图像的平移与旋转 知识点

合集下载

图形的平移、旋转与轴对称单元知识点总结

图形的平移、旋转与轴对称单元知识点总结

二、图形的平移、旋转与轴对称1.图形的平移●平移的定义:平移是指在同一平面内,将一个图形整体按照某个直线方向移动一定距离的图形运动。

●平移两要素:平移的方向、平移的距离●平移前的图形:画虚线;箭头:表示平移的方向;平移后的图形:画实线。

●注意:平移几格不是原图形与平移后图形之间的格数,而是指图形的对应点之间的格数。

●关键点:一般是图形的各顶点或线段的交点。

●注意:平移前后,图形的大小、形状、方向都不变,只是位置变了。

●画平移后图形的方法:①找关键点②定平移方向、距离③找对应点④依次连线。

2.图形的旋转●旋转的定义:旋转是指在平面内,将某个图形绕一个定点沿某个方向旋转一个角度的图形运动。

这个定点称为旋转中心,旋转的角度称为旋转角度。

●旋转三要素①旋转中心:点/轴②旋转方向:顺时针方向/逆时针方向③旋转角度●怎样描述图形的旋转:将某图形绕某点沿某时针方向旋转某度到某位置。

●画旋转后图形的方法:①找旋转中心②找准关键线段③旋转关键线段④画出旋转后的图形●旋转中心:一般是两个图形的公共点●关键线段:过旋转中心的线段。

为了保证旋转角度,一般选与方格纸重合的线段作为关键线段。

●注意:旋转前后,图形的大小、形状都不发生改变,但位置和方向一般会发生变化。

3.轴对称图形●定义:轴对称图形沿一条直线对折后,两部分能完全重合,折痕所在的直线叫做它的对称轴(对称轴画虚线,画超出图形)。

●轴对称图形至少有一条对称轴。

●轴对称图形中每一组对称点到对称轴的距离相等。

●轴对称图形中对称点的连线与对称轴互相垂直。

●轴对称图形和对称轴的数量:①正方形(4条对称轴)②长方形(2条对称轴)③等腰三角形(1条对称轴)④等边三角形也叫正三角形(3条对称轴)⑤菱形(2条对称轴)⑥圆形(无数条对称轴)⑦等腰梯形(1条对称轴)⑧五角星(5条对称轴)⑨正五边形(5条对称轴)●生活中的轴对称图形或轴对称现象:京剧脸谱、剪纸、国徽、天坛、北京故宫、凯旋门、蝴蝶、空调、人的五官和身体等●画对称轴的方法:①找一组对应点②画对应点间线段的中垂线③画虚线●画轴对称图形另一半的方法:①找关键点②定对称点③依次连线(一般画虚线)4.设计图案●利用平移设计图案的方法:①选好基本图形②确定平移的方向③确定平移的距离④进行多次平移●利用旋转设计图案的方法:①选和基本图形②确定旋转方向和角度③确定旋转中心④依次画出每次旋转后的图形●利用轴对称设计图案的方法:①选好基本图形②确定对称轴③画出基本图形的另一半5.探索规律●观察图形变化时,先确定变化方式(平移、旋转或轴对称),再确定位置变化的规律。

图形的平移与旋转知识点汇总

图形的平移与旋转知识点汇总

第十五章图形的平移与旋转一、平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。

一个图形经过平移后得到一个新图形,这个新图形与原图形是互相重合的,互相重合的点称为,互相重合的角称为,互相重合的线段称为。

注意:1.平移有两个要素:(1)沿某一方向移动;(2)移动一定的距离;2.平移的方向就是原图上的点指向它的对应点的方向;图像上每点都沿同一方向移动距离,这个距离是指对应点之间的长度;3.平移前后两图形是全等的。

