巧用数形结合法解答高考题
数形结合巧解高考题

数形结合巧解高考题引言在高考数学中,有一类常见的题目是要求我们将数学问题与几何图形相结合,通过观察图形特征或者利用几何性质来解决问题。
这种数形结合的方法可以帮助我们更好地理解和应用数学知识,提高解题的效率和准确性。
本文将通过一些典型的高考题目,介绍数形结合的思路和方法,并给出详细的解答过程。
例题1题目描述已知函数f(x)=13x3+ax2+bx+c,其中a,b,c为常数。
若对于任意实数x,都有f(x+1)−f(x)=3x2+5x+2,求a,b,c的值。
解答过程首先观察到题目中给出了函数f(x)的表达式以及关于f(x)的等式。
我们可以利用这些信息来推导出a,b,c的值。
由于等式f(x+1)−f(x)=3x2+5x+2成立对于任意实数x都成立,所以我们可以尝试取特殊值来简化计算。
让我们取x=0,代入等式中得到:f(1)−f(0)=2再取x=1,代入等式中得到:f(2)−f(1)=10通过观察这两个等式,我们发现f(x)的每一项系数都可以通过这些等式来求解。
将f(x)展开得到:f(x)=13x3+ax2+bx+c=13x3+(a−13)x2+(b−a+13)x+(c−b+a3)由于等式成立对于任意实数x 都成立,所以我们可以将x 换成特殊的值来简化计算。
取x =0,代入上述展开式中,得到:c −b +a 3=0 (1) 再取x =1,代入上述展开式中,得到:43+a −23+b −a +13=10 (2) 将(1)带入(2),整理可得:b =−56 (3) 将(1)和(3)带入(2),整理可得:a =76 (4) 将(4)带入(1),整理可得:c =518 (5) 综上所述,a =76,b =−56,c =518。
例题2题目描述已知函数f (x )=ax 2+bx +c 的图像上存在两个不同的点(x 1,y 1)和(x 2,y 2),满足以下条件: 1. x 1+x 2=4 2. y 1+y 2=6 3. x 1y 1+x 2y 2=9求a,b,c 的值。
数形结合思想在高考解题中的应用

数形结合思想在高考解题中的应用数形结合不仅是一种重要的解题方法,也是一种的思维方法。
它在中学数学教学中占有重要的地位,也是历年高考重点考察的内容之一。
在运用数形结合解题时要注意以下两点:(1)“形”中觅“数”:根据形的直观性来寻求数量关系,将几何问题代数化,以数助形,使问题得到解决;(2)“数”中构“形”:根据代数问题具有的几何特征,进而发现数与形之间的关系,从而使代数问题几何化,使问题得到解决。
下面通过一些典型例题来说明数形结合思想在解题中的运用。
题型一、集合问题例1.已知集合A={}{}|23,|14x x B x x x -≤≤=<->或,则集合A B = ____________________.解析:利用数轴表示,可得{}|21A B x x =-≤<-评注:本题考查集合的基本运算,属容易题。
题型二、函数问题 例2.点P (x,y )在直线430x y +=上,且x,y 满足147x y -≤-≤,则P 到坐标原点距离的取值范围是__________________.解析:如图,直线430x y +=分别与直线14,7x y x y -=--=的交点为12(6,8),(3,4)P P --易知12||10,||5OP OP ==,故||OP 的取值范围为[]0,10评注:考查两点间的距离公式及分析、解决问题的能力。
注意虽然12||10,||5OP OP ==,但||OP 的取值范围不是[]5,10。
题型三、三角问题例3函数()2)f x x π=≤≤的值域是_______________. 解析:原式可化为y ==1)x ≠ 由数形结合思想得1cos 1sin x x-+可理解为动点(sin ,cos )x x 与定点(1,1)连线斜率的取值范围,。
可求取值范围是[]0,+∞,由此可求得1)x ≠的值域为[1,0)-,当sin 1x =时,()0f x =,所以值域是[]1,0-。
巧用曲线y=lnx与其切线y=x-1解高考题

当% w (0,)时,/'(%) > 0;当 x e (x0,1)时, f'M <0;当%e(l, +8)时,/心)>0,所以人%)存 在唯一的极大值点%。(0<乂。<1),且厂(%。)=0,即
lnxo =2(x0 -l)(x0#y).
所以 /*( xo) = %o - %o i %o (2%o - 2) = - + Xq <2".
2019年12月1日
理科考试研究•数学版
• 21 •
解(1)因为 fix) = ax2 - ax - xlnx = x(ax - a Inx),又/(%) ^0,x >0,所以 a(x - 1 ) Minx.
因为lnxW% - 1,所以a = 1. (2)由(1 )得,/"(%) =x2 - x -力lnx,所以/' '(x)= 2(x - 1) _ lnx. 因为直线y=x-l与曲线y = lnx相切,所以分别 作出曲线y = lnx和y = 2(%-1)图象,并设两曲线的 一个交点为A(x0,y0)(如图4).
