 21.【解析】【分析】由已知数据得两两垂直因此三棱锥外接球直径的平方等于这三条棱长的平方和【详解】∵∴∴又以作长方体则长方体的外接球就是三棱锥的外接球设外接球半径为则球表面积为故答案为:【点睛】本题考查球 解析:7π【解析】【分析】由已知数据得,,CA CB CP 两两垂直,因此三棱锥外接球直径的平方等于这三条棱长的平方和.【详解】∵PA PB ==AC BC ==PC =,∴222222,PC CB PB PC CA PA +=+=,∴,PC CB PC CA ⊥⊥,又CA CB ⊥,以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球.设外接球半径为R ,则2222(2)7R CA CB CP =++=,R =,球表面积为2244(7.2S R πππ==⨯= 故答案为:7π.【点睛】 本题考查球的表面积,解题关键是确定,,CA CB CP 两两垂直,以,,CA CB CP 作长方体,则长方体的外接球就是三棱锥P ABC -的外接球.22.①②【解析】【分析】①求出直线l 的方向向量判断它与向量共线;②求出直线l 和直线y =x 的斜率与倾斜角即可得出两直线的夹角;②根据两直线的斜率与在y 轴上的截距得出两直线不一定平行【详解】对于①直线l 的方解析:①②【解析】【分析】①求出直线l 的方向向量,判断它与向量()cos , sin a αα=共线;②求出直线l 和直线y =x 的斜率与倾斜角,即可得出两直线的夹角;②根据两直线的斜率与在y 轴上的截距,得出两直线不一定平行.【详解】对于①,直线l 的方向向量是()1,tan α,它向量()cos , sin a αα=共线,是真命题; 对于②,当π04α<<时,直线l 的斜率是tan α,倾斜角是α,直线y =x 的斜率是1,倾斜角是π4,因此两直线的夹角为π4α-,是真命题; 对于③,直线l 的斜率是tan k α=,在y 轴上的截距是m ,直线sin cos 0x y n αα-+=的斜率tan k α=,且在y 轴上的截距是cos n α,当m =cos n α时,两直线重合,不平行,∴假命题.综上,是真命题的序号是①②.故答案为:①②【点睛】本题考查了直线的斜率,倾斜角,方向向量等知识点,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.23.【解析】【分析】首先求出即有将三棱锥展开当三点共线时值最小可证为中点从而可求从而得解【详解】在中所以同理所以在三棱锥中将侧面绕旋转至平面使之与平面共面如图所示当共线时取得最小值又因为所以垂直平分即为解析:2【解析】【分析】首先求出PB PC ==,即有PB PC BC ==,将三棱锥展开,当三点共线时,值最小,可证E 为PB 中点,从而可求OC OE EC ''=+,从而得解. 【详解】在POB 中,1PO OB ==,90POB ∠=︒,所以PB ==,同理PC =PB PC BC ==,在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ',使之与平面ABP 共面,如图所示,当O ,E ,C '共线时,CE OE +取得最小值,又因为OP OB =,C P C B '=',所以OC '垂直平分PB ,即E 为PB 中点, 从而2626OC OE EC +''=+== 亦即CE OE +的最小值为:262, 故答案为262. 【点睛】 本题主要考查了空间中线段和最小值问题,考查了空间想象能力、推理论证能力,考查了数形结合思想、化归与转化思想,属于中档题.24.28【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可【详解】由棱台的体积公式可得棱台的体积:故答案为:28【点睛】本题主要考查棱台的体积公式及其应用意在考查学生的转化能力和计算求解能力解析:28【解析】【分析】由题意结合棱台的体积公式求解棱台的体积即可.【详解】由棱台的体积公式可得棱台的体积:(()121211416832833V S S S S h =⨯++⨯=⨯++⨯=. 故答案为:28.【点睛】 本题主要考查棱台的体积公式及其应用,意在考查学生的转化能力和计算求解能力.25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截 3【解析】设球的半径为r ,表面积24π20πS r ==,解得5r =ABC 中,2AB AC ==,22BC =,222AB AC BC +=,∴90BAC ∠=︒,从圆心作平面ABC 的垂线,垂足在斜边BC 的中点处,∴球心到平面ABC 的距离22132d r BC ⎛⎫=-= ⎪⎝⎭,故答案为3. 