平移的特征:平移不改变图形和,只改变了图形的位置;经过平移,对应点所连的线段(或 )且相等;对应线段(或)且相等,对应角。

二、1、旋转:在平面内,将一个图形绕一个沿某个方向转动一定,这样的图形运动称为旋转。

这个定点称为,转动的角称为。

任意一对对应点与旋转中心的连线所成的角都是 .注意:1.旋转中心在旋转过程中保持不动;2.图形的旋转是由,和所决定的;3.作平移图与旋转图。

(确定关键点,将关键点沿一定的方向移动相同的距离,连接关键点)旋转的特征:图形中每一点都绕着旋转中心按同一旋转方向旋转了同样大小的;对应点到旋转中心的距离;对应线段,对应角;图形的形状与大小都没有发生变化。

图形的变换包括、和旋转,这三种图形变换的共同点是:只改变图的,不改变图形的和。

2、旋转对称图形:在平面内,一个图形绕一个定点旋转一定的角度后能与自身,这样的图形称为旋转对称图形。

3、中心对称图形:在平面内,一个图形绕某个点旋转角度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形。

这个点叫做对称中心。

中心对称图形是旋转角度为°的特殊旋转对称图形,但旋转对称图形不一定是中心对称图形。

4、成中心对称:把一个图形绕着某一点旋转180º,如果它能够和另一个图形重合,就称这两个图形成中心对称。

这个点叫做对称中心;这两个图形中的对应点,叫做关于中心的。

在成中心对称的两个图形中,连结对称点的线段都经过,并且被对称中心。

图形的旋转、平移与翻折

图形的旋转、平移与翻折

图形的旋转、平移与翻折在几何学中,图形的旋转、平移与翻折是常见的操作,可以通过这些操作改变图形的位置、形状和方向。

这些操作在数学、物理学和计算机图形学等领域都有广泛的应用。

本文将介绍图形的旋转、平移与翻折的基本概念和相关应用。

一、图形的旋转图形的旋转是指将图形绕一个旋转中心按一定角度旋转。

旋转可以使图形发生变化,同时保持图形的大小和形状不变。

旋转操作常用的单位是度数,顺时针为正方向,逆时针为负方向。

图形的旋转可以通过旋转矩阵来描述。

设图形的坐标为(x, y),旋转的角度为θ,旋转中心为(x0, y0),则旋转后的坐标可以表示为:x' = (x - x0) * cosθ - (y - y0) * sinθ + x0y' = (x - x0) * sinθ + (y - y0) * cosθ + y0通过这个公式,我们可以将任意点围绕旋转中心进行旋转变换。

图形的旋转可以应用于很多领域,例如地理学中的地图旋转变换、物理学中的刚体旋转运动等。

在计算机图形学中,旋转操作经常用于图像处理、动画制作等方面。

二、图形的平移图形的平移是指将图形沿着特定的方向和距离进行移动。

平移操作只改变图形的位置而不改变图形的形状和方向。

图形的平移可以通过平移向量来表示。

设图形的坐标为(x, y),平移向量为(dx, dy),则平移后的坐标可以表示为:x' = x + dxy' = y + dy通过这个公式,我们可以将图形沿水平方向和垂直方向进行平移变换。

图形的平移操作在几何学中经常用于研究几何关系、证明定理等方面。

在计算机图形学中,平移操作经常用于图像编辑、游戏开发等方面。

三、图形的翻折图形的翻折是指将图形在一个轴线上进行对称变换。

翻折操作将图形上的每个点关于轴线镜像对称,使得图形在镜像轴两侧成为对称的。

图形的翻折可以通过翻折矩阵来表示。

设图形的坐标为(x, y),轴线为x轴或y轴,对称变换为x轴翻折或y轴翻折,对应的翻折矩阵为:对于x轴翻折:x' = xy' = -y对于y轴翻折:x' = -xy' = y通过这个公式,我们可以将图形关于x轴或y轴进行翻折变换。

平移和旋转的区别与联系(数学图形初中知识点总结)

平移和旋转的区别与联系(数学图形初中知识点总结)