+ 8 )单调递增;当2a >0,即a >0时,自变量%由0到 宓再到+ 8 ,函数值g(%)由-8到极大值g&。)再到 -8 ,所以%为函数g&)的极大值点,且曲线y =lnx 在x0处的切线平行于直线y=2a(x-l).
因为(lnx)'=丄,所以丄=2a,即x0 =^-.
x
x0
2a
所以函数g&)在区间(0,舟)单调递增,在区间
又0 <e" <1,而%为(0,1)上极大值点,所以 /(x0) >/(«-*) =e".所以函数/&)存在唯一的极大 值点"。,且 / </(x0) <2".
例谈“数形结合”思想在高考数学中的应用

2024年3月上半月㊀学习指导㊀㊀㊀㊀例谈 数形结合 思想在高考数学中的应用∗◉湖北江汉大学数学与大数据系㊀周㊀岭㊀许㊀璐㊀㊀著名数学家华罗庚曾说过: 数缺形时少直观,形少数时难入微;数形结合百般好,隔离分家万事休 .所谓 数形结合 就是把抽象的数学语言㊁数量关系与直观的几何图形㊁位置关系结合起来,通过 以形助数或 以数解形 ,即通过抽象思维与形象思维的结合,将复杂问题简单化,抽象问题具体化,达到实现优化解题路径的目的,起到事半功倍的效果.下面将结合高考数学试题实例,分析说明 数形结合 思想在解决问题中的作用和简捷.1数形结合思想在解析几何中的应用例1㊀(2023年全国新高考Ⅰ卷)过点(0,-2)与圆x 2+y 2-4x -1=0相切的两条直线的夹角为α,则s i n α=(㊀㊀).A.1㊀㊀㊀B .154㊀㊀C .104㊀㊀D.64分析:此题可以先将圆的方程化为标准形式,设出切线方程,利用点到直线的距离公式求出两条切线的斜率,最后利用夹角公式求得s i n α的值,但是计算相对复杂.解析:依题意,圆的方程可化为(x -2)2+y 2=5.图1如图1,得到圆心C (2,0),r =5,P (0,-2).所以|P C |=22.设过点P 的两条切线为P A 和P B ,则øA P B =α,可得s i nα2=r |P C |=522=104,c o sα2=1-(s i n α2)2=64.所以s i n α=2s i nα2c o s α2=154.故选:B .例2㊀(2023年新高考I 卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左㊁右焦点分别为F 1,F 2.点A 在C 上,点B 在y 轴上,F 1A ңʅF 1B ң,F 2A ң=-23F 2B ң,则C 的离心率为.分析:此题常见解法是设出点A ,B 的坐标,利用已知条件列出三个方程,再解出方程求得点A ,B 的坐标,进而得出双曲线C 的离心率.这样计算量会很大,如果利用数形结合的思想结合双曲线的定义求其离心率将会大大简化计算.解析:由F 2A ң=-23F 2B ң,得|F 2A ||F 2B |=23.设|F 2A |=2x ,则|F 2B |=3x ,|A B |=5x ,|F 1B |=|F 2B |=3x .由双曲线的定义,得|A F 1|=|A F 2|+2a =2x +2a .设øF 1A F 2=θ,则s i n θ=3x 5x =35,所以c o s θ=45=2x +2a5x,解得=a ,则|A F 1|=4a ,|A F 2|=2a .图2如图2,在әF 1A F 2中,由余弦定理,可得c o s θ=16a 2+4a 2-4c 216a2=45.整理,得5c 2=9a 2.故e =c a =355.点评:这类题目考查了学生 数学抽象 的核心素养.解决此类题的关键在于将数学符号语言和图形语言相互转化,利用图形的直观性,结合相关定义㊁公式即可快速解题.2数形结合思想在立体几何中的应用例3㊀(2022年新高考I 卷)已知正方体A B C D GA 1B 1C 1D 1,则(㊀㊀).A.直线B C 1与D A 1所成的角为90ʎB .直线B C 1与C A 1所成的角为90ʎC .直线B C 1与平面B B 1D 1D 所成的角为45ʎD.直线B C 1与平面A B C D 所成的角为45ʎ分析:此题可以通过建立空间直角坐标系来判断各选项是否正确,但计算较繁琐.解析:选项A ,B 的判断略.93∗基金项目:江汉大学研究生科研创新基金项目 基于新课标新课改背景下提升中学生数学学科核心素养的探究 ,项目编号为K Y C X J J 202350;教育部产学合作协调育人2022年第一批立项项目 基于P y t h o n 的大数据分析与应用课程混合教学模式探索 ,项目编号为220506627242057.学习指导2024年3月上半月㊀㊀㊀图3如图3所示,连接A1C1,设A1C1ɘB1D1=O,连接B O.由B B1ʅ平面A1B1C1D1,C1O⊂平面A1B1C1D1,得C1OʅB1B.因为C1OʅB1D1,B1D1ɘB1B=B1,所以C1Oʅ平面B B1D1D,所以øC1B O为直线B C1与平面B B1D1D的夹角.设正方体棱长为1,则C1O=22,B C1=2,于是s i nøC1B O=C1O B C1=12.所以直线B C1与平面B B1D1D所成的角为30ʎ,故选项C错误.因为C1Cʅ平面A B C D,所以øC1B C为直线B C1与平面A BC D的夹角,易得øC1B C=45ʎ,故选项D正确.