点睛:本题考查的知识点是空间点、线、面之间的距离计算,其中根据球心距d ,球半径R ,解三角形我们可以求出ABC 所在平面截球所得圆(即ABC 的外接圆半径),构造直角三角形,满足勾股定理,我们即可求出球心到平面ABC 的距离是与球相关的距离问题常用方法.三、解答题26.(1)证明见解析;(2)6π. 【解析】【分析】(1)取AC 的中点O ,连接OS 、OD ,证明出OS AC ⊥,OD AC ⊥,利用直线与平面垂直的判定定理可得出AC ⊥平面SOD ,即可证明出AC SD ⊥;(2)延长SO ,过点D 作SO 延长线的垂线,垂足记为H ,说明直线SD 与平面SAC 所成的角为OSD ∠,求出OSD ∆三边边长,利用余弦定理求出OSD ∠,即可求出直线SD 与平面SAC 所成角的大小.【详解】(1)取AC 的中点O ,连接OS 、OD , SAC ∆为等边三角形,O 为AC 的中点,SO AC ∴⊥,D 、O 分别为AB 、AC 的中点,//OD BC ∴,BC AC ⊥,OD AC ∴⊥, SO OD O =,AC ∴⊥平面SOD ,SD ⊂平面SOD ,AC SD ∴⊥;(2)延长SO ,过点D 作SO 延长线的垂线,垂足记为H ,AC ⊥平面SOD ,DH ⊂平面SOD ,DH AC ∴⊥,DH SO ⊥,SO AC O =,DH ∴⊥平面SAC ,所以,直线SD 与平面SAC 所成的角为OSD ∠,由(2)知,1232OD BC ==AC BC ⊥,228AB AC BC ∴+=.SAC ∆是边长为4的等边三角形,4sin3SO π∴==在SBC ∆中,4SC =,BC =由余弦定理得2222cos 88SB SC BC SC BC SCB =+-⋅⋅∠=,SB ∴= 由余弦定理得2221cos 28SA AB SB SAB SA AB +-∠==-⋅, 2222cos 36SD SA AD SA AD SAD ∴=+-⋅⋅∠=,6SD ∴=.在SOD ∆中,由余弦定理得222cos 2SO SD OD OSD SO SD +-∠==⋅. 0OSD π<∠<,6OSD π∴∠=,因此,直线SD 与平面SAC 所成角的大小为6π. 【点睛】 本题考查利用线面垂直的性质证明线线垂直,同时也考查了直线与平面所成角的计算,涉及到利用余弦定理解三角形,考查推理能力与计算能力,属于中等题.27.(1)证明见解析;(2)3.【解析】【分析】【详解】试题分析:(1)要证线线垂直,一般先证线面垂直,考虑直线BC ,由已知AD 与平面1A BC 垂直可得AD BC ⊥,再由直三棱柱中侧棱1AA 与底面ABC 垂直,又得1AA BC ⊥,从而可得BC 与平面1AA B 垂直,于是得证线线垂直;(2)由(1)知ABC ∆是等腰直角三角形,可得其面积,由1AD A B ⊥可通过解直角三角形得1AA ,从而可求得三棱锥1A ABC -的体积.由三棱锥1A PBC -与三棱锥1A ABC -的关系可求得PC ,从而得AP PC .(也可设PC x =,求得三棱锥1A PBC -(用x 表示),再由已知列方程解得x ).试题解析:(1)∵AD ⊥平面1A BC ,BC ⊂平面1A BC ,∴AD BC ⊥,在直三棱柱111ABC A B C -中易知1AA ⊥平面ABC ,∴1AA BC ⊥,∵1AA AD A =,∴BC ⊥平面11AA B B ,∵1A B ⊂平面11AA B B ,∴1BC A B ⊥.(2)设PC x =,过点B 作BE AC ⊥于点E ,由(1)知BC ⊥平面11AA B B ,∴BC AB ⊥.。
江苏省常州市高一下学期数学期中考试试卷

江苏省常州市高一下学期数学期中考试试卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) 下列各组事件中,不是互斥事件的是()A . 一个射手进行一次射击,命中环数大于 8 与命中环数小于 6B . 播种菜籽 100 粒,发芽 90 粒与发芽 80 粒C . 检查某种产品,合格率高于 70%与合格率为 70%D . 统计一个班数学期中考试成绩,平均分数不低于 90 分与平均分数不高于 120 分2. (2 分) 一个社会调查机构就某地居民的月收入调查 20000 人,并根据所得数据画出了样本频率分布直方 图,为了分析居民的收入与年龄、学历、职业等方面的关系,按月收入用分层抽样方法抽样,若从月收入[3000,3500) (元)段中抽取了 30 人,则在这 20000 人中共抽取的人数为( )A . 200 B . 20000 C . 100 D . 403. (2 分) (2018 高二下·西安期末) 设 为虚数单位,则复数 A. B. C.