5.5函数的初步认识课件

合集下载

函数的概念ppt课件

函数的概念ppt课件

已学函数的定义域和值域
反比例函数 一次函数
y
k x
(k 0)
y ax b (a 0)
二次函数
y ax2 bx c (a 0)
a> 0
a< 0
图像
y ox
y ox
y ox
y ox
定义域 {x| x 0} R 值域 {y| y 0} R
R
R
{y
|
y
4ac 4a
b2}
{y
|
y
4ac 4a
(2) y (x 1)0 2 x 1
(1)
x 1 4 x
0 ,1
0
x
4,定义域是x
1
x
4
(2)
x
2 1
0
,
解得x
1且x
1, 定义域为
x
x 1且x 1
x 1 0
x2 x 12
解析:由题意得x2-x-12≥0,解得x≤-3或x≥4. 定义域为{x|x≤-3或x≥4}
2x2 x 3 0, 2x2 x 3 0, (2x 3)(x 1) 0, 1 x 3
2 y 2x2 x 3 2(x 1)2 25 5 2
484
[0, 5 2 ] 4
2
o12 5 x
4.求下列函数的值域 (1).y 2x x 1
设t x 1,则t 0且x t2 1, 所以y 2(t2 1) t 2(t 1)2 15 ,[15 , )
它对应,就称f: A→B 为从集合A到集合B的一个函数,记作:
a
e
b
f
c
g

h …
A
B
f: A→B
y=f(x) , x∈A

高中数学函数的概念课件 课件

高中数学函数的概念课件 课件

高中数学函数的概念课件课件函数是高中数学的核心概念,是数学学习中不可或缺的一部分。

函数的概念是理解函数的基础,也是进一步学习函数性质和应用的前提。

本课件旨在帮助学生理解函数的基本概念,掌握函数的定义和性质,为后续的学习奠定坚实的基础。

通过本课件的学习,学生应能理解函数的基本概念,掌握函数的定义和性质,能够判断一个映射是否为函数,并能够根据函数的定义和性质解决一些基本问题。

函数的定义:我们将介绍函数的定义,包括自变量、因变量和对应关系。

通过举例和反例,帮助学生理解函数的定义。

函数的性质:我们将详细介绍函数的性质,包括奇偶性、单调性、周期性等。

通过图形和实例,帮助学生理解并掌握这些性质。

函数的表示方法:我们还将介绍几种常见的函数表示方法,包括解析法、表格法和图像法。

通过实例和练习,帮助学生掌握这些表示方法。

函数的实际应用:我们将通过一些实际问题,如路程问题、时间问题等,让学生了解函数在实际生活中的应用,进一步加深对函数的理解。

教学重点:函数的定义和性质是本课件的重点内容。

学生需要深入理解并掌握这些内容,才能更好地解决后续的问题。

教学难点:函数的表示方法中的图像法和表格法可能对一些学生来说比较难以理解。

我们将通过实例和练习来帮助学生克服这些难点。

我们将通过一些练习和测试题来评价学生对本课件内容的掌握情况。

对于掌握不够好的学生,我们将提供及时的反馈和辅导,帮助他们更好地理解和掌握函数的概念和性质。

函数是高中数学的重要内容,也是后续学习的基础。

希望通过本课件的学习,学生能够深入理解函数的概念和性质,为后续的学习奠定坚实的基础。

也希望学生能够积极参与课堂活动,主动思考问题,提高自己的数学素养和能力。

高中数学是高中生学习的一门重要课程,而必修一则是高中数学的基础和关键。

在这一章中,我们将为大家提供高中数学必修一课件全册,帮助大家更好地学习高中数学。

集合是数学中一个基本的概念,它是指具有某种特定性质的数学对象组成的集体。

七年级数学上册第五章代数式与函数的初步认识5.5《函数的初步认识》课件(新版)青岛版

七年级数学上册第五章代数式与函数的初步认识5.5《函数的初步认识》课件(新版)青岛版

[问题一]:一台彩色电视机屏幕的对角线长度是34英寸, 它合多少厘米?(提示:1英寸═2.54厘米)
[问题二]:如果某种电视机屏幕的对角线长是x英尺, 换算为公制是y厘米,试写出y与x之间的关系式;
[问题三]:在y与x的关系式中,哪些是常量?哪些是 变量?
[问题四]:说一说,你家的电视机是多少英 寸的,合多少厘米? [问题五]: 通过研究,你会发现变量y与x之 间有什么关系?
学习小结
半径(cm) 面积(cm2)
1
1.5
2
2.6
Байду номын сангаас
3.2
由此可以看出,圆的半径越大,面积就 ____.
学习目标:
1.通过实例进一步认识常量与变量,理解自 变量与函数的定义,能列出实例中的两个变量 之间的等量关系,从而写出简单的函数关系式。 2.经历从具体实例中抽象出函数的过程,发 展观察分析抽象概括等思维能力。 3.使学生认识到数学知识来源于生活,从而 体会到学习函数的必要性,提高学习数学的兴 趣。
(2)如果用n表示上述图形中的序号,s表示相应图 形中小正方形水泥地砖的块数,写出s与n之间的关 系式。指出在这个问题中哪些是常量,哪些是变量, 哪个量是哪个量的函数。
(2)根据(1)中发现的规律,第n个图形中地
砖的块数应当是5(2n+1),即s═5(2n+1).
(3)铺设序号为100的图形中,一共有多少块小正方 形水泥地砖? 当n=100时,S=5×(2×100+1)=1005(块)。
飞行时间t(秒) 1
路程m(公里)
5
10 15 20 …
117 156 …
7.8
39 78
变式题:观察下图,根据表格中的问题回答下列问题:

