高三专题复习:统计与概率 - 丰台区课程改革平台
高中数学必修三:概率与统计()

高中数学必修三:概率与统计1.要从已编号(1-50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( ).A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,8,16,322.从鱼塘捕得同一时间放养的草鱼240尾,从中任选9尾,称得每尾鱼的质量分别是1.5,1.6,1.4,1.6,1.3,1.4,1.2,1.7,1.8(单位:千克).依此估计这240尾鱼的总质量大约是( ).A.300克 B.360千克C.36千克D.30千克3.以下茎叶图记录了甲.乙两组各五名学生在一次英语听力测试中的成绩(单位:分)已知甲组数据的中位数为15,乙组数据的平均数为16.8,则,x y的值分别为()A.2,5B.5,5C.5,8D.8,84.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人得的试验数据中,变量x和y的数据的平均值都分别相等,且值分别为s与t,那么下列说法正确的是( ).A .直线l1和l2一定有公共点(s ,t)B .直线l1和l2相交,但交点不一定是(s ,t)C .必有直线l1∥l2D .直线l1和l2必定重合5..设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为y =0.85x-85.71,则下列结论中不正确的是( ).A.y 与x 具有正的线性相关关系B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重比为58.79kg 6.对于两个变量之间的相关系数,下列说法中正确的是( ) A .r 越大,相关程度越大 B .()0,r ∈+∞,r 越大,相关程度越小,r 越小,相关程度越大 C .1r ≤且r 越接近于1,相关程度越大;r 越接近于0,相关程度越小 D .以上说法都不对7、.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A B x x 和,样本标准差分别为sA 和sB,则( )(A) A x >B x ,sA >sB(B) A x <B x ,sA >sB (C) A x >B x ,sA <sB(D) A x <B x ,sA <sB8.山东采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )19某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为( )(A )7 (B )15 (C )25 (D )3510..样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z ax a y =+-,其中102α<<,则n ,m 的大小关系为( )A .n m < B .n m > C .n m = D .不能确定 11.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显着差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( ) A .抽签法B .随机数法C .系统抽样法D .分层抽样法12 .总体有编号为01,02,…,19,20的20个个体组成。
【名校推荐】专题25 概率与统计-三年高考(2016-2018)数学(文)试题分项版解析 Word版含解析

考纲解读明方向分析解读 本节内容是高考的重点考查内容之一,最近几年的高考有以下特点:1.古典概型主要考查等可能性事件发生的概率,也常与对立事件、互斥事件的概率及统计知识综合起来考查;2.几何概型试题也有所体现,可能考查会有所增加,以选择题、填空题为主.本节内容在高考中分值为5分左右,属容易题.分析解读从近几年的高考试题来看,本部分在高考中的考查点如下:1.主要考查分层抽样的定义,频率分布直方图,平均数、方差的计算,识图能力及借助概率知识分析、解决问题的能力;2.在频率分布直方图中,注意小矩形的高=频率/组距,小矩形的面积为频率,所有小矩形的面积之和为1;3.分析两个变量间的相关关系,通过独立性检验判断两个变量是否相关.本节内容在高考中分值为17分左右,属中档题.1.【2018年浙江卷】设0<p<1,随机变量ξ的分布列是则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D【解析】分析:先求数学期望,再求方差,最后根据方差函数确定单调性.点睛:2.【2018年全国卷Ⅲ文】若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3B. 0.4C. 0.6D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则,因为,所以,故选B.点睛:本题主要考查事件的基本关系和概率的计算,属于基础题。
3.【2018年全国卷II文】从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为A. B. C. D.【答案】D【解析】分析:分别求出事件“2名男同学和3名女同学中任选2人参加社区服务”的总可能及事件“选中的2人都是女同学”的总可能,代入概率公式可求得概率.点睛:应用古典概型求某事件的步骤:第一步,判断本试验的结果是否为等可能事件,设出事件;第二步,分别求出基本事件的总数与所求事件中所包含的基本事件个数;第三步,利用公式求出事件的概率.4.【2018年江苏卷】某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.5.【2018年江苏卷】已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.6.【2018年全国卷Ⅲ文】某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样,故答案为:分层抽样。
新高考数学复习考点知识讲义课件23---概率与统计问题

解 记“甲家庭回答正确这道题”“乙家庭回答正确这道题”“丙家庭 回答正确这道题”分别为事件A,B,C,
则 P(A)=34,且有PPBA··PPCC==41,112, 即[1-PA]·[1-PC]=112,
PB·PC=14, 所以 P(B)=38,P(C)=23.
(2)求甲、乙、丙三个家庭中不少于2个家庭回答正确这道题的概率.
答题模板 题型三 离散型随机变量及其分布列 例3 (12分)(2019·北京)改革开放以来,人们的支付方式发生了巨大转变. 近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A, B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现 样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B 的学生的支付金额分布情况如下:
解 由题意知,今年花市期间该摊位所售精品的销售量与时间段有关, 明年合租摊位的租金较为合理的分摊方法是根据今年的平均销售量按比 例分担. 今年白天的平均销售量为35+32+453+39+51=40(件/天), 今年晚上的平均销售量为46+42+550+52+60=50(件/天), 所以甲同学应分担的租金为 900×404+050=400(元), 乙同学应分担的租金为 900×405+050=500(元). (注:本小题也可直接按白天、晚上的总销售量比例分摊租金.)
1 码,那么是首位为2的递增型验证码的概率为__6__.
解析 ∵a1=2,2<a2<a3<a4, ∴a2,a3,a4从3~9中选, 只要选出3个数,让其按照从小到大的顺序排列,分别对应a2,a3,a4 即可, ∴P=CC41370=16.