第1页共8页()D. 4. (2 分) (2017 高一下·长春期末) 已知 A.B. C.2 D.4,向量 与 的夹角为 ,则等于( )5. (2 分) 复数(其中 i 为虚数单位)的虚部等于( )A . -iB . -1 C.1 D.0 6. (2 分) 两个不相等的复数 z1=a+bi(a,b∈R),z2=c+di(c,d∈R),若 z1 与 z2 在复平面内的对应点 关于虚轴对称,则 a,b,c,d 之间的关系为( ) A . a=-c,b=d B . a=-c,b=-dC . a=c,b=-d D . a≠c,b≠d 7. (2 分) (2019 高二下·玉林月考) 某店主为装饰店面打算做一个两色灯牌,从黄、白、蓝、红 4 种颜色 中任意挑选 2 种颜色,则所选颜色中含有白色的概率是( )A.B.第2页共8页C. D. 8. (2 分) 已知非零向量 a、b 满足|a+b|=|a-b|且 3a2=b2,则 a 与 b-a 的夹角为( ) A. B. C. D. 9. (2 分) 已知△ABC 的面积为 , b=2,c= , 则 A=( ) A . 30° B . 60° C . 30°或 150° D . 60°或 120°10. (2 分) 从点(4,4)射出的光线,沿着向量 射后,反射光线必经过点( )=(﹣,﹣)的方向射到 y 轴上,经 y 轴反A . (1,2)B . (2,2)C . (3,1)D . (4,0)二、 填空题 (共 6 题;共 6 分)11. (1 分) (2016 高一下·周口期末) 如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该 运动员在这五场比赛中得分的方差为________.第3页共8页(注:方差,其中 为 x1 , x2 , …,xn 的平均数)12. (1 分) 已知非零向量 , 的夹角为 60°,且| - |=1,则| + |的最大值是________13. (1 分) (2016 高二下·大庆期末) 已知平面向量 =________.,且,则14. (1 分) (2017 高二下·温州期中) 记 min与 的夹角为 120°,,则当 min,已知向量满足|2,取得最大值时, =________.15. (1 分) (2018 高二下·顺德期末) 设某弹簧的弹力由平衡位置拉长,则弹力 所做的功为________焦.与伸长量 间的关系为,将该弹簧16. (1 分) (2017·四川模拟) 已知 =(1,0), =(1,1),(x,y)=时,z=(m>0,n>0)的最大值为 2,则 m+n 的最小值为________,若 0≤λ≤1≤μ≤2三、 解答题 (共 4 题;共 40 分)17. (5 分) (2017 高一下·承德期末) 已知△ABC 的三个内角 A,B,C 所对应的边分别为 a,b,c,且满足 asinB= bcosA.(1) 求 A 的大小;(2) 若 a=7,b=5,求△ABC 的面积.18. (10 分) (2019 高一上·宾县月考) 已知函数 (1) 求 的值;的最小正周期为 .(2) 将函数图象上各点的横坐标缩短到原来的 ,纵坐标不变,得到函数在区间上的最小值.的图象,求函数19.(15 分)(2015 高二上·石家庄期末) 某市为增强市民的环境保护意识,面向全市征召义务宣传志愿者.现第4页共8页从符合条件的志愿者中随机抽取 100 名按年龄分组:第 1 组[20,25),第 2 组[25,30),第 3 组[30,35),第 4 组 [35,40),第 5 组[40,45],得到的频率分布直方图如图所示.(1) 若从第 3,4,5 组中用分层抽样的方法抽取 6 名志愿者参广场的宣传活动,应从第 3,4,5 组各抽取多 少名志愿者?(2) 在(1)的条件下,该县决定在这 6 名志愿者中随机抽取 2 名志愿者介绍宣传经验,求第 4 组至少有一 名志愿者被抽中的概率.20. (10 分) 计算题(1) 已知 tanα=﹣2,计算:(2) 已知 sinα=,求 tan(α+π)+的值.第5页共8页一、 单选题 (共 10 题;共 20 分)1-1、 2-1、 3-1、 4-1、 5-1、 6-1、 7-1、 8-1、 9-1、 10-1、二、 填空题 (共 6 题;共 6 分)11-1、 12-1、 13-1、 14-1、 15-1、参考答案第6页共8页16-1、三、 解答题 (共 4 题;共 40 分)17-1、17-2、 18-1、18-2、19-1、19-2、第7页共8页20-1、20-2、第8页共8页。
2020年江苏省常州市高一(下)期中数学试卷解析版

,求 C;
(2)已知 c=2acosB,试△ABC 判断的形状.