《函数的初步认识》PPT课件

《函数的初步认识》PPT课件
2.求n=11时的图形周长.
2018/11/21 13
学习小结
2018/11/21
14
作业:
1. 课本练习题1,2题 2.习题5.5第1~2题。
2018/11/21
15
2018/11/21
16
1、不要做刺猬,能不与人结仇就不与人结仇,谁也不跟谁一辈子,有些事情没必要记在心上。 2、相遇总是猝不及防,而离别多是蓄谋已久,总有一些人会慢慢淡出你的生活,你要学会接受而不是怀念。 3、其实每个人都很清楚自己想要什么,但并不是谁都有勇气表达出来。渐渐才知道,心口如一,是一种何等的强大! 4、有些路看起来很近,可是走下去却很远的,缺少耐心的人永远走不到头。人生,一半是现实,一半是梦想。 5、没什么好抱怨的,今天的每一步,都是在为之前的每一次选择买单。每做一件事,都要想一想,日后打脸的时候疼不疼。 6、过去的事情就让它过去,一定要放下。学会狠心,学会独立,学会微笑,学会丢弃不值得的感情。 7、成功不是让周围的人都羡慕你,称赞你,而是让周围的人都需要你,离不开你。 8、生活本来很不易,不必事事渴求别人的理解和认同,静静的过自己的生活。心若不动,风又奈何。你若不伤,岁月无恙。 9、与其等着别人来爱你,不如自己努力爱自己,对自己好点,因为一辈子不长,对身边的人好点,因为下辈子不一定能够遇见。 10、你迷茫的原因往往只有一个,那就是在本该拼命去努力的年纪,想得太多,做得太少。 11、有一些人的出现,就是来给我们开眼的。所以,你一定要禁得起假话,受得住敷衍,忍得住欺骗,忘得了承诺,放得下一切。 12、不要像个落难者,告诉别人你的不幸。逢人只说三分话,不可全抛一片心。 13、人生的路,靠的是自己一步步去走,真正能保护你的,是你自己的选择。而真正能伤害你的,也是一样,自己的选择。 14、不要那么敏感,也不要那么心软,太敏感和太心软的人,肯定过得不快乐,别人随便的一句话,你都要胡思乱想一整天。 15、不要轻易去依赖一个人,它会成为你的习惯,当分别来临,你失去的不是某个人,而是你精神的支柱;无论何时何地,都要学会独立行走 ,它会让你走得更坦然些。 16、在不违背原则的情况下,对别人要宽容,能帮就帮,千万不要把人逼绝了,给人留条后路,懂得从内心欣赏别人,虽然这很多时候很难 。 17、做不了决定的时候,让时间帮你决定。如果还是无法决定,做了再说。宁愿犯错,不留遗憾! 18、不要太高估自己在集体中的力量,因为当你选择离开时,就会发现即使没有你,太阳照常升起。 19、时间不仅让你看透别人,也让你认清自己。很多时候,就是在跌跌拌拌中,我们学会了生活。 20、命运要你成长的时候,总会安排一些让你不顺心的人或事刺激你。 21、你的假装努力,欺骗的只有你自己,永远不要用战术上的勤奋,来掩饰战略上的懒惰。 22、成长是一场和自己的比赛,不要担心别人会做得比你好,你只需要每天都做得比前一天好就可以了。 23、你没那么多观众,别那么累。做一个简单的人,踏实而务实。不沉溺幻想,更不庸人自扰。 24、奋斗的路上,时间总是过得很快,目前的困难和麻烦是很多,但是只要不忘初心,脚踏实地一步一步的朝着目标前进,最后的结局交给 时间来定夺。 25、你心里最崇拜谁,不必变成那个人,而是用那个人的精神和方法,去变成你自己。 26、运气是努力的附属品。没有经过实力的原始积累,给你运气你也抓不住。上天给予每个人的都一样,但每个人的准备却不一样。不要羡 慕那些总能撞大运的人,你必须很努力,才能遇上好运气。 27、时间只是过客,自己才是主人,人生的路无需苛求,只要你迈步,路就在你的脚下延伸,只要你扬帆,便会有八面来风,启程了,人的 生命才真正开始。 28、每个人身上都有惰性和消极情绪,成功的人都是懂得管理自己的情绪和克服自己的惰性,并像太阳一样照亮身边的人,激励身边的人。 29、最终你相信什么就能成为什么。因为世界上最可怕的二个词,一个叫执着,一个叫认真,认真的人改变自己,执着的人改变命运。只要 在路上,就没有到不了的地方。 30、人生,就要活得漂亮,走得铿锵。自己不奋斗,终归是摆设。无论你是谁,宁可做拼搏的失败者,也不要做安于现状的平凡人。 31、不管做什么都不要急于回报,因为播种和收获不在同一个季节,中间隔着的一段时间,我们叫它为坚持。 32、过自己喜欢的生活,成为自己喜欢的样子,其实很简单,就是把无数个“今天”过好,这就意味着不辜负不蹉跎时光,以饱满的热情迎 接每一件事,让生命的每一天都有滋有味。