综上所述,此题选:A B D.点评:本题主要考查立体几何中直线与直线的夹角㊁直线与平面的夹角,是对学生 逻辑推理 直观想象核心素养的考查.此题如果通过建系来计算,将比较复杂,耗时较长;若采取 传统 方法,结合图形并运用立体几何㊁三角函数相关知识,即可快速㊁直观作出判断.3数形结合思想在函数中的应用例4㊀(2021年全国乙卷)设aʂ0,若x=a为函数f(x)=a(x-a)2(x-b)的极大值点,则有(㊀㊀).A.a<b B.a>b C.a b<a2D.a b>a2分析:此题如果利用导数知识来求该函数的极大值点,再通过a与b的大小来判断选项将非常复杂.如果通过数形结合先考虑函数的零点情况,注意零点附近左右两侧函数值是否变号,结合极大值点的性质,对a进行分类画出该函数的图象再来判断选项将大大简化了问题,既直观又方便快捷[1].解析:若a=b,则f(x)=a(x-a)3为单调函数,无极值点,不符合题意,故aʂb.所以f(x)有x=a和x=b两个不同零点,且在x=a附近左右两侧不变号,在x=b附近左右两侧变号.因为x=a为函数f(x)=a(x-a)2(x-b)的极大值点,所以f(x)在x=a附近左右都小于0.①当a<0时,由x>b,f(x)ɤ0,画出f(x)的图象如图4所示.由b<a<0,得a b>a2.图4㊀㊀㊀图5②当a>0时,由x>b,f(x)>0,画出f(x)的图象如图5所示.由b>a>0,得a b>a2.综上a b>a2成立.故选:D.例5㊀(2021年新高考I卷)已知O为坐标原点,点A(1,0),P1(c o sα,s i nα),P2(c o sβ,-s i nβ),P3(c o s(α+β),s i n(α+β)),则(㊀㊀).A.|O P1ң|=|O P2ң|B.|A P1ң|=|A P2ң|C.O Aң O P3ң=O P1ң O P2ңD.O Aң O P1ң=O P2ң O P3ң分析:此题如果画出图形,利用数形结合思想解题,既直观又简捷.图6解析:如图6,可得|O P1ң|=|O P2ң|=1,故选项A正确.仅当α=-β时,|A P1ң|=|A P2ң|成立.故选项B错误.由O Aң O P3ң=|O Aң| |O P3ң|c o s(α+β),O P1ң O P2ң=|O P1ң| |O P2ң| c o s(α+β),|O Aң|=|O P3ң|=|O P1ң|=|O P2ң|=1,可知O Aң O P3ң=O P1ң O P2ң.故选项C正确.观察图象,易得‹O Aң,O P1ң›=α,‹O P2ң,O P3ң›=α+2β.故选项D错误.此题应选:A C.例6㊀(2021年新高考I卷)若过点(a,b)可以作曲线y=e x的两条切线,则(㊀㊀).A.e b<a B.e a<bC.0<a<e b D.0<b<e a分析:此题要求作出曲线y=e x的两条切线,通过几何图形进行直观想象,很容易判断各选项是否正确.解析:作出y=e x的图象.易得,若想作出切线,点(a,b)需在曲线y=e x的下方和x轴上方,如图7,即b<e a.图7㊀㊀图8但点(a,b)在x轴及其下方时,仅能作出一条切线,如图8.所以点(a,b)需在y轴上方,即b>0.综上,可得0<b<e a.故选:D.综上所述,在高考数学中利用数形结合思想解题往往可以起到简化计算㊁提高解题效率的作用.因此,平时教学中教师应通过数形结合思想丰富的展现形式不断对其进行渗透,促进学生数与形相互转换的能力,刺激学生学习数学的欲望,引导学生投入到数形结合分析的专题探究中[2],从而达到数学抽象思维具象化㊁发散化的教学目的,最终达到提升学生核心素养和全面发展的教育目的.参考文献:[1]常国良.数学教学中渗透直观想象素养的三重境界[J].教学与管理,2020(31):62G64.[2]李兆芹.探究数形结合思想如何有效运用于高中数学教学[J].数学学习与研究,2018(5):43.Z04。
高考数学运用数形结合的思想方法解题专项练习(含答案解析)

高考数学运用数形结合的思想方法解题专项练习(含答案解析)一、单选题1.(2023春·江苏盐城·高三盐城中学校考)若直线():40l x m y +−=与曲线x =有两个交点,则实数m 的取值范围是( )A .0m <<B .0m ≤<C .0m <≤D .0m ≤【答案】B【解析】x =()0,0,半径为2的圆在y 轴以及右侧的部分,如图所示:直线():40l x m y +−=必过定点()0,4, 当直线l 与圆相切时,直线和圆恰有一个交点,2=,结合直线与半圆的相切可得m =当直l 的斜率不存在时,即0m =时,直线和曲线恰有两个交点, 所以要使直线和曲线有两个交点,则0m ≤故选:B.2.(2023春·湖北随州·高三随州市曾都区第一中学校考阶段练习)已知x ,y 是实数,且22410x y x +−+=,则21y x ++的最大值是( )A B .116C .336D 【答案】D【解析】方程可化为()223x y −+=,表示以()2,021y x ++的几何意义是圆上一点与点A ()1,2−−连线的斜率,设21k y x =++,即()21y k x +=+,当此直线与圆相切时,斜率最大或最小,当切线位于切线AB 时斜率最大.=k =,所以21y x ++故选:D .3.