19. 如图,在正方体 ABCD-A'B'C'D'中,求证:AC⊥BD'.
20. 已知 a,b,c 分别为△ABC 三个内角 A,B,C 的对边,c= asinC-ccosA. (1)求 A;
(2)若 M 是上 BC 一点,且
,b=3,AM= ,求 a 的值.
),化
【解析】解:由题意可得: =1,解得 a=-4.
故选:D. 利用斜率计算公式即看得出. 本题考查了斜率计算公式,考查了推理能力与计算能力,属于基础题.
3.【答案】D
【解析】解:由正弦定理可得;sinA:sinB:sinC=a:b:c=2:3:4 可设 a=2k,b=3k,c=4k(k>0)
由余弦定理可得,
航标在 A 正东,俯角为 30°,航标 B 在南偏东 60°,俯角 为 45°,则这两个航标间的距离为______米.
15. 已知点 A(-4,1),B(3,-1),若直线 y=kx+2 与线段 AB 恒有公共点,则实数 k 的取值范围是______.
第 1 页,共 12 页
16. 锐角△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且满足(a-b)(sinA+sinB)=
12. 在△ABC 中,已知∠C= ,BC=a,AC=b,且 a,b 是方程 x2-13x+40=0 的两根,则 AB
的长度为______. 13. 设 P,A,B,C 是球 O 表面上的四个点,PA,PB,PC 两两垂直,且 PA=PB=PC=1
,则球 O 的表面积为______. 14. 如图,某人在高出海面 600 米的山上 P 处,测得海面上的
2019—2020学年第二学期期中考试高一数学试题(含答案)

2019—2020学年第二学期期中考试高一数学试题一、单项选择题:(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在中,已知,则角为( )A .A .C .D .或2.若向量,,且,则( ) A . B .C .D . 3.复数的共轭复数为( )A .B .C .D .4.设两个单位向量,的夹角为,则( ) A .CD .5.已知一条边在x 轴上的正方形的直观图是一个平行四边形,此平行四边形中有一边长为4,则原正方形的面积是( )A .16B . 16或64 C. 64 D .以上都不对6.若实数,,满足,则的值是( ) A .2B .-3C .D.17.在中,若,则的形状是( ) A .等腰直角三角形 B.直角三角形C .等腰三角形D .等边三角形8.已知(,为虚数单位),则“”是“为纯虚数”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件二、多项选择题:(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.)9.给出下列结论,则结论正确的为( )A .若向量,,且,则B .,,与的夹角为,则ABC △222a b c bc =++A 2π3π3π6π32π3(3,2)=a (1,)m =-b ∥a b m =23-233232-()2019i 12i z =--2i -2i +2i --2i -+a b 2π334+=a b 17x y ()()1i 1i 2x y ++-=xy 2-ABC △2cos sin sin B A C ⋅=ABC △221(32)i z m m m =-+-+m ∈R i 1m =-z (1,3)=a (2,)x =b ∥a b 6x =||2=a ||4=b a b 60°|2|+=a bC .向量,,m.n=0则 D .已知向量,,则与的夹角为 10.下列命题中,不正确的是( ) A .两个复数不能比较大小;B .若,则当且仅当且时,为纯虚数;C .,则;D .若实数与对应,则实数集与纯虚数集一一对应.11.在中,角的对边分别为,若,且,,则的面积为( ) A .3B .C .D .12.对于两个复数,,则下列说法正确的是( )A .B .C .D .第Ⅱ卷三、填空题:本大题共4小题,每小题5分,共20分.13.已知复数,,且是实数,则实数等于 .14.如图,在斜度一定的山坡上的一点测得山顶上一建筑物顶端对于山坡的斜度为,向山顶前进后,又从点测得斜度为,假设建筑物高,设山对于平地的斜度,则 .(,2)x =m (4,2)x =+n 23x =-=a =b a b π6i(,)z a b a b =+∈R 0a =0b ≠z 221223()()0z z z z -+-=123z z z ==a i a ABC △,,A B C ,,a b c cos cos a A b B =2c =3sin 5C =ABC △231361α=-+122β=--1αβ=2αβ=||2||αβ=337αβ-=134i z =+2i z t =+12z z ×t A C 15︒100m B 45︒50m θcos θ=15.用一张4×8(cm 2)的矩形硬纸卷成圆柱的侧面,则该圆柱的表面积等于-------------------16.在中角,,的对边分别是,,,且,,若,则的最小值为 .