平移和旋转的区别与联系(数学图形初中知识点总结)平移和旋转是数学图形初中数学的基础知识,也是我们在生活中常见的几何变换方式。

本文将围绕平移和旋转的区别与联系进行阐述。

一、平移平移在数学上的定义是指图形在平面内按照某个方向和距离进行移动。

可以理解为保持图形形状和大小不变,只是在平面上改变它的位置。

平移有以下几个基本要素:1. 平移向量:平移向量指平移前后的两个点之间的矢量,它的长度和方向表示了平移的大小和方向。

2. 平移距离:平移距离指平移向量的长度,表示了平移的距离。

3. 平移方向:平移方向指平移向量的方向,表示了平移的方向。

平移的特点是不改变图形的大小和形状,只是改变了它的位置。

因为平移不改变图形的性质,所以它被广泛应用于数学、几何、物理等领域中。

二、旋转旋转在数学上的定义是指围绕固定点或固定直线进行的旋转。

可以理解为图形保持大小不变,只是在平面上进行旋转。

旋转有以下几个基本要素:1. 旋转中心:旋转的中心点。

2. 旋转角度:旋转的角度,用度(°)表示。

3. 旋转方向:旋转的方向,可以是顺时针或逆时针。

与平移不同,旋转可以改变图形的方向和形状,但保持了它的大小不变。

三、平移与旋转的区别从定义上来看,平移和旋转的基本区别在于它们的操作对象和方式不同。

平移是通过改变图形的位置来实现变换,而旋转是通过改变图形的方向和形状来实现变换。

具体而言,平移的基本要素是向量,而旋转的基本要素是旋转中心、旋转角度和旋转方向。

其次,平移和旋转的性质也不同。

平移不改变图形的大小和形状,只是变其位置,而旋转则可以改变图形的方向和形状,但保持了它的大小不变。

最后,平移和旋转的应用场景也不同。

平移应用于地图制作、机器人控制、图像处理等领域,旋转则应用于建筑设计、物理学、电子工程等领域。

四、平移与旋转的联系虽然平移和旋转有着不同的操作对象、方式和性质,但它们也有着联系。

这里列举以下几点:1. 都是几何变换:平移和旋转都是几何变换的基本形式,是描述图形如何在平面上变换的数学工具。

数学旋转和平移知识点总结

数学旋转和平移知识点总结

数学旋转和平移知识点总结一、旋转的基本概念1.1 旋转的概念所谓旋转,就是通过一个固定的点,将平面上的点或者图形绕着这个点进行转动的过程。

这个固定的点被称为旋转中心,转动的角度叫做旋转角。

在数学中,我们通常用一个坐标系来描述旋转的过程,通过将点或者图形绕着坐标系的原点旋转,来描述旋转的过程。

1.2 旋转的表示在数学中,我们可以通过旋转矩阵、三角函数等方式来表示旋转变换。

旋转矩阵是用来描述旋转变换的一个重要工具,它能够将点或者图形绕着旋转中心进行旋转,并将旋转后的点或者图形表示出来。

三角函数能够帮助我们计算旋转后的点的坐标,从而描述旋转的过程。

1.3 旋转的性质旋转具有一些重要的性质,例如角度不变性、共线性不变性、长度比例不变性等。

这些性质在实际问题中有着重要的应用,能够帮助我们更好地理解旋转变换。

1.4 旋转的定理在数学中,我们有着一些关于旋转的重要定理,例如旋转定理、旋转对称定理等。

这些定理能够帮助我们解决与旋转相关的各种问题,是数学中的重要内容。

1.5 旋转的应用旋转在实际生活和工程中有着广泛的应用,例如在建筑设计、机械加工、航天航空等领域。

旋转能够帮助我们更好地描述和分析各种物体的形状和结构,具有重要的工程应用价值。

二、平移的基本概念2.1 平移的概念平移是将平面上的点或者图形沿着某一方向进行平行移动的过程。

在数学中,我们通常用向量或者坐标变换来描述平移的过程,通过平移向量或者平移矩阵来表示平移变换。