(2023春·陕西渭南·高一统考)已知函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()24f x x x =−.若函数()()()R g x f x m m =+∈,则函数()g x 的零点个数不可能是( )A .1B .2C .3D .4【答案】A【解析】函数()f x 是定义在R 上的偶函数,当[)0,x ∈+∞时,()224(2)4f x x x x =−=−−,作出()f x 的图像如图:,故当0m =时,()()g x f x =有3个零点;当0m <或4m =时,()()g x f x m =+的图像与x 轴有两个交点,则函数有2个零点; 当04m <<时,()()g x f x m =+的图像与x 轴有4个交点,则函数有4个零点;由于()()g x f x m =+也为偶函数,结合()f x 图像可知,()()g x f x m =+不可能有1个零点, 故选:A4.(2023春·陕西西安·高三统考期末)已知函数()e ,03,0x x f x x x ⎧≥=⎨−<⎩, 若函数()()()g x f x f x =−−,则函数()g x 的零点个数为( ) A .1 B .3 C .4 D .5【答案】D【解析】当0x >时,0x −<,()3f x x −=当0x <时,0x −>,()e xf x −−=()()()3e ,00,0e 3,0x x x x g x f x f x x x x −⎧−>⎪∴=−−==⎨⎪+<⎩,()()()()g x f x f x g x −=−−=−,且定义域为R ,关于原点对称,故()g x 为奇函数,所以我们求出0x >时零点个数即可,(0,)3e x g x x x =−>,()3e 0x g x '=−>,令()3e 0x g x '=−>,解得0ln3x <<,故()g x 在()0,ln 3上单调递增,在(ln3,)+∞单调递减,且(ln3)3ln330g =−>,而()226e 0g =−<,故()g x 在(ln 3,2)有1零点,1311e 03g ⎛⎫=−< ⎪⎝⎭,故()g x 在1(,ln 3)3上有1零点,图像大致如图所示:故()g x 在()0,∞+上有2个零点,又因为其为奇函数,则其在(),0∞−上也有2个零点,且()00g =,故()g x 共5个零点, 故选:D.5.(2023春·黑龙江哈尔滨·高一哈尔滨三中校考阶段练习)若函数()f x 的定义域为(),1f x −R 为偶函数,当1x ≥−时,()31xf x −=−,则函数()()12g x f x =−的零点个数为( )A .0B .1C .2D .4【答案】D【解析】令310x −−≥解得0x ≤,令310x −−<解得0x >, 所以当1x ≥−时,()11,1033111,03xxxx f x x −⎧⎛⎫−−≤≤⎪ ⎪⎪⎝⎭=−=⎨⎛⎫⎪−+> ⎪⎪⎝⎭⎩, ()1f x −为偶函数,所以()1f x −的图像关于y 轴对称,所以()f x 的图像关于直线=1x −轴对称, 故作出()f x 的图像如下,令()()102g x f x =−=,即()12f x =, 由图像可知,()f x 的图像与12y =的图像共有四个交点, 所以函数()()12g x f x =−的零点个数为4个.故选:D.6.(2023·山东潍坊·统考模拟预测)已知函数()f x 是定义域为R 的偶函数,且(1)f x −是奇函数,当01x 剟时,有()f x =()(2021)y f x k x =−−的零点个数为5,则实数k 取值范围是( ) A .15<2<1kB .16<3<1kC k k =D .k <k 【答案】C【解析】∵偶函数()f x ,()()f x f x ∴−=,(1)f x −是奇函数,得(1)(1)f x f x −=−−−,即 ()(2)f x f x =−−−,(2)()f x f x −−−=−,得4T =,()(2021)0f x k x −−=,即()y f x =与(2021)y k x =−的图像交点的个数,因为4T =,即为()y f x =与(1)y k x =−的图像交点的个数,因为()f x =k 应该在1k 与2k 之间或为3k ,213k k k ==k k =故选:C.7.(2023·全国·高三专题练习)已知函数()()ln2,01ln 2ln 2,12xx f x x x ⎧<<⎪=⎨−+≤<⎪⎩,若存在02a b c <<<<使得()()()f a f b f c ==,则111ab bc ca++的取值范围是( ) A .20,93⎛⎫⎪⎝⎭B .20,3⎛⎫+∞ ⎪⎝⎭C .∞⎫+⎪⎪⎣⎭ D .⎫⎪⎪⎣⎭【答案】A【解析】∵()()ln 2ln2ln 22x x ⎡⎤−+=−⎣⎦,∴ln 2y x =与()ln 2ln2y x =−+的图像关于直线1x =对称,作出()f x 的大致图像如图所示,易知2b c +=,由ln2ln2a b =,即ln 2ln 2a b −=,ln 40ab =,得14ab =, ∵112b <<,∴11124a<<,得1142a <<,∴()()421621112181244a a a a b c a c ab bc ca abc a a+++++++====−−. 