四·解答题:(本大题共6大题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(10分)已知关于的方程有实根,求这个实数根以及实数的值.18. (12分)如图,组合体下面是一个直三棱柱.△A 1B 1C 1为等腰直角三角形,BC =CE =2.上面是一个三棱锥,且AA 1⊥底面A 1B 1C 1,且AE =A1E =3,求组合体的表面积和体积.19.(12分)已知复数,m是实数,根据下列条件,求值.(1)是实数; (2)是虚数; (3)是纯虚数; (4).ABC△A B C a b c sin sin sin sin sin 3a Ab B cC B C +-=a =[1,3]b ∈c x 2(2i)2i 0x k x k ++++=k 22(232)(2)i z m m m m =+-++-m z z z 0z =20.(12分)在中,角所对的边分别为,且.(1)求角的大小;(2)若,求的周长的取值范围. 21.(12分)已知a =(1,2),b =(-3,1). (1)求a -2b;(2)设a,b 的夹角为θ,求cos θ的值;(3)若向量a +k b 与a -k b 互相垂直,求实数k 的值.22.(12分)已知向量,,且.(1)求及;(2)若的最小值为,求实数的值.高一数学答案一.AACCB DCC二.9.ACD 10,ACD 11,AC 12,BCD17.(12分)已知关于的方程有实根,求这个实数根以及实数的值.【答案】方程的实根为或值为或.【解析】设是方程的实数根,代入方程并整理得,由复数相等的条件得,解得或∴方程的实根为,相应的值为或.ABC△,,A B C ,,a b c222sin sin sin sin sinA C A CB +-=B ABC △ABC △33(cos ,sin )22x x =a (cos ,sin )22x x =-b π[0,]2x ∈⋅a b +a b ()2f x λ=⋅-+a b a b 32-λx 2(2i)2i 0x k x k ++++=k x =x =k k =-k =0x 2000(2)(2)i 0x kx x k ++++=20002020x kx x k ⎧++=⎨+=⎩0x k ⎧=⎪⎨=-⎪⎩0x k ⎧=⎪⎨=⎪⎩x =x =k k =-k =18.19.(10分)已知复数,,根据下列条件,求值.(1)是实数; (2)是虚数; (3)是纯虚数; (4).【答案】(1)或;(2)且;(3);(4). 【解析】(1)当,即或时,为实数. (2)当,即且时,为虚数.(3)当,解得,即时,为纯虚数.(4)令,解得,即时,.20.(12分)在中,角所对的边分别为,且.22(232)(2)i z m m m m =+-++-m R Îm z z z 0z =2m =-1m =2m ≠-1m ≠12m =2m =-220m m +-=2m =-1m =z 220m m +-≠2m ≠-1m ≠z 22232020m m m m ⎧+-=⎨+-≠⎩12m =12m =z 22232020m m m m ⎧+-=⎨+-=⎩2m =-2m =-0z =ABC △,,A B C ,,a b c 222sin sin sin sin sin A C A C B +-=(1)求角的大小;(2)若,求的周长的取值范围. 【答案】(1);(2).【解析】(1)由题意,由正弦定理得,,,即,又∵,. (2)由(1)知,且外接圆的半径为,,解得, 由正弦定理得,又,, 21.(10分)已知a =(1,2),b =(-3,1).(1)求a -2b;(2)设a,b 的夹角为θ,求cos θ的值; (3)若向量a +k b 与a -k b 互相垂直,求k 的值.【答案】(1)(7,0),(2)-√5050.(3)k=±√22.【解析】(1)a -2b =(1,2)-2(-3,1)=(1+6,2-2)=(7,0). (2)cos θ=a ·b|a |·|b |=√2√2=-√5050.(3)因为向量a +k b 与a -k b 互相垂直, 所以(a +k b)·(a -k b)=0,即a 2-k 2b 2=0,因为a 2=5,b 2=10,所以5-10k 2=0,解得k=±√22.B ABC △ABC △π3B =(5+⎤⎦222sin sin sin sin sin A C A C B +-=222a c acb +-=222a b b ac +-=222122a b b ac +-=1cos 2B =()0,πB ∈π3B =π3B =323=⨯5b =2sin sin a c A C ===sin )a c A C +=+2π3A C +=2ππsin()]10sin()336a c A A A +=+-=+22.(12分)已知向量,,且. (1)求及;(2)若的最小值为,求的值. 【答案】(1),;(2). 【解析】(1)由已知可得, , ,,.(2)由(1)得,,.①当时,当且仅当时,取得最小值,这与已知矛盾; ②当,当且仅当时,取得最小值,由已知可得,解得;③当时,当且仅当时,取得最小值, 由已知可得,解得,与矛盾, 综上所得,. 