(2)某城市2020年的空气质量状况如表所示:
污染指数T 30 60 100 110 130 140
2023-2024学年北京市丰台区高中数学人教B版 必修二统计与概率章节测试-12-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年北京市丰台区高中数学人教B 版 必修二统计与概率章节测试(12)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)46,45,5646,45,5347,45,5645,47,531. 对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本中的中位数、众数、极差分别是( )A. B. C. D. 2. 张家的3个鸡仔钻进了李家装有3个鸡仔的鸡笼里,现打开笼门,让鸡仔一个一个地走出来,若第一个走出来的是张家的鸡仔,那么第二个走出的也是张家的鸡仔的概率是( )A. B. C. D.3,9,185,9,163,10,175,10,153. 某公司有员工150人,其中50岁以上的有15人,35~49岁的有45人,不到35岁的有90人.为了调查员工的身体健康状况,采用分层抽样方法从中抽取30名员工,则各年龄段人数分别为( )A. B. C. D. 甲队平均得分高于乙队的平均得分中乙甲队得分的中位数大于乙队得分的中位数甲队得分的方差大于乙队得分的方差甲乙两队得分的极差相等4. 将甲、乙两个篮球队5场比赛的得分数据整理成如图所示的茎叶图,由图可知以下结论正确的是( )A. B. C. D.5. 若事件A与B互斥,已知P(A)=P(B)= ,则P(A∪B)的值为()A. B. C. D.346. 已知某7个数据的平均数为5,方差为4,现又加入一个新数据5,此时这8个数的方差为()A. B. C. D.8411140141467. 利用随机数表法对一个容量为500编号为000,001,002,…,499的产品进行抽样检验,抽取一个容量为10的样本,若选定从第12行第5列的数开始向右读数,(下面摘取了随机数表中的第11行至第15行),根据下图,读出的第3个数是()A. B. C. D.143035258. 某单位青年职工、中年职工、老年职工的人数之比为7:5:3,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为14人,则样本容量为()A. B. C. D.事件“”的概率为0事件“”为必然事件事件“”与“”为对立事件事件“m是奇数”与“”为互斥事件9. 连续掷一枚质地均匀的骰子两次,所得向上的点数分别为a,b,记,则下列说法正确的是()A. B.C. D.7060505610. 由正整数组成的一组数据x1, x2, x3, x4,其平均数和中位数都是2,且标准差等于1,则这组数据的立方和为()A. B. C. D.11. 某高校组织大学生知识竞赛,共设有5个版块的试题,分别是“中华古诗词”“社会主义核心价值观”“科学实践观”“中国近代史”及“创新发展能力”.某参赛队从中任选2个版块作答,则“创新发展能力”版块被该队选中的概率为()A. B. C. D.12. 为了节能减排,发展低碳经济,我国政府从2001年起就通过相关政策推动新能源汽车产业发展.下面的图表反映了该产业发展的相关信息:中国新能源汽车产销情况一览表新能源汽车生产情况新能源汽车销售情况产品(万辆)比上年同期增长(%)销量(万辆)比上年同期增长(%)2018年3月 6.8105 6.8117.44月8.1117.78.2138.45月9.685.610.2125.62017年3月份我国新能源汽车的产量不超过 万辆2017年我国新能源汽车总销量超过 万辆2018年8月份我国新能源汽车的销量高于产量2019年1月份我国插电式混合动力汽车的销量低于 万辆6月8.631.78.442.97月953.68.447.78月9.93910.149.59月12.764.412.154.810月14.658.113.85111月17.336.916.937.61-12月12759.9125.661.72019年1月9.11139.61382月 5.950.9 5.353.6根据上述图表信息,下列结论错误的是( )A. B. C. D. 13. 某学院的 三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本.已知该学院的A 专业有380名学生, B 专业有420名学生,则在该学院的C 专业应抽取 名学生.14. 学校高二足球队有男运动员16人,女运动员8人,现用分层抽样的方法从中抽取一个容量为9的样本,则抽取男运动员的人数是 .15. 空气质量指数AQI 是反映空气质量状况的指数,AQI 指数的值越小,表明空气质量越好,AQI 指数不超过50,空气质量为“优”;AQI 指数大于50且不超过100,空气质量为“良”;AQI 指数大于100,空气质量为“污染”.如图是某市2021年空气质量指数(AQI )的月折线图.下列关于该市2021年空气质量的叙述中,不正确的是 .(填序号)①全年的平均AQI 指数对应的空气质量等级为优或良;②每月都至少有一天空气质量为优;③2月,8月,9月和12月均出现污染天气;④空气质量为“污染”的天数最多的月份是2月份.16. 已知样本9,10,11,x ,y 的平均数是10,标准差是 ,则xy= .阅卷人三、解答题(共6题,共70分)得分17. 网络技术的发展对学生学习方式产生巨大的影响,某校为了解学生每周课余利用网络资源进行自主学习的时间,在本校随机抽取若干名学生进行问卷调查,现将调查结果绘制成如下不完整的统计图表,请根据图表中的信息解答下列问题.(1) 求表中的n,中位数落在哪组,扇形统计图中组对应的圆心角为多少度;(2) 请补全频数分布直方图;(3) 该校准备召开利用网络资源进行自主学习的交流机会,计划在组学生中随机选出两人进行经验介绍,已知组的四名学生中,七、八年级各有1人,九年级有2人,请用画树状图或列表法求抽取的两名学生都来自九年级的概率.18. 一家保险公司决定对推销员实行目标管理,即给推销员确定一个具体的销售目标.确定的销售目标是否合适,直接影响到公司的经济效益.如果目标定的过高,多数推销员完不成任务,会使推销员失去信心;如果目标定的太低,将不利于挖掘推销员的工作潜力.该保险公司随机抽取50名保险推销员,统计了其2020年的月均推销额(单位:万元),将数据按照,,…,分成6组,制成频率分布直方图如下,其中组比组的频数多4.(1) 求频率分布直方图中和的值;(2) 为调动推销员的积极性,公司设计了两种奖励方案.方案一:奖励月均推销额进入前60%的员工;方案二:奖励月均推销额达到或超过平均数(同一组中的数据用该组区间中点值为代表)的员工.你认为那种方案更好?19. 为积极响应“反诈”宣传教育活动的要求,某企业特举办了一次“反诈”知识竞赛,规定:满分为100分,60分及以上为合格.该企业从甲、乙两个车间中各抽取了100位职工的竞赛成绩作为样本.对甲车间100位职工的成绩进行统计后,得到了如图所示的成绩频率分布直方图.2×2列联表甲车间乙车间合计合格人数不合格人数合计附参考公式:①,其中.②独立性检验临界值表(1) 估算甲车间职工此次“反诈”知识竞赛的合格率;(2) 若将频率视为概率,以样本估计总体.从甲车间职工中,采用有放回的随机抽样方法抽取3次,每次抽1人,每次抽取的结果相互独立,记被抽取的3人次中成绩合格的人数为.求随机变量的分布列;(3) 若乙车间参加此次知识竞赛的合格率为,请根据所给数据,完成下面的列联表,并根据列联表判断是否有的把握认为此次职工“反计”知识竞赛的成绩与其所在车间有关?20. “精准扶贫”的重要思想最早在2013年11月提出,习近平到湘西考察时首次作出“实事求是,因地制宜,分类指导,精准扶贫”的重要指导。
2023-2024学年北京市丰台区高中数学人教B版 必修二统计与概率专项提升-19-含解析