设81t a =−, 则()1,3t ∈,111117184t ab bc ca t ⎛⎫++=++ ⎪⎝⎭. 17t t+≥=t 故当()1,3t ∈时,令()1718h t t t +=+,()h t 单减,()()80136,33h h ==, 故1172018,943t t ⎛⎫⎛⎫++∈ ⎪ ⎪⎝⎭⎝⎭. 故选:A 二、多选题8.(2023·全国·高三专题练习)已知1F ,2F 是双曲线()2222:10,0x yE a b a b−=>>的左、右焦点,过1F 作倾斜角为30的直线分别交y 轴与双曲线右支于点,M P ,1PM MF =,下列判断正确的是( )A .2160PF F ∠=,B .2112MF PF =C .ED .E的渐近线方程为y =【答案】BCD【解析】如下图所示,因为1PM MF =,即M 为1PF 中点,O 为12F F 中点,所以2//OM PF ,因为12OM F F ⊥,所以212PF F F ⊥,所以212PF F π∠=,2112MF PF =,A 错误,B 正确; 由212PF F F ⊥知:22b PF a=,又122F F c =,1230PF F ∠=,2c =)222c a ac −=220e −,解得:e =C 正确;所以==c e a 223c a =,所以22222b c a a =−=,所以ba= 所以E 的渐近线方程为y =,D 正确.故选:BCD .9.(2023·全国·高三专题练习)已知直线l 过抛物线2:8C y x =的焦点F l 与抛物线交于,P Q 两点(P 在第一象限),以,PF QF 为直径的圆分别与y 轴相切于,A B 两点,则下列结论正确的是( ) A .32||3PQ =B .AB =C .若M 为抛物线C 上的动点,(2,1)N ,则min (||||)4MF MN +=D .若0(,M x 为抛物线C 上的点,则9MF = 【答案】ABC【解析】设直线PQ 的方程为:y x ﹣2),与28y x =联立整理可得:3x 2﹣20x +12=0,解得:x 23=或6,则P (6,,Q (23,;所以|PQ |=623++4323=,选项A 正确;因为F (2,0),所以PF ,QF 的中点分别为:(4,,(43,,所以A (0,,B (0,,所以|AB =, 选项B 正确;如图M 在抛物线上,ME 垂直于准线交于E ,可得|MF |=|ME |, 所以|MF |+|MN |=|ME |+|MN |≥NE =2+2=4,当N ,M ,E 三点共线时, |MF |+|MN |最小,且最小值为4,选项C 正确;对于选项D ,若0(M x 为抛物线C 上的点,则05x =,又4p =, 所以072pMF x =+=,选项D 错误. 故选:ABC.10.(2023春·河南·高三校联考)在三棱锥A BCD −中,平面ABD ⊥平面BCD ,BD CD ⊥,2BD CD ==,ABD △为等边三角形,E 是棱AC 的中点,F 是棱AD 上一点,若异面直线DE与BF AF 的值可能为( ) A .23B .1C .43D .53【答案】AC【解析】由ABD △为等边三角形,取BD 的中点O ,连接AO ,则AO BD ⊥ 又平面ABD ⊥平面BCD ,且平面ABD ⋂平面BCD BD = 所以AO ⊥平面BCD ,由BD CD ⊥过O 作与CD 平行的直线为y 轴,分别以,OB OA 为,x z 轴建立如图所示的空间直角坐标系,因为2BD CD ==,则()1,0,0B ,()()(1,0,0,1,2,0,D C A −−,所以12E ⎛− ⎝⎭.设()F a ,则12DE ⎛= ⎝⎭,()BF a =−,则28=13a =−或23a =−, 故1233AF AD ==或2433AF AD ==.故选:AC11.(2023秋·福建三明·高一福建省宁化第一中学校考阶段练习)已知G 为ABC 的重心,60BAC ∠=︒,2AB AC ⋅=,则||AG uuu r的可能取值为( )A .23B .1CD .32【答案】CD【解析】如图,G 是ABC 的重心,记,,AB c AC b AB a ===, 则2211()()3323AG AD AB AC AB AC ==⨯+=+, 222222111()(2)(4)999AG AB AC AB AB AC AC b c =+=+⋅+=++,又1cos6022AB AC bc bc ⋅=︒==,即4bc =,所以2228b c bc +≥=,当且仅当2b c ==时等号成立,所以214(84)93AG ≥⨯+=.即233AG ≥CD 满足. 故选:CD .12.(2023春·湖北黄冈·高三校考开学考试)已知ABC 的重心为G ,过G 点的直线与边AB ,AC 的交点分别为M ,N ,若AM MB λ=,且AMN 与ABC 的面积之比为920,则λ的可能取值为( )A .43B .32C .53D .3【答案】BD【解析】如图,()AM MB AB AM λλ==−,1AM AB λλ∴=+,即1AB AM λλ+=,设AC t AN =,则11()333tAG AB AC AM AN λλ+=+=+, M G N 、、三点共线,1=133t λλ+∴+,12t λ∴=−, 所以12AC AN λ⎛⎫=− ⎪⎝⎭,AMN ∴与ABC 的面积之比为920,191sin sin 2202AM AN A AB AC A ∴=⨯⨯, 即112029λλλ+⎛⎫⎛⎫−=⎪⎪⎝⎭⎝⎭,化简得22990λλ−+=,解得32λ=或3. 