为锐角三角形,且, 又,得,,, 33(cos ,sin )22x x =a (cos ,sin )22x x =-b π[0,]2x ∈⋅a b +a b ()2f x λ=⋅-+a b a b 32-λcos2x ⋅=a b 2cos x +=a b 12λ=33coscos sin sin cos 22222x xx x x ⋅=⋅-⋅=ab +===a b π[0,]2x ∈Q cos 0x ∴≥2cos x ∴+=a b 222()cos 24cos 2cos 4cos 12(cos )12f x x x x x x λλλλ=-=--=---π[0,]2x ∈Q 0cos 1x ≤≤0λ<cos 0x =()f x 1-01λ≤≤cos x λ=()f x 12λ--23122λ--=-12λ=1λ>cos 1x =()f x 14λ-3142λ-=-58λ=1λ>12λ=ABC △π02A <<π02C <<2π3C A =-ππ62A <<πsin()62A +∈(a c +∈⎤⎦故的周长的取值范围是.ABC△(5+⎤⎦。
2019年常州市高一数学下期中试题(及答案)

2019年常州市高一数学下期中试题(及答案)一、选择题1.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30o ,则该长方体的体积为( )A .8B .62C .82D .832.已知直线l 过点(1,0),且倾斜角为直线0l :220x y --=的倾斜角的2倍,则直线l 的方程为( ) A .4330x y --= B .3430x y --= C .3440x y --=D .4340x y --=3.水平放置的ABC V 的斜二测直观图如图所示,若112A C =,111A B C △的面积为22,则AB 的长为( )A .2B .217C .2D .84.已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( )A .26B .36C .23D .225.在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C 3D .3 6.已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( ) A .4x 2y 5+=B .4x 2y 5-=C .x 2y 5+=D .x 2y 5-= 7.已知直线20ax y a +-+=在两坐标轴上的截距相等,则实数(a = ) A .1B .1-C .2-或1D .2或18.在梯形ABCD 中,90ABC ∠=︒,//AD BC ,222BC AD AB ===.将梯形ABCD 绕AD 所在直线旋转一周而形成的曲面所围成的几何体的体积为( )A .23π B .43π C .53π D .2π9.一个几何体的三视图如图所示,则该几何体的表面积为( )A .B .C .D .10.某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13B .12C .16D .111.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .3B 1033C .23D 83312.α,β是两个不重合的平面,在下列条件中,可判断平面α,β平行的是( ) A .m ,n 是平面α内两条直线,且//m β,//n β B .α内不共线的三点到β的距离相等C .α,β都垂直于平面γD .m ,n 是两条异面直线,m α⊂,n β⊂,且//m β,//n α二、填空题13.光线由点P(2,3)射到直线x+y+1=0上,反射后过点Q(1,1) ,则反射光线方程为__________.14.如图,在正方体1111—ABCD A B C D 中,M N ,分别为棱111C D C C ,的中点,有以下四个结论:①直线AM 与1CC 是相交直线; ②直线AM 与BN 是平行直线; ③直线BN 与1MB 是异面直线; ④直线AM 与1DD 是异面直线. 其中正确的结论的序号为________.15.已知棱台的上下底面面积分别为4,16,高为3,则该棱台的体积为________. 16.正方体1111ABCD A B C D -的棱长为1,P 为1CC 上的动点,Q 为1BD 上的动点,则线段PQ 的长度的最小值为______.17.如图,以等腰直角三角形斜边BC 上的高AD 为折痕,把△ABD 与△ACD 折成互相垂直的两个平面后,某学生得出下列四个结论:①0BD AC ⋅≠u u u r u u u r;②∠BAC =60°;③三棱锥D ﹣ABC 是正三棱锥;④平面ADC 的法向量和平面ABC 的法向量互相垂直. 其中正确结论的序号是 .(请把正确结论的序号都填上)18.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC △是边长为2正三角形,,E F 分别是,PA AB 的中点,90CEF ︒∠=,则球O 的体积为_________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省常州高级中学2019-2020学年下学期期中考试高一数学试卷说明:1. 以下题目的答案做在答卷纸上.2. 本卷总分160分,考试时间120分钟.一、填空题:本大题共14小题,每小题5分,共计70分.