1、答题前填写好自己的姓名、班级、考号等信息2、请将答案正确填写在答题卡上2023-2024学年北京市丰台区高中数学人教B 版 必修二统计与概率专项提升(19)姓名:____________ 班级:____________ 学号:____________考试时间:120分钟满分:150分题号一二三四五总分评分*注意事项:阅卷人得分一、选择题(共12题,共60分)①②都采用简单随机抽样①②都采用分层随机抽样①采用简单随机抽样,②采用分层随机抽样①采用分层随机抽样,②采,简单随机抽样1. 现有以下两项调查:①从10台冰箱中抽取3台进行质量检查;②某社区有600户家庭,其中高收入家庭180户,中等收入家庭360户,低收入家庭60户,为了调查家庭购买力的某项指标,拟抽取一个容量为30的样本,则完成这两项调查最适宜采用的抽样方法分别是( )A. B. C. D.2. 10张奖券中含有3张中奖的奖券,每人购买1张,则前3个购买者中,恰有1人中奖的概率为( )A. B.C.D.3. 随机抛掷一枚质地均匀的骰子,则其向上一面的点数为偶数的概率为( )A.B.C.D.甲组植树棵数的平均数不高于乙组植树棵数的平均数甲组植树棵数的众数是9乙组植树棵数的方差 甲、乙两组中植树棵数的标准差4. 3.12日为植树节,某单位组织10名职工分成两组开展义务植树活动,以下茎叶图记录了甲、乙两组五名职工的植树棵数.(参考公式:样本数据 , ,,的方差,其中 为样本平均数),下列说法,正确的是( )A. B. C. D.5. 一张储蓄卡的密码共有6位数字,每位数字都可从0~9中任选一个.某人在银行自动取款机上取钱时,忘记了密码的最后一位数字,如果他记得密码的最后一位是偶数,则他不超过2次就按对的概率是()A.B.C.D.6.已知正四棱锥P—ABCD 的四条侧棱,底面四条边及两条对角线共10条线段,现有一只蚂蚁沿着这10条线段从一个顶点爬行到另一个顶点,规定: (1)从一个顶点爬行到另一个顶点视为一次爬行;(2)从任一顶点向另4个顶点爬行是等可能的(若蚂蚁爬行在底面对角线上时仍按原方向直行). 则蚂蚁从顶点P 开始爬行4次后恰好回到顶点P 的概率是( ) A.B.C.D.7. 宋元两代是我国古代数学非常辉煌的时期,其中秦九韶、李治、杨辉、朱世杰并称宋元数学四大家,其代表作秦九韶的《数书九章》,李治的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.现有古数学著作《数书九章》《测圆海镜》《益古演段》《详解九章算法》《杨辉算法》《算学启蒙》《四元玉鉴》共七本,从中任取两本,至少含有一本秦九韶或杨辉的著作的概率是( )A.B.C.D.8. 总体由编号为的个个体组成,利用下面的随机数表选取个个体,选取方法是从随机数表第行的第列和第列数字开始由左到右依次选取两个数字(作为个体编号).则选出来的第个个体的编号为( )A.B.C.D.84219. 某人5次上班途中所花的时间(单位:分钟,均为正整数)分别为x ,y ,10,11,9.已知这组数据的平均数为10,则它的极差不可能为( )A. B. C. D. 9.4,0.4849.4,0.0169.5,0.049.5,0.01610. 在一次歌手大奖赛上,七位评委为某歌手打出的分数如下:9.4、8.4、9.4、9.9、9.6、9.4、9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为( )A. B. C. D. 3640485011.为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图(如图),已知图中从左到右的前3个小组的频率之比为1∶2∶3,第1小组的频数为6,则报考飞行员的学生人数是A. B. C. D.都不是一等品恰有一件一等品至少有一件一等品至多一件一等品12. 5件产品中,有3件一等品和2件二等品,从中任取2件,那么以 为概率的事件是( )A. B. C. D. 13. 某校学生高一年级有400人,高二年级有300人,高三年级有200人,现用分层抽样的方法从所有学生中抽取一个容量为的样本.已知从高三学生中抽取的人数为10,那么= .14. 为了唤起全民对睡眠重要性的认识,国际精神卫生组织于2001年发起了一项全球性的活动——将每年的3月54日定为“世界睡眠日”.现从某中学初一至高三学生中随机抽取部分学生进行睡眠质量调查,采用睡眠质量指数量表统计结果如下:性别人数睡眠质量好睡眠质量一般睡眠质量差男220999031女2505012080合计470149210111假设所有学生睡眠质量的程度是相互独立的.以调查结果的频率估计概率,现从该中学男生和女生各随机抽取1人,二人中恰有一人睡眠质量好的概率是 .15. 某医院随机抽取20位急症病人家属了解病人等待急症的时间,记录如下表:等待急症时间(分钟)频数48521根据以上记录,病人等待急症平均时间的估计值分钟.16. 某校组织10名学生参加高校的自主招生活动,其中6名男生,4名女生,根据实际要从10名同学中选3名参加A 校的自主招生,则其中恰有1名女生的概率是 .17. 甲、乙两人进行定点投篮游戏,规则是一人投篮,若投中,则继续投篮,否则由另一人投篮.已知第一次由甲投篮,每次投篮甲、乙命中的概率分别为 .(1) 求第三次仍由甲投篮的概率;(2) 在前3次投篮中,记甲投篮的次数为, 求的分布列和期望18. 如图,在数轴上,一个质点在外力的作用下,从原点O 出发,每次等可能地向左或向右移动一个单位,质点到达位置的数字记为.(1) 若该质点共移动2次,位于原点的概率;(2) 若该质点共移动6次,求该质点到达数字X 的分布列和数学期望.19. 某市教育部门为了了解全市高一学生的身高发育情况,从本市全体高一学生中随机抽取了100人的身高数据进行统计分析。
专题4.3 统计与概率(理)(解析版)2021年高考数学(理)解答题挑战满分专项训练

专题4.3 统计与概率1.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【试题来源】2020年海南省高考数学试卷(新高考全国Ⅱ卷) 【答案】(1)0.64;(2)答案见解析;(3)有.【解析】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 2.为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM 2.5和2SO 浓度(单位:3μg/m ),得下表:(1)估计事件“该市一天空气中PM 2.5浓度不超过75,且2SO 浓度不超过150”的概率; (2)根据所给数据,完成下面的22⨯列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM 2.5浓度与2SO 浓度有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【试题来源】2020年新高考全国卷Ⅱ(海南卷) 【答案】(1)0.64;(2)答案见解析;(3)有.【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据可得22⨯列联表;(3)计算出2K ,结合临界值表可得结论.【解析】(1)由表格可知,该市100天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的天数有32618864+++=天,所以该市一天中,空气中的 2.5PM 浓度不超过75,且2SO 浓度不超过150的概率为640.64100=; (2)由所给数据,可得22⨯列联表为(3)根据22⨯列联表中的数据可得222()100(64101610)()()()()80207426n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯36007.4844 6.635481=≈>, 因为根据临界值表可知,有99%的把握认为该市一天空气中 2.5PM 浓度与2SO 浓度有关. 3.