故选:BD13.(2023春·湖南长沙·高三长沙一中校联考)在三维空间中,定义向量的外积:a b ⨯叫做向量a 与b 的外积,它是一个向量,满足下列两个条件:①()a a b ⊥⨯,()b a b ⊥⨯,且a ,b 和a b ⨯构成右手系(即三个向量的方向依次与右手的拇指、食指、中指的指向一致,如图所示);②a b ⨯的模sin ,a b a b a b ⨯=,(,a b 表示向量a ,b 的夹角). 在正方体1111ABCD A B C D −中,有以下四个结论,正确的有( )A .11AB AC AD DB ⨯=⨯ B .111AC A D ⨯与1BD 共线C .AB AD AD AB ⨯=⨯ D .6BC AC ⨯与正方体表面积的数值相等【答案】ABD【解析】对于A ,设正方体的棱长为1,在正方体中1,60AB AC =︒,则111sin ,2AB AC AB AC AB AC ⨯===, 因为11//BD B D ,且1160AD B ∠=︒,所以1,120AD DB =︒,所以111sin ,2AD DB AD DB AD DB ⨯=== 所以11AB AC AD DB ⨯=⨯,所以A 正确;对于B ,1111AC B D ⊥,111AC BB ⊥,1111B B B D B ⋂=,111,B B B D ⊂平面11BB D D ,11AC ⊥平面11BB D D ,因为1BD ⊂平面11BB D D ,所以111BD AC ⊥,同理可证11BD A D ⊥, 再由右手系知,111AC A D ⨯与1BD 同向,所以B 正确;对于C ,由a ,b 和a b ⨯构成右手系知,a b ⨯与b a ⨯方向相反, 又由a b ⨯模的定义知,sin ,sin ,a b a b a b b a a b b a ⨯===⨯, 所以a b ba ⨯=−⨯,则AB AD AD AB ⨯=−⨯,所以C 错误; 对于D ,正方体棱长为a ,266sin 456BC AC BC AC a a ⨯=⋅︒=⨯, 正方体表面积为26a ,所以D 对. 故选:ABD .三、填空题14.(2023·全国·高三专题练习)已知函数243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩.若关于x 的方程()()()2[]2110f x m f x m +−−+=有6个不同的实数根,则m 的取值范围___________.【答案】7,5⎛− ⎝⎭【解析】因为243,0()41,01x x x f x x x ⎧++≤⎪=⎨−>⎪+⎩,所以当0x ≤时,()243f x x x =++开口向上,对称轴为2x =−,()()min 21f x f =−=−,两零点为1,3x x =−=−;当0x >时,()411f x x =−+,则()f x 在()0,∞+上单调递减,零点为3x =,且()1f x >−; 由此作出()f x 的图像如图,.令()t f x =,则当13t −<<时,()t f x =有三个实数根,因为()()()2[]2110f x m f x m +−−+=有6个不同的实数根,所以()22110t m t m +−−+=必须有两个不等实根12,t t ,且()21,1,3t t ∈−,令()()2211g t t m t m =+−−+,则()()103021132Δ0g g m ⎧−>⎪>⎪⎪⎨−−<−<⎪⎪>⎪⎩,即()()()()212110932110621221410m m m m m m m ⎧−−−+>⎪+−−+>⎪⎨−<−<⎪⎪−−−+>⎩,解得75m −<<7,5m ⎛∈− ⎝⎭.故答案为:7,5⎛− ⎝⎭. 15.(2023春·全国·高一期末)已知函数241,1()log 3,1xx f x x x ⎧−⎪=⎨+>⎪⎩…集合21()2()02M x f x t f x t ⎧⎫⎛⎫=−++=⎨⎬ ⎪⎝⎭⎩⎭∣,若集合M 中有3个元素,则实数t 的取值范围为________.【答案】{|0t t =或1}2t ≥【解析】令()f x m =,记21()(2)2g m m t m t =−++的零点为12,m m ,因为集合M 中有3个元素,所以()f x 的图像与直线12,y m y m ==共有三个交点,则,12001m m =⎧⎨<<⎩或12101m m =⎧⎨<<⎩或12001m m >⎧⎨<<⎩当10m =时,得0=t ,212m =,满足题意; 当11m =时,得12t =,212m =,满足题意;当12001m m >⎧⎨<<⎩时,(0)01(1)1202g t g t t =>⎧⎪⎨=−−+<⎪⎩,解得12t >. 综上,t 的取值范围为{|0t t =或1}2t ≥.故答案为:{|0t t =或1}2t ≥16.