不需要写出解答过程,请将答案填写在答题卡相....应的位置上...... 1.数列{}n a 中,)2(1,1111≥+==--n a a a a n n n ,则3a = ▲ .2.在△ABC 中,已知bc c b a ++=222,则A 为 ▲ .3.在函数①1y x x =+,②1sin sin y x x =+π0 2x ∈(,),③222y x =+,④42x x y e e =+-中, 最小值为2的函数的序号是 ▲ .4.设n S 是等差数列{a n }的前n 项的和.若27a =,77S =-,则7a 的值为 ▲ .5.在ABC ∆中,若3,6==a A π,则=++++CB A cb a sin sin sin ▲ .6.已知数列{}n a 满足*1112,()1nn na a a n a ++==∈-N ,则2018a 的值为 ▲ . 7.设正项等比数列{a n }满足4352a a a -=.若存在两项a n 、a m ,使得m n a a a ⋅=41,则n m + 的值为 ▲ .8.在△ABC 中,若1a =,3b =,6π=A ,则△ABC 的面积是 ▲ .9.已知数列{}n a 的通项公式,12+=n a n 则1132211111+-++⋅⋅⋅++n n n n a a a a a a a a = ▲ . 10.在ABC ∆中,,2,60a x b B ===o,若该三角形有两解,则x 的取值范围为 ▲ . 11.在△ABC 中,已知π32,4==A BC ,则AC AB ⋅的最小值为 ▲ . 12.已知钢材市场上通常将相同的圆钢捆扎为正六边形垛(如图).现将99根相同的圆钢捆扎为1个尽可能大的正六边形垛,则剩余的圆钢根数为 ▲ .13.已知数列{}n a 为公比不为1的等比数列,满足12()n n n a k a a ++=+对任意正整数n 都成立,且对任意相邻三项12,,m m m a a a ++按某顺序排列后成等差数列,则k 的值为▲ .(第12题)14.已知,4,,=+∈b a R b a 则111122+++b a 的最大值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题纸指定区域.......内作答,解答应写出文字说明,证明过程或演算步骤. 15.(本小题满分14分)在等比数列}{n a 中, 0n a >,公比)1,0(∈q ,252825351=++a a a a a a , 且2是3a 与5a 的等比中项. (1)求数列}{n a 的通项公式;(2)设n n a b 2log =,数列}{n b 的前n 项和为n S ,当nS S S n +++Λ2121最大时,求n 的值.16.(本小题满分14分)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,c B c C b +=cos sin 3 (1)求角B ; (2)若2b ac =,求11tan tan A C+的值.17.(本小题满分14分)某厂花费2万元设计了某款式的服装.根据经验,每生产1百套该款式服装的成本为1万元,每生产x (百套)的销售额(单位:万元)20.4 4.20.805()914.7 5.3x x x P x x x ⎧-+-<⎪=⎨->⎪-⎩≤,,, (1)该厂至少生产多少套此款式服装才可以不亏本?(2)试确定该厂生产多少套此款式服装可使利润最大,并求最大利润. (注:利润=销售额-成本,其中成本=设计费+生产成本)18.(本小题满分16分)已知0x >,0y >,24xy x y a =++. (1)当16a =时,求xy 的最小值; (2)当0a =时,求212x y x y+++的最小值.19.(本小题满分16分)设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=(*n ∈N ). (1)求证:数列{}n a 为等比数列; (2)若数列{}n b 满足:11b =,1112nn n b b a ++=+,求数列{}n b 的通项公式及数列{}n b 的前n 项和.20.(本小题满分16分)已知数列{}n a 的首项1a a =(0a >),其前n 项和为n S ,设1n n n b a a +=+(n *∈N ). (1)若21a a =+,322a a =,且数列{}n b 是公差为3的等差数列,求2n S ;(2)设数列{}n b 的前n 项和为n T ,满足2n T n =.① 求数列{}n a 的通项公式;② 若对N n *∀∈,且2n ≥,不等式1(1)(1)2(1)n n a a n +--≥-恒成立,求a 的取值范围.江苏省常州高级中学2019-2020学年下学期期中考试高一数学附加试卷说明:1. 以下题目均为必做题,请将答案写在答卷纸上. 2. 本卷总分40分,考试时间30分钟. 一、 填空题:本大题共4小题,每小题6分,共24分.1.等比数列{}n a 中,若对任意正整数n 都有1221n n a a a ++⋅⋅⋅+=-,则 22212n a a a ++⋅⋅⋅+= ▲ .2.在△ABC 中,A B 2=,则ab的取值范围是 ▲ .3.等差数列{}n a 的前n 项和为n S ,已知11a =,且数列也为等差数列,则10a = ▲ .4.