2.2 平移的表示在数学中,平移变换可以通过向量加法或者矩阵相加来表示,从而描述平移的过程。

平移变换可以将点或者图形沿着某一方向进行平行移动,并得到平移后的点或者图形的位置。

2.3 平移的性质平移具有一些重要的性质,例如平移不改变长度、方向和大小等。

这些性质在实际问题中有着重要的应用,能够帮助我们更好地理解平移变换。

2.4 平移的定理在数学中,我们有着一些关于平移的重要定理,例如平移定理、平移对称定理等。

图形的旋转与平移

图形的旋转与平移

图形的旋转与平移图形的旋转与平移在几何学中起着重要的作用,它们能够帮助我们理解和描述物体在平面上的位置和形态的变化。

本文将介绍图形的旋转和平移的概念、特性及其应用。

一、图形的旋转旋转是指围绕某一点或某一轴线进行转动,使图形按一定角度沿轴旋转后得到的新图形。

图形的旋转有以下几个重要特性:1. 旋转角度:指图形旋转的角度,可以是逆时针方向的正角度或顺时针方向的负角度。

2. 旋转中心:指图形旋转的中心点,可以是图形内部的某个点,也可以是图形外部的某个点。

3. 旋转方向:旋转可以按逆时针方向或顺时针方向进行。

图形的旋转可以应用于许多领域,如计算机图形学、工程制图等。

在计算机图形学中,旋转可用于实现图像的变换和动画效果。

二、图形的平移平移是指沿着平行于某一方向的轴线移动图形,使图形在平面上平行地移动到另一个位置,但形状和大小保持不变。

图形的平移有以下几个重要特性:1. 平移向量:指平移移动的方向和距离,可以用向量表示。

2. 平移方向:平移可以沿着任意方向进行,只要是平行于轴线即可。

3. 平移距离:指图形平移的具体距离。

平移常用于地图上的位置标记、机械设计、建筑设计等领域。

在计算机图形学中,平移可用于实现图像的拖动和位置调整。

三、旋转与平移的组合应用旋转和平移常常需要组合应用,以实现更加复杂的变换效果。

例如,在游戏开发中,我们可以利用旋转和平移将一个平面上的二维图形转换为在三维空间中的位置和姿态,以实现更真实的游戏画面。

旋转和平移的组合应用还可用于机器人控制、航天器轨道设计等领域。

通过将图形围绕不同的方向旋转和平移,可以控制机器人或航天器在空间中的位置和方向。

总结:图形的旋转与平移是几何学中的基本概念,它们能够帮助我们描述和理解物体的位置和形态变化。

通过旋转和平移,我们可以实现图像的变换、位置调整和动画效果等。

无论是在计算机图形学还是实际应用中,旋转与平移都具有重要的意义。

理解和掌握图形的旋转与平移,对于几何学的学习和应用都具有重要的帮助。

旋转翻转与平移的变换知识点总结

旋转翻转与平移的变换知识点总结

旋转翻转与平移的变换知识点总结几何变换是数学中一个重要且常见的概念,对于图形的旋转翻转与平移等操作,能够使得图形在平面内发生变化。

本文将对旋转翻转与平移的变换知识点进行总结,以便更好地理解和应用这些概念。

一、旋转变换旋转变换是指将图形按照一定的角度围绕某一点旋转。

在平面几何中,旋转变换包括顺时针旋转和逆时针旋转两种方式。

1. 顺时针旋转:顺时针旋转是将图形按照顺时针方向进行旋转,一般以正角度表示。

例如,将一个图形按照顺时针旋转90度,就是将原始图形的每个点绕着旋转中心点顺时针旋转90度。

2. 逆时针旋转:逆时针旋转是将图形按照逆时针方向进行旋转,一般以负角度表示。

与顺时针旋转类似,逆时针旋转也是将原始图形的每个点绕着旋转中心点逆时针旋转一定角度。

旋转变换可以用矩阵表示,其中旋转角度为θ,旋转矩阵为:cosθ -sinθsinθ cosθ二、翻转变换翻转变换是指将图形按照某一轴进行对称,常见的有水平翻转和垂直翻转两种方式。