(2023秋·黑龙江绥化·高一校考期末)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知30,12=︒=A b ,若ABC 有两解,写出a 的一个可能的值为__________.【答案】7(满足(612)a ∈,均可,答案不唯一) 【解析】由于满足条件的ABC 有两个,则sin b A a b <<,即612a <<.故答案为:7(满足(612)a ∈,均可,答案不唯一).17.(2023·海南·统考模拟预测)已知函数()314f x x m π⎛⎫=++− ⎪⎝⎭在3,04π⎡⎤−⎢⎥⎣⎦上有3个零点1x ,2x ,3x ,其中123x x x <<,则1232x x x ++=______. 【答案】53π−【解析】令()0f x =314x m π⎛⎫++= ⎪⎝⎭,故()314f x x m π⎛⎫++− ⎪⎝⎭的零点为函数()314g x x π⎛⎫++ ⎪⎝⎭与函数y =m 交点的横坐标,作出函数g (x )在3,04π⎡⎤−⎢⎥⎣⎦上的大致图像:令3()42x k k πππ+=+∈Z ,解得()123k x k ππ=+∈Z , 令1k =−,得4x π=−,则由图知2322=4x x ππ⎛⎫+=⨯−− ⎪⎝⎭,令2k =−,得712x π=−,则由图知12772=126x x ππ⎛⎫+=⨯−− ⎪⎝⎭, 故123752263x x x πππ++=−−=−. 故答案为:53π−﹒18.(2023春·辽宁沈阳·高三沈阳市第一二〇中学校考阶段练习)已知双曲线22:14x y C m −=与直线2y x =无交点,则m 的取值范围是_____. 【答案】(]0,16【解析】依题意,由22:14x y C m −=可得0m >,双曲线C 的渐近线方程为y =,因为双曲线C 与直线2y x =无交点,所以直线2y x =应在两条渐近线上下两部分之间,2≤,解得016m <≤,即(]0,16m ∈. 故答案为:(]0,16..。
高考数学大题解题技巧高考数学填空题解题技巧:数形结合法

高考数学大题解题技巧高考数学填空题解题技巧:数形结合法高考数学大题解题技巧|高考数学填空题解题技巧:数形结合法本网站为您整理了高考数学填空的解题技巧:数字与形状的结合。
本网站将继续更新信息。
请注意。
高考数学填空题解题技巧:数形结合法填空题的类型一般可分为多项选择填空题和带条件和结论的开放填空题。
这表明空白填充问题是数学命题的重要组成部分,占整个试卷的三分之一左右。
因此,在备考时,我们不仅要关注这一新趋势,还要为应试技巧做好准备。
在解决问题时,我们应该有合理的分析和判断,要求推理和操作的每一步都是正确的,并且准确完整地表达答案。
合理推理、优化思维、少计算、多思考,是快速、准确地解决填空题的基本要求。
解答填空题的基本策略是准确、迅速、整洁。
准确度是解决填空题的前提。
空白填充问题没有中间分数,如果一步错了,整个问题没有得分。
因此,我们要认真审查问题,深入分析,正确推断,防止遗漏,确保准确性;迅速是赢得时间获取高分的必要条件,对于填空题的答题时间,应该控制在不超过20分钟左右,速度越快越好,要避免"超时失分"现象的发生;整洁是保持成绩的充分条件。
只有把正确的答案整齐地写在答题纸上,我们才能确保批改老师的正确批改。
在互联网上标记纸张时,整洁尤为重要。
高考中的数学填空题一般是容易题或中档题,数学填空题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,应答时必须按规则进行切实的计算或者合乎逻辑的推演和判断。
求解填空题的基本策略是要在"准"、"巧"、"快"上下功夫。
常用的方法有直接法、特殊化法、数行结合法、等价转化法等。
数形组合法"数缺形时少直观,形缺数时难入微。
"数学中大量数的问题后面都隐含着形的信息,图形的特征上也体现着数的关系。
我们要将抽象、复杂的数量关系,通过形的形象、直观揭示出来,以达到"形帮数"的目的;同时我们又要运用数的规律、数值的计算,来寻找处理形的方法,来达到"数促形"的目的。
运用数形结合法巧解高考三角函数问题

(x 詈 丌 k } cl 十 ∈ ) { k 詈,z
( {I 1+ <x kT D) 2 T J Xk <21
解 .x = f ) (
解 : m=ixn cs , ‘n= . 令 s .: ox 则m + 一1 n
由 直线 2 I y 0 m— — = 与圆m + 一 1 公 共 点 , : I n= 有 则
2 一 … 7 、 .
D
4 3
I 1
24
图1
Hale Waihona Puke 已知函数fx : /3s x CS , ∈R, () () 、 i — OX x n 若fx
≥ 1则 x , 的取 值 范 围为 ( ) .
( {ll+ ≤ x k l , A)xkv ≤  ̄+ vkEZ l
( ) l r [ x k + k∈ ) B {2 r r x k + r≤ ≤2 订 订, z
2
2 ' 图像 可 知 )由
] n≥ 的 解 是 t
2
6
.
t f一7 ) f0 得一 三 × — — : l 解 得 a2Xf . h ( 一 :( ) 1 " 二 — — +1 一 一 a — :" /
, ,
3
2
2
2
所 以在 R 的s t 的解 是 上 i ̄ n>
.