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【试题来源】2020年全国统一高考数学试卷(文)(新课标Ⅱ)【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析.【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率;(2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论. 【解析】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关. 【名师点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.4.甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12, (1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.【试题来源】2020年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1)116;(2)34;(3)716. 【分析】(1)根据独立事件的概率乘法公式可求得事件“甲连胜四场”的概率;(2)计算出四局以内结束比赛的概率,然后利用对立事件的概率公式可求得所求事件的概率;(3)列举出甲赢的基本事件,结合独立事件的概率乘法公式计算出甲赢的概率,由对称性可知乙赢的概率和甲赢的概率相等,再利用对立事件的概率可求得丙赢的概率.【解析】(1)记事件:M 甲连胜四场,则()411216P M ⎛⎫== ⎪⎝⎭;(2)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 则四局内结束比赛的概率为()()()()411424P P ABAB P ACAC P BCBC P BABA ⎛⎫'=+++=⨯= ⎪⎝⎭,所以,需要进行第五场比赛的概率为314P P '=-=; (3)记事件A 为甲输,事件B 为乙输,事件C 为丙输, 记事件:M 甲赢,记事件:N 丙赢,则甲赢的基本事件包括:BCBC 、ABCBC 、ACBCB 、BABCC 、BACBC 、BCACB 、BCABC 、BCBAC ,所以,甲赢的概率为()4511972232P M ⎛⎫⎛⎫=+⨯= ⎪ ⎪⎝⎭⎝⎭.由对称性可知,乙赢的概率和甲赢的概率相等,所以丙赢的概率为()97123216P N =-⨯=. 【名师点睛】本题考查独立事件概率的计算,解答的关键就是列举出符合条件的基本事件,考查计算能力,属于中等题.5.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i i x x =-=∑(,2021)9000i i y y =-=∑(,201))800i i i x y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r=12211))))ni iiiin ni i x y x x y y y x ===----∑∑∑((((,≈1.414.【试题来源】2020年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1)12000;(2)0.94;(3)详见解析【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20()()iix x y y r --=∑计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【解析】(1)样区野生动物平均数为201111200602020i i y ==⨯=∑, 地块数为200,该地区这种野生动物的估计值为2006012000⨯=(2)样本(,)i ix y(i=1,2,…,20)的相关系数为20()()0.943i ix x y yr--===≈∑(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大,采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.6.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:交付金额(元)支付方式(1)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;(2)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(3)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【试题来源】2019年北京市高考数学试卷(理)【答案】(1)25;(2)见解析;(Ⅱ)见解析. 【分析】(1)由题意利用古典概型计算公式可得满足题意的概率值;(2)首先确定X 可能的取值,然后求得相应的概率值可得分布列,最后求解数学期望即可. (Ⅱ)由题意结合概率的定义给出结论即可.【解析】(1)由题意可知,两种支付方式都是用的人数为1003025540---=人,则: 该学生上个月A ,B 两种支付方式都使用的概率4021005p ==. (2)由题意可知,仅使用A 支付方法的学生中,金额不大于1000的人数占35,金额大于1000的人数占25,仅使用B 支付方法的学生中,金额不大于1000的人数占25,金额大于1000的人数占35,且X 可能的取值为0,1,2.()32605525p X ==⨯=,()22321315525p X ⎛⎫⎛⎫==+=⎪ ⎪⎝⎭⎝⎭,()32625525p X ==⨯=,X 的分布列为其数学期望:()0121252525E X =⨯+⨯+⨯=. (Ⅱ)我们不认为样本仅使用A 的学生中本月支付金额大于2000元的人数有变化.理由如下: 随机事件在一次随机实验中是否发生是随机的,是不能预知的,随着试验次数的增多,频率越来越稳定于概率.学校是一个相对消费稳定的地方,每个学生根据自己的实际情况每个月的消费应该相对固定,出现题中这种现象可能是发生了“小概率事件”.【名师点睛】本题以支付方式相关调查来设置问题,考查概率统计在生活中的应用,考查概率的定义和分布列的应用,使学生体会到数学与现实生活息息相关.7.为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成,A B 两组,每组100只,其中A 组小鼠给服甲离子溶液,B 组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:记C 为事件:“乙离子残留在体内的百分比不低于5.5”,根据直方图得到()P C 的估计值为0.70.(1)求乙离子残留百分比直方图中,a b 的值;(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).【试题来源】2019年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1) 0.35a =,0.10b =;(2) 4.05,6.【分析】(1)由()0.70P C =及频率和为1可解得a 和b 的值;(2)根据公式求平均数. 【解析】(1)由题得0.200.150.70a ++=,解得0.35a =,由0.050.151()10.70b P C ++=-=-,解得0.10b =.