正数y x ,满足111=+y x ,则1813-+-y y x x 的最小值是 ▲ . 二、解答题:本大题共16分,解答时应写出必要的文字说明、证明过程或演算步骤. 5.在数列{}n a 中,11a =,283a =,111(1)n n nn a a n λ++=++,λ为常数,*n ∈N . (1)求λ的值; (2)设nn a b n=,求数列{}n b 的通项公式; (3)是否存在正整数r s t ,,(r s t <<),使得r s t ,,与r s t a a a ,,都为等差数列?若存在,求r s t ,,的值;若不存在,请说明理由.江苏省常州高级中学2019-2020学年下学期期中考试高一数学试卷参考答案一、填空题 1.25 2.32π 3.④ 4. -13 5.326.-37.68.42 9.96+n n10.)334,2( 11.38-12.8 13.25- 14. 452+二、解答题15.解:⑴ 由252825351=++a a a a a a 得235()25a a +=.................2分0>n a ,得355a a +=因为354a a ⋅=得354,1a a ==, 求得12q =, ...................5分 所以52nn a -= ...........................................7分⑵ 2log 5n n b a n ==-............................................9分 因为对任意n N *∈,11n n b b +-=-,所以{}n b 是以4为首项,1-为公差的等差数列.所以292n n n S -=...........................................12分9,90,90,90,2n n n n S S S S n n n n n n n n-=<>==><时,时,时, 所以nS S S n +++Λ2121最大为89n =或者. ...................14分16.解:(1)由正弦定理得sin cos sin sin B C B C C =+,ABC ∆中,sin 0C >,所以cos 1B B -=,................................................3分所以1sin()62B π-=,5666B πππ-<-<,66B ππ-=,所以3B π=;........................6分(2)因为2b ac =,由正弦定理得2sin sin sin B A C =,........................8分11cos cos cos sin sin cos sin()sin()sin tan tan sin sin sin sin sin sin sin sin sin sin A C A C A C A C B B A C A C A C A C A C A Cπ++-+=+====.......................................................................................... .....................12分所以,211sin1tan tan sin sinBA CB B+====..................................14分17(1)05x<≤时,利润()()22()20.4 4.20.820.4 3.2 2.8y P x x x x x x x=-+=-+--+=-+-.........................................................................................3分令20.4 3.2 2.80y x x=-+-≥得,17x≤≤,从而15x≤≤,即min1x=..................6分(2)当05x<≤时,由(1)知()220.4 3.2 2.80.44 3.6y x x x=-+-=--+,所以当4x=时,max3.6y=(万元). .....................................8分当5x>时,利润()()()99()214.729.7333y P x x x xx x=-+=--+=--+--....10分因为9363xx-+=-≥(当且仅当933xx-=-即6x=时,取“=”),所以max3.7y=(万元). .......................................................... 13分综上,当6x=时,max3.7y=(万元).答:(1)该厂至少生产1百套此款式服装才可以不亏本;(2)该厂生产6百套此款式服装时,利润最大,且最大利润为3.7万元. .......14分18.(1)当16a=时,241616xy x y=++≥, (3)分即280-≥,4)0∴≥,4,16xy∴≥,.......................................6分当且仅当48x y==时,等号成立。