J 的 最 大 值 和 最 小值 . -
解 :( ) a ox ix c sx s —= ̄ sn x c s x fx = c s s — o‘+ i x a i2 — o 2 n n
2
在 同 一 坐 标 系 内作 出 函 数 y s x与y 的 图 像 ( ( =i - : n 女 1
利用数形结合巧解高考压轴题

利用数形结合巧解高考压轴题发表时间:2010-10-12T09:57:23.420Z 来源:《中学课程辅导•教学研究》2010年第20期供稿作者:林忠[导读] 纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些数学问题,可起到事半功倍的效果。
林忠摘要:数形结合是数学解题中常用的思想方法。
利用数形结合,往往能使问题简单化。
本文结合具体的例题论述了如何利用数形结合巧解高考题。
关键词:数形结合;高考;解题作者简介:林忠,任教于广西北海市第九中学。
数形结合是数学解题中常用的思想方法,它可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
下面我们来看2010年高考的两个题目:。
纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些数学问题,可起到事半功倍的效果。
我国著名数学家华罗庚曾说过:“数缺形时少直觉,形少数时难入微。
数形结合百般好,隔裂分家万事非”。
解题时放开我们的思维,多动动脑子,挖掘事物的本质,有机地把数形结合起来,会给我们带来无限的惊喜。
作者单位:广西北海市第九中学邮政编码:536000Using Numeral-form Combination toSolve Critical Problems in NMTLIN ZhongAbstract: Numeral-form combination is a common thought method in mathematics problem-solving. Problems can be simplified if we apply numeral-form combination. This paper expounds how to apply numeral-form combination to solve problems in NMT based on the specific examples.Key words: numeral-form combination; NMT; problem-solving。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
巧用数形结合法解答高考题
作者:潘克和
来源:《中学教学参考·理科版》2013年第09期
数形结合法是一种重要的数形解题方法,但在历年高考中,考生在涉及数形结合知识的题目的得分率都比较低.为了使广大考生对数形结合法有更多的了解,本文结合历年高考题谈谈数形结合法在解题中的应用.
一、把数量关系转换为圆的问题
圆的方程是高中数学的一个重要章节,是从数量方面研究圆的性质,解决这类问题的基础就是要熟悉圆方程的几种表现形式.如参数方程:x=a+rcosa,y=b+rsina(表示圆心为(a,b),半径为r的圆);标准方程或普通方程的变形:y-b=r2-(x-a)2(表示圆心为(a,b),半径为r的上半圆);等等.
解:由圆参数方程易知,点M是以原点(0,0)为圆心,1为半径的圆上的点,从而问题转化为判断直线xa+yb=1与圆x2+y2=1有交点的充要条件问题.根据直线与圆有交点的充要条件是d≤r11a2+1b2≤11a2+1b2≥1,故选D.
二、把数量关系转化为直线斜率问题
涉及求有关y-bx-a的值时,可把y-bx-a看做是两点A(x,y)、B(a,b)连线间的斜率,从而把代数问题转换为几何图形问题.
图2解:kOA=yx可看做是两点A(x,y)、O(0,0)间连线的斜率,由约束条件“x-
y+2≤0,x≥1,x+y-7≤0”作出可行域(如图2阴影部三、把数量关系转化为两点间距离问题
涉及求有关(x-a)2+(y-b)2的值时,可把(x-a)2+(y-b)2看做是两点A(x,y)、B(a,b)间的距离,从而把代数问题转换为几何图形问题
例5(2006,湖南,12)已知x≥1,x-y+1≤0,2x-y-2≥0,则x2+y2的最小值是.
图4解:d=x2+y2可看做两点A(x,y)、O(0,0)间的距离,则x2+y2=d2,当d最小时,d2也取得最小值.由约束条件“x≥1,x-y+1≤0,2x-y-2≥0”作出可行域(如图4阴影部分),由图可知可行域内的点A(1,0)与O(1,0)距离最小,所以dmin=1,从而d2min=1.
四、函数图像的应用
指数和对数函数的图像及性质是高中数学的一个重要知识点,而高考题往往是以判断超越方程根的情况的形式出现.解这些题目关键是能分离变量,画出函数的图像,把代数方程根的问题转化为图像的交点问题.
解:由2a=log12a知x=a是方程2x=log12x的根,即函数y=2x的图像与函数y=log12x的图像的交点的横坐标为a.
图5同理,函数y=(12)x的图像与函数y=log12x的图像的交点的横坐标为b;函数y=(12)x的图像与函数y=log2x的图像的交点的横坐标为c.作图易得a
以上是结合历年高考题对考查数形结合方法的考题按考点进行分类,方便学生理解掌握,从而提高学生的数学应用能力.当然,有些复杂函数图像还需要通过应用导数的知识去判断函数的性质,才能够较准确地画出其图像,从而结合图像解决相关问题.
(责任编辑:金铃)。