1. 水平翻转:水平翻转是将图形按照水平轴进行对称,即以水平轴为对称轴,上下颠倒图形。

例如,将一个图形按照水平轴进行翻转,原先在上部的图形点转移到下部。

2. 垂直翻转:垂直翻转是将图形按照垂直轴进行对称,即以垂直轴为对称轴,左右颠倒图形。

例如,将一个图形按照垂直轴进行翻转,原先在左侧的图形点转移到右侧。

翻转变换可以用矩阵表示,其中水平翻转可用矩阵表示为:-1 00 1垂直翻转可用矩阵表示为:1 00 -1三、平移变换平移变换是指将图形沿着平面平行移动一段距离。

平移变换可以将图形从一个位置移动到另一个位置,而不改变图形的大小和形状。

平移变换通常用向量表示,其中平移向量为:(dx, dy)。

图形的每个点都将根据平移向量的数值进行水平和垂直方向上的移动。

四、综合应用旋转翻转与平移的变换在实际生活中有广泛的应用,尤其是在计算机图形学和计算机视觉领域。

在计算机图形学中,通过对图像进行旋转、翻转和平移等变换,可以实现图像的缩放、旋转和平移操作。

位似变换知识点总结

位似变换知识点总结

位似变换知识点总结1. 几何变换几何变换是指在平面上或者空间中进行的图形的移动、翻转、旋转等操作。

其中最常见的几何变换有平移、旋转、翻转和对称。

平移:平移是指一个图形在平面上按照某种规律移动,移动的距离和方向保持不变。

平移是一个保距离和方向的变换,它可以将原图形平行地移动到另外一个位置,而原图形和新图形之间的距离和方向保持不变。

旋转:旋转是指一个图形绕着某个点或某条直线进行旋转。

旋转可以分为顺时针旋转和逆时针旋转两种。

旋转变换可以改变图形的朝向和位置,但不改变图形的大小和形状。

翻转:翻转是指一个图形绕着某条直线进行翻转。

翻转可以分为关于横轴、纵轴和原点三种翻转。

翻转变换改变图形的朝向和位置,同时也改变图形的左右对称、上下对称或原点对称性。

对称:对称是指一个图形在某条直线、某个点或者某个平面上镜像对称。

对称变换是一种特殊的翻转变换,它可以将原图形与镜像对称的图形重合。

对称变换可以改变图形的朝向和位置,同时也改变图形的对称性。

2. 代数变换代数变换是指在数值和式子中进行的各种变换操作。

代数变换包括了方程的变形、函数的转换、数值的运算等。

方程的变形:方程的变形是指通过一系列变化将原方程转化为另一个等价的方程。

方程的变形包括了加减法、乘除法、移项、通分、合并同类项、配方法等操作。

函数的转换:函数的转换是指通过一些操作将原函数转化为另一个函数。

函数的转换包括了平移、伸缩、翻转、复合函数等操作。

函数的转换可以改变函数的图像、定义域、值域等性质。

数值的运算:数值的运算是指在数值之间进行的各种变换操作。

数值的运算包括了加减法、乘除法、开方、幂运算、对数运算等操作。

数值的运算可以改变数值的大小、正负、大小关系等性质。

3. 变换的性质变换具有一些重要的性质,包括了保持距离、保持方向、保持角度、保持面积、保持体积等性质。

保持距离:平移和旋转变换都是保持距离的变换,它们可以使原图形和变换后的图形之间的距离保持不变。

保持方向:平移、旋转和翻转变换都是保持方向的变换,它们可以使原图形和变换后的图形之间的方向保持不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章图像的平移与旋转
第一节图形的平移
1.在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动叫做平移。

2.一个图形经过平移后得到一个新的图形,这个图形能与原图形相互重合,只是位置发生了变化。

我们把能够相互重合的点称为对应点,能够相互重合的角称为对应角,能够相互重合的线段称为对应线段。

3.平移的条件:确定一个图形平移后的位置,除需要原来的位置外,还需要一一对应的点的位置或平移的方向和距离,平移的方向为原图上的点指向它的对应点的方向,这一对对应点连接的线段的长是平移的距离。

注:(1)图形的平移有两个基本的条件:方向(任意方向);距离
(2)平移改变了图形的位置,但不改变图形的形状和大小。

4.平移的性质:(1)平移后的图形与原图形对应点所连线段平行或在一条直线上且相等;(2)平移后的图形与原图形对应线段平行(或在一条直线上)且相等;
(3)平移后的图形与原图形对应角相等。