(2)由甲离子的直方图可得,甲离子残留百分比的平均值为0.1520.2030.3040.2050.1060.057 4.05⨯+⨯+⨯+⨯+⨯+⨯=,乙离子残留百分比的平均值为0.0530.1040.1550.3560.2070.1586⨯+⨯+⨯+⨯+⨯+⨯=【名师点睛】本题考查频率分布直方图和平均数,属于基础题. 8.设甲、乙两位同学上学期间,每天7:30之前到校的概率均为23.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.(1)用X 表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量X 的分布列和数学期望;(2)设M 为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件M 发生的概率. 【试题来源】2019年天津市高考数学试卷(理) 【答案】(1)见解析;(2)20243【分析】(1)由题意可知分布列为二项分布,结合二项分布的公式求得概率可得分布列,然后利用二项分布的期望公式求解数学期望即可;(2)由题意结合独立事件概率公式计算可得满足题意的概率值.【解析】(1)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为23,故2~3,3X B ⎛⎫ ⎪⎝⎭,从面()()33210,1,2,333k kk P X k C k -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭. 所以,随机变量X 的分布列为随机变量X 的数学期望()323E X =⨯=. (2)设乙同学上学期间的三天中7:30之前到校的天数为Y ,则2~3,3Y B ⎛⎫ ⎪⎝⎭. 且{3,1}{2,0}M X Y X Y =====.由题意知事件{}3,1X Y ==与{}2,0X Y ==互斥,且事件{}3X =与{}1Y =,事件{}2X =与{}0Y =均相互独立, 从而由(1)知{}{}()()3,12,0P M P X Y X Y =====()()3,12,0P X Y P X Y ===+== (3)(1)(2)(0)P X P Y P X P Y ===+==824120279927243=⨯+⨯=. 【名师点睛】本题主要考查离散型随机变量的分布列与数学期望,互斥事件和相互独立事件的概率计算公式等基础知识.考查运用概率知识解决简单实际问题的能力.9.某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:满意不满意男顾客4010女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.P(K2≥k)0.0500.0100.001k 3.841 6.63510.828【试题来源】2019年全国统一高考数学试卷(文)(新课标Ⅱ)【答案】(1)43 ,55;(2)能有95%的把握认为男、女顾客对该商场服务的评价有差异.【分析】(1)从题中所给的22⨯列联表中读出相关的数据,利用满意的人数除以总的人数,分别算出相应的频率,即估计得出的概率值;(2)利用公式求得观测值与临界值比较,得到能有95%的把握认为男、女顾客对该商场服务的评价有差异.【解析】(1)由题中表格可知,50名男顾客对商场服务满意的有40人,所以男顾客对商场服务满意率估计为1404 505P==,50名女顾客对商场满意的有30人,所以女顾客对商场服务满意率估计为2303 505P==,(2)由列联表可知22100(40203010)1004.762 3.8417030505021K⨯-⨯==≈>⨯⨯⨯,所以能有95%的把握认为男、女顾客对该商场服务的评价有差异.【名师点睛】该题考查的是有关概率与统计的知识,涉及到的知识点有利用频率来估计概率,利用列联表计算2K的值,独立性检验,属于简单题目.10.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X 个球该局比赛结束. (1)求P (X =2);(2)求事件“X =4且甲获胜”的概率.【试题来源】2019年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1)0.5;(2)0.1【分析】(1)本题首先可以通过题意推导出()2P X =所包含的事件为“甲连赢两球或乙连赢两球”,然后计算出每种事件的概率并求和即可得出结果; (2)本题首先可以通过题意推导出4P X所包含的事件为“前两球甲乙各得1分,后两球均为甲得分”,然后计算出每种事件的概率并求和即可得出结果.【解析】(1)由题意可知,()2P X =所包含的事件为“甲连赢两球或乙连赢两球” 所以20.50.40.50.60.5P X(2)由题意可知,4P X 包含的事件为“前两球甲乙各得1分,后两球均为甲得分”所以40.50.60.50.4+0.50.40.50.40.1P X【名师点睛】本题考查古典概型的相关性质,能否通过题意得出()2P X =以及4P X所包含的事件是解决本题的关键,考查推理能力,考查学生从题目中获取所需信息的能力,是中档题.11.为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在试验开始时都赋予4分,(0,1,,8)i p i =表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i =,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=. ①证明:1{}i i p p +-(0,1,2,,7)i =为等比数列;②求4p ,并根据4p 的值解释这种试验方案的合理性. 【试题来源】2019年全国统一高考数学试卷(理)(新课标Ⅱ) 【答案】(1)见解析;(2)①见解析;②41257p =. 【分析】(1)首先确定X 所有可能的取值,再来计算出每个取值对应的概率,从而可得分布列;(2)①求解出,,a b c 的取值,可得()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅,从而整理出符合等比数列定义的形式,问题得证;②列出证得的等比数列的通项公式,采用累加的方式,结合8p 和0p 的值可求得1p ;再次利用累加法可求出4p . 【解析】(1)由题意可知X 所有可能的取值为1-,0,1()()11P X αβ∴=-=-;()()()011P X αβαβ==+--;()()11P X αβ==-则X 的分布列如下:(2)0.5α=,0.8β=0.50.80.4a ∴=⨯=,0.50.80.50.20.5b =⨯+⨯=,0.50.20.1c =⨯=①()111,2,,7i i i i p ap bp cp i -+=++=⋅⋅⋅ 即()110.40.50.11,2,,7i i i i p p p p i -+=++=⋅⋅⋅,整理可得()11541,2,,7ii i p p p i -+=+=⋅⋅⋅ ()()1141,2,,7i i i i p p p p i +-∴-=-=⋅⋅⋅{}1i i p p +∴-()0,1,2,,7i =⋅⋅⋅是以10p p -为首项,4为公比的等比数列②由①知()110144i i i i p p p p p +-=-⋅=⋅,78714p p p ∴-=⋅,67614p p p -=⋅,……,01014p p p -=⋅,作和可得()880178011114414441143p p p p p ---=⋅++⋅⋅⋅+===-,18341p ∴=-, ()4401234401184144131144441434141257p p p p p --∴=-=⋅+++==⨯==--+. 4p 表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为410.0039257p =≈,此时得出错误结论的概率非常小,说明这种实验方案合理.【名师点睛】本题考查离散型随机变量分布列的求解、利用递推关系式证明等比数列、累加法求解数列通项公式和数列中的项的问题.本题综合性较强,要求学生能够熟练掌握数列通项求解、概率求解的相关知识,对学生分析和解决问题能力要求较高. 12.电影公司随机收集了电影的有关数据,经分类整理得到下表:好评率是指:一类电影中获得好评的部数与该类电影的部数的比值. 假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率; (2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率; (3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“1k ξ=”表示第k 类电影得到人们喜欢,“0k ξ=”表示第k 类电影没有得到人们喜欢(k =1,2,3,4,5,6).写出方差1D ξ,2D ξ,3D ξ,4D ξ,5D ξ,6D ξ的大小关系. 【试题来源】2018年全国普通高等学校招生统一考试(理)(北京卷)【答案】(1) 概率为0.025;(2) 概率估计为0.35;(3)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ【分析】(1)先根据频数计算是第四类电影的频率,再乘以第四类电影好评率得所求概率,(2)恰有1部获得好评为第四类电影获得好评第五类电影没获得好评和第四类电影没获得好评第五类电影获得好评这两个互斥事件,先利用独立事件概率乘法公式分别求两个互斥事件的概率,再相加得结果,(3) k ξ服从0-1分布,因此()=1k D p p ξ-,即得1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ.【解析】解:(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000, 第四类电影中获得好评的电影部数是200×0.25=50. 故所求概率为500.0252000=. (2)设事件A 为“从第四类电影中随机选出的电影获得好评”, 事件B 为“从第五类电影中随机选出的电影获得好评”. 故所求概率为P (AB AB +)=P (AB )+P (AB ) =P (A )(1–P (B ))+(1–P (A ))P (B ). 由题意知P (A )估计为0.25,P (B )估计为0.2. 故所求概率估计为0.25×0.8+0.75×0.2=0.35. (3)1D ξ>4D ξ>2D ξ=5D ξ>3D ξ>6D ξ.【名师点睛】互斥事件概率加法公式:若A ,B 互斥,则P(A+B)=P(A)+P(B),独立事件概率乘法公式:若A ,B 相互独立,则P(AB)=P(A)P(B).13.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min )绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m ,并将完成生产任务所需时间超过m 和不超过m 的工人数填入下面的列联表:(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:()()()()()22n ad bcKa b c d a c b d-=++++,【试题来源】2018年全国普通高等学校招生统一考试(理)(新课标III卷)【答案】(1)第二种生产方式的效率更高.理由见解析;(2)80;(3)能.【分析】(1)计算两种生产方式的平均时间即可.(2)计算出中位数,再由茎叶图数据完成列联表.(3)由公式计算出2k,再与6.635比较可得结果.【解析】(1)第二种生产方式的效率更高.理由如下:(1)由茎叶图可知用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(2)由茎叶图可知用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(3)由茎叶图可知用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分. (2)由茎叶图知7981802m +==. 列联表如下:(3)由于()224015155510 6.63520202020K ⨯-⨯==>⨯⨯⨯,所以有99%的把握认为两种生产方式的效率有差异.【名师点睛】本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活.14.下图是某地区2000年至2016年环境基础设施投资额y (单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y 与时间变量t 的两个线性回归模型.根据2000年至2016年的数据(时间变量t 的值依次为1,2,,17)建立模型①:ˆ30.413.5yt =-+;根据2010年至2016年的数据(时间变量t 的值依次为1,2,,7)建立模型②:ˆ9917.5yt =+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠?并说明理由.【试题来源】2018年全国普通高等学校招生统一考试(文)(新课标II卷)【答案】(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.【分析】(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果;(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测.【解析】(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为ˆy=–30.4+13.5×19=226.1(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为ˆy=99+17.5×9=256.5(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(1)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型ˆy =99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(2)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.【名师点睛】若已知回归直线方程,则可以直接将数值代入求得特定要求下的预测值;若回x y求参数.归直线方程有待定参数,则根据回归直线方程恒过点(,)15.已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(1)应从甲、乙、丙三个部门的员工中分别抽取多少人?(2)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一。
高三数学高考专题讲座概率与统计