5.平移作图常见形式及作法:
第二节图形的旋转
1.旋转:在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。

这个定点被称为旋转中心,转动的角称为旋转角。

旋转不改变图形的形状和大小。

注:旋转是在平面内,而不是在空间内;旋转后的图形与原图形的形状、大小都相同,但形状、大小都相同的两个图形不一定可以通过旋转得到;旋转的角度一般小于360度。

2.旋转的三要素:图形的旋转由旋转中心、旋转的角度和旋转的方向所决定。

3.旋转的性质:一个图形和它经过旋转所得的图形中,对应点到旋转中心的距离相等,任意一组对应点与旋转中心的连线所成的角都等于旋转角;对应线段相等,对应角相等。

4.简单的旋转作图:
旋转、平移、轴对称的异同:
(1)三者的相同点:都是在平面内的图形变换不涉及立体图形的变换;三中变换都是只改变图形的位置,不改变形状和大小,其对应边相等,对应角相等。

(2)不同点:旋转、平移及轴对称的运动方式不同,旋转的运动方式是将一个图形旋转一定角度;而平移的运动方式则是将一个图形沿一条直线对折;旋转、平移及轴对称的对应线段、对应角之间的关系不同。

旋转前后两个图形任意一对对应点与旋转中心所连线段的夹角都是旋转角;而平移前后两个两个图形的对应线段平行(或共线),对应点所连线段平行(或共线);如果轴对称的对应线段或其延长线相交,那么交点在对称轴上,成轴对称的两个图形的对应点连线都被对称轴垂直平分;做图所需条件不同,旋转需确定三个元素:旋转中心的位置,旋转角的大小及旋转的方向;平移需确定两个元素,即平移的距离和方向;而做一个图形的轴对称图形只需确定一个元素就行,就是对称轴。

3.中心对称
如果把一个图形绕着某一点旋转180度,它能够与另一个图形重合,那么就说明这两个图形关于这个点对称或中心对称,这个点叫做他们的对称中心。

“两个图形关于一个点对称”可以简称为“两个图形成中心对称”。

中心对称是对于两个图形来说的。

中心对称的特征:(1)成中心对称的两个图形中,对应点所连线段经过对称中心,且被对称中心平分。

(2)成中心对称的两个图形,对应线段平行(或在一条直线上)且相等。

4.中心对称图形:把一个图形绕某个点旋转180度,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫它的对称中心。

中心对称和中心对称图形的区别
5.旋转对称图形:一般地,如果一个图形绕着某一点旋转一定的角度后,能够与原来的图形重合,那么这个图形叫做旋转对称图形,这个点叫做它的对称中心,旋转的角度叫做旋转角。

注:旋转对称图形不一定是中心对称图形,但中心对称图形一定是旋转对称图形;一个旋转对称图形的旋转角度应小于周角,否则任意一个图形都是旋转对称图形。

区别
联系 定义
图形个数 对称点的位置
如果把一个图形绕着某一点旋转180度,它能够与另一个图形重合,那么就说明这两个图形关于这个点对称或中心对称,这个点叫做他们的对称中心,这两个图形的对应点,叫做关于中心的对称点。

中心对称涉及两个图形,是指两个全等图形之间的相互位置关系。

成中心对称的两个图形中,其中一个图形上的所有点关于对称中心的对应点都在另一个图形
上。

(1)都有一个对称中心,都具有中心对称的
性质。

(2)若把中心对称图形的两部分看成两个图形,则他们成中心对称,若把成中心对称的两个图形看成一个整体,则他们就成为一个中心对称图形。

(3)作出一个图形的每一个关于一个定点中心对称时,由这些中心对称点组成的图形就是原图形关于这个定点的中心对称图形。

把一个图形绕某个点旋
转180度,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫它的对称中心。

中心对称图形只对一个图形而言,是指具有特殊形状的一个图形。

中心对称图形上所有点关于对称中心的对称点都在这个图形本身上。

相关文档
最新文档