概率与统计概率内容的新概念较多,相近概念容易混淆,本课时就学生易犯错误作如下归纳总结: 类型一 “非等可能”与“等可能”混同例1 掷两枚骰子,求所得的点数之和为6的概率.错解 掷两枚骰子出现的点数之和2,3,4,…,12共11种基本事件,所以概率为P=111剖析 以上11种基本事件不是等可能的,如点数和2只有(1,1),而点数之和为6有(1,5)、(2,4)、(3,3)、(4,2)、(5,1)共5种.事实上,掷两枚骰子共有36种基本事件,且是等可能的,所以“所得点数之和为6”的概率为P=536.类型二 “互斥”与“对立”混同例2 把红、黑、白、蓝4张纸牌随机地分给甲、乙、丙、丁4个人,每个人分得1张,事件“甲分得红牌”与“乙分得红牌”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .以上均不对 错解 A剖析 本题错误的原因在于把“互斥”与“对立”混同,二者的联系与区别主要体现在 : (1)两事件对立,必定互斥,但互斥未必对立;(2)互斥概念适用于多个事件,但对立概念只适用于两个事件;(3)两个事件互斥只表明这两个事件不能同时发生,即至多只能发生其中一个,但可以都不发生;而两事件对立则表示它们有且仅有一个发生. 事件“甲分得红牌”与“乙分得红牌”是不能同时发生的两个事件,这两个事件可能恰有一个发生,一个不发生,可能两个都不发生,所以应选C .类型三 “互斥”与“独立”混同例3 甲投篮命中率为O .8,乙投篮命中率为0.7,每人投3次,两人恰好都命中2次的概率是多少?错解 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,则两人都恰好投中两次为事件A+B ,P(A+B)=P(A) +P(B): 2222330.80.20.70.30.825c c ⨯+⨯=剖析 本题错误的原因是把相互独立同时发生的事件当成互斥事件来考虑,将两人都恰好投中2次理解为“甲恰好投中两次”与“乙恰好投中两次”的和.互斥事件是指两个事件不可能同时发生;两事件相互独立是指一个事件的发生与否对另一个事件发生与否没有影响,它们虽然都描绘了两个事件间的关系,但所描绘的关系是根本不同.解: 设“甲恰好投中两次”为事件A ,“乙恰好投中两次”为事件B ,且A ,B 相互独立,则两人都恰好投中两次为事件A·B ,于是P(A·B)=P(A)×P(B)= 0.169类型四 “条件概率P(B / A)”与“积事件的概率P(A·B)”混同例4 袋中有6个黄色、4个白色的乒乓球,作不放回抽样,每次任取一球,取2次,求第二次才取到黄色球的概率.错解 记“第一次取到白球”为事件A ,“第二次取到黄球”为事件B,”第二次才取到黄球”为事件C,所以P(C)=P(B/A)=6293=.剖析 本题错误在于P(A ⋅B)与P(B/A)的含义没有弄清, P(A ⋅B)表示在样本空间S 中,A 与B 同时发生的概率;而P (B/A )表示在缩减的样本空间S A 中,作为条件的A 已经发生的条件下事件B 发生的概率。
高考数学专题《概率与统计》解读含答案解析

重难点04 概率与统计新高考概率与统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
试题考查特点是以实际应用问题为载体,小题部分主要是考查排列组合与古典概型,解答题部分主要考查独立性检验、超几何分布、离散型分布以及正态分布对应的数学期望以及方差。
概率的应用立意高,情境新,赋予时代气息,贴近学生的实际生活。
取代了传统意义上的应用题,成为高考中的亮点。
解答题中概率与统计的交汇是近几年考查的热点趋势,应该引起关注。
求解概率问题首先确定是何值概型再用相应公式进行计算,特别对于解互斥事件(独立事件)的概率时,要注意两点:(1)仔细审题,明确题中的几个事件是否为互斥事件(独立事件),要结合题意分析清楚这些事件互斥(独立)的原因;(2)要注意所求的事件是包含这些互斥事件(独立事件)中的哪几个事件的和(积),如果不符合以上两点,就不能用互斥事件的和的概率.离散型随机变量的均值和方差是概率知识的进一步延伸,是当前高考的热点内容.解决均值和方差问题,都离不开随机变量的分布列,另外在求解分布列时还要注意分布列性质的应用.捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列。
相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端。
定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法。
标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成。
有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法。
对于二项式定理的应用,只要会求对应的常数项以及对应的n项即可,但是应注意是二项式系数还是系数。
新高考统计主要考查统计分析、变量的相关关系,独立性检验、用样本估计总体及其特征的思想,以排列组合为工具,考查对五个概率事件的判断识别及其概率的计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三专题复习:统计与概率北京十中王玲一、问题引导复习1、抽取样本的目的是什么?抽样应该遵循哪些原则?(抽样的原则应该遵循如下两条:(1)尽力使为每个个体被抽取的可能性相等;(2)用抽取样本的数字特征去估计总体,误差越小越好。
)2、常用的抽样方法有哪些?说说它们各自的步骤。
它们的区别与联系分别是什么?3、根据你对抽样基本方法的理解,完成如下题目:在随机抽样、系统抽样、分层抽样中,对下列问题,你分别采取那种抽样方式好?并说说理由。
(1)从10位同学中任选2人去参加会议。
(2)从100位同学中任选10人,测算身高、体重的比值。
(3)全校三个年级2000学生中,一年级640人,二年级800人,三年级560人,从中任选100人,调查近视眼发生率。
4、如何整理样本数据?常用的统计图表有哪些?设计意图:在提问的过程中,带领学生完善统计的知识框架,使学生对统计内容有整体的把握。
二、真题演练某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是。
若用分层抽样方法,则40岁以下年龄段应抽取人.图设计意图:通过上述小题让学生初步感受不同抽样方法的特点,并掌握相应的计算方法。
三、典例分析例1、某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:[40,50), [50,60), [60,70), [70,80), [80,90), [90,100]。
(1)求图中x 的值;(2) 由此表你能估计出这组数据的众数,中位数及平均数吗?解:(1)由300.006100.01100.054101x ⨯+⨯+⨯+=得0.018x =(2)略设计意图:本题主要呈现频率分布直方图,熟悉这种统计中处理数据的方式,难度不大,给学生一定时间独立完成,感受用频率估计概率的想法。
预设:将学生的学案实物投影,进而发现学生的问题。
(1) 教会学生读图、识图,并获取有用的数据信息。
(2) 强化在频率分布直方图中纵坐标的意义。
(3) 明确如何在直方图中求数字特征,如众数、中位数、平均数。
例2、为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行出样检查,测得身高情况的统计图如下:(I )估计该校男生的人数;(II )估计该校学生身高在170~185cm 之间的概率;(III )从样本中身高在165~180cm 之间的女生中任选2人,求至少有1人身高在170~180cm 之间的概率。
解 :(I )样本中男生人数为40 ,由分层抽样比例为10%估计全校男生人数为400。
(II )由统计图知,样本中身高在170~185cm 之间的学生有14+13+4+3+1=35人,样本容量为70 ,所以样本中学生身高在170~185cm 之间的频率5.07035==f ,故有f 估计该校学生身高在170~180cm 之间的概率5.0=p 。
(III )样本中女生身高在165~180cm 之间的人数为10,身高在170~180cm 之间的人数为4。
设A 表示事件“从样本中身高在165~180cm 之间的女生中任选2人,求至少有1人身高在170~180cm 之间”,则)32)((321)(21024141621026=+==-=C C C C A P C C A P 或.设计意图:本题与例1设计目的基本一致,但主要让学生感受处理数据的不同方式,本题主要呈现条形图这一统计数表。
同时第3问与概率问题相结合,难度不大,让学生可以体会古典概型的特点以及常用的两种处理方法。
例3、某班甲、乙两名同学参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:(1)请作出样本数据的茎叶图,如果从甲、乙两名同学中选一名参加学校的100米比赛,从成绩稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论)。
(2)从甲、乙两人的10次训练成绩中各随机抽取一次,求抽取的成绩中至少有一个比12.8秒差的概率。
(3)用表格数据求出“甲、乙成绩之差的绝对值小于0.8秒的概率”变式训练:经过对甲、乙两位同学的多次成绩的统计,甲、乙的成绩都均匀[]5.14,5.11之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于分布在0.8秒的概率。
设计意图:(1)本题通过茎叶图的方式呈现,让学生与频率分布直方图及条形图进行对比,感受茎叶图的好处.:保留了原始数据,便于记录及表示,能反映数据在各段生的分布情况。
(2)在第二问中帮助学生理解“至少”之类的词语。
(3)第3问设计运用古典概型的知识,凭借罗列即可求解,更有利于学生参与。
第三问变式是本例题的难点,预设学生的问题在于不会用二维的几何概型分析问题,知道了几何概型的同学难以联想到相遇问题的模型,我个人觉得应让学生有充分的时间讨论,并在必要时可以给出教材中的原例题,让学生感受其实高考题离我们很近,不惧怕,有信心。
四、课堂练习及作业1、(2012天津):某地区有小学150所,中学75所,大学25所. 现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取_________所学校,中学中抽取________所学校.【解析】共有学校2502575150=++所,抽取30所,所以从小学抽取1815025030=⨯所,从中学抽取97525030=⨯所。
【答案】18,92、(2011四川)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18[27.5,31.5) 1l [31.5,35.5) 12 [35.5.39.5) 7 [39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是(A)16 (B)13 (C)12 (D )23答案:B解析:从31.5到43.5共有22,所以221663P ==。
设计意图:让学生明确数据中频数、频率、样本容量三者之间的关系。
3、(2010北京)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a = 。
若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为 。
0.030, 3解析:由所有小矩形面积为1不难得到0.030a =,而三组身高区间的人数比为3:2:1,由分层抽样的原理不难得到140-150区间内的人数为3人。
设计意图:学会识图,通过直方图让学生明确频率之和等于所有小矩形面积之和,且学生的易错点在于将纵坐标当作频率来处理。
4、(2012山东):采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[]1,450的人做问卷A ,编号落入区间[]451,750的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷B 的人数为(A )7 (B ) 9 (C ) 10 (D )15【解析】从960中用系统抽样抽取32人,则每30人抽取一人,因为第一组号码为9,则第二组为39,公差为30.所以通项为2130)1(309-=-+=n n a n ,由7502130451≤-≤n ,即302125302215≤≤n ,所以25,17,16 =n ,共有1011625=+-人,选C.【答案】C5、统计某校400名学生数学会考成绩,得到样本频率分布直方图如下,则根据直方图,上述数据的众数,中位数,平均数(结果保留一位小数)6、为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品。
用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列极其均值(即数学期望)。
解:(1)987,573514=⨯=,即乙厂生产的产品数量为35件。
(2)易见只有编号为2,5的产品为优等品,所以乙厂生产的产品中的优等品2,50.分数0.0.0.0.故乙厂生产有大约235145⨯=(件)优等品,(3)ξ的取值为0,1,2。
21123323222555331(0),(1),(2)10510C C C C P P P C C C ξξξ⨯=========所以ξ的分布列为故3314012.105105E ξξ=⨯+⨯+⨯+=的均值为7、随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图7.(1)根据茎叶图判断哪个班的平均身高较高;(2)计算甲班的样本方差(3)现从乙班这10名同学中随机抽取两名身高不低于173cm 的同学,求身高为176cm 的同学被抽中的概率.【解析】(1)由茎叶图可知:甲班身高集中于160179:之间,而乙班身高集中于170180: 之间。
因此乙班平均身高高于甲班;(2) 15816216316816817017117917918217010x +++++++++==甲班的样本方差为()()()()222221[(158170)16217016317016817016817010-+-+-+-+-()()()()()22222170170171170179170179170182170]+-+-+-+-+-=57 (3)设身高为176cm 的同学被抽中的事件为A ;从乙班10名同学中抽中两名身高不低于173cm 的同学有:(181,173) (181,176)(181,178) (181,179) (179,173) (179,176) (179,178) (178,173)(178, 176) (176,173)共10个基本事件,而事件A 含有4个基本事件;()42105P A ∴==8、根据空气质量指数API (为整数)的不同,可将空气质量分级如下表:对某城市一年(365天)的空气质量进行监测,获得的API 数据按照区间[0,50],(50,1,250],(250,300进行分组,得到频率分布直方图如图5.(1)求直方图中x 的值;(2)计算一年中空气质量分别为良和轻微污染的天数;(3)求该城市某一周至少有2天的空气质量为良或轻微污染的概率.(结果用分数表示.已知7732738123578125,2128,,36573518253651825182591259125==++++==⨯解:(1)由图可知-=150x ++365218253(18257509125123150)9125818253⨯-=⨯++,解得18250119=x ;(2)219)5036525018250119(365=⨯+⨯⨯;(3)该城市一年中每天空气质量为良或轻微污染的概率为533652195036525018250119==⨯+⨯,则空气质量不为良且不为轻微污染的概率为52531=-,一周至少有两天空气质量为良或轻微污染的概率为7812576653)53()52()53()52(116670777=--C C .设计意图:在作业中布置了6道题目,难度不大,主要是让学生学会。