《函数的初步认识》PPT课件(上课用)2

《函数的初步认识》PPT课件(上课用)2
12

1、想要体面生活,又觉得打拼辛苦;想要健康身体,又无法坚持运动。人最失败的,莫过于对自己不负责任,连答应自己的事都办不到,又何必抱怨这个世界都和你作对?人生的道理很简单,你想要什么,就去付出足够的努力。

2、时间是最公平的,活一天就拥有24小时,差别只是珍惜。你若不相信努力和时光,时光一定第一个辜负你。有梦想就立刻行动,因为现在过的每一天,都是余生中最年轻的一天。
说明:解决此类问题,关键是了解常量与变量,自变量 与函数的意义。
2022/3/23
6
对应训练:
.每种商品的单价是每只元,它的销售额(元)与所授商品 数量(只)之间的关系式是( ),其中( )是( )的函数。
.如图是某物体的抛射曲线图,其中表示物体与抛射点之间
的水平距离,表示物体的高度.该图中的变量是( )与

11、人生的某些障碍,你是逃不掉的。与其费尽周折绕过去,不如勇敢地攀登,或许这会铸就你人生的高点。

12、有些压力总是得自己扛过去,说出来就成了充满负能量的抱怨。寻求安慰也无济于事,还徒增了别人的烦恼。

13、认识到我们的所见所闻都是假象,认识到此生都是虚幻,我们才能真正认识到佛法的真相。钱多了会压死你,你承受得了吗?带,带不走,放,放不下。时时刻刻发悲心,饶益众生为他人。

3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。

4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的,父母还未老;我有能力报答,父母仍然健康。

6、没什么可怕的,大家都一样,在试探中不断前行。

14、梦想总是跑在我的前面。努力追寻它们,为了那一瞬间的同步,这就是动人的生命奇迹。

函数的概念课件

函数的概念课件

函数的概念课件在数学中,函数是一个核心的概念。

它描述了变量之间的依赖关系,用函数的观点去看待问题,是数学学习中一个极为重要的思想方法。

因此,大家要认真理解函数的概念,掌握函数的基本性质,为后续学习做好准备。

函数是数学中的一种关系,它把一个数集中的元素与另一个数集中的元素对应起来,其中对应的规则称为对应关系。

我们可以用解析式、图象、表格等多种形式来表示函数。

例如,如果y是x的函数,那么可以用y=x^2表示一个二次函数。

(1)函数的单调性:在区间(a,b)上,如果对于任意x1<x2,都有f(x1)<f(x2),则称f(x)在(a,b)上单调递增;如果对于任意x1<x2,都有f(x1)>f(x2),则称f(x)在(a,b)上单调递减。

(2)函数的奇偶性:如果对于函数f(x)的定义域内的任意x,都有f(-x)=f(x),则称f(x)为偶函数;如果对于函数f(x)的定义域内的任意x,都有f(-x)=-f(x),则称f(x)为奇函数。

(3)函数的值域:函数值的取值范围称为函数的值域。

(2)定义域为[0,∞),值域为[1,∞)解:(1)在区间(-∞,0)上单调递减,在区间(0,∞)上单调递增。

本节课我们学习了函数的概念和基本性质,掌握了函数的表示方法,了解了函数的单调性、奇偶性和值域等概念。

希望大家能够认真领会函数的思想方法,为后续学习做好准备。

函数是高中数学的核心概念,是数学学习中不可或缺的一部分。

函数的概念是理解函数的基础,也是进一步学习函数性质和应用的前提。

本课件旨在帮助学生理解函数的基本概念,掌握函数的定义和性质,为后续的学习奠定坚实的基础。

通过本课件的学习,学生应能理解函数的基本概念,掌握函数的定义和性质,能够判断一个映射是否为函数,并能够根据函数的定义和性质解决一些基本问题。

函数的定义:我们将介绍函数的定义,包括自变量、因变量和对应关系。

通过举例和反例,帮助学生理解函数的定义。

5.5 函数的初步认识-七年级上册数学

5.5 函数的初步认识-七年级上册数学

总结
在_同__一__个__变__化__过_程___中,有_两__个__变__量_x_和__y_,如果_对_于__变__量__x 的__每__一__个__确_定__的__值__,__都__能_随__之__确__定__一__个_y_值__,我们就把y叫做 x的函数,其中x叫做__自__变__量__。如果自变量x取a时,y的 值是b,就把b叫做x=a时的_函__数__值__。
解:n=50-0.8m 在这个问题中,n的值是由m的取值确定的。 当m=13时,n=50-0.8×
函数及相关概念
对函数概念的理解要抓住以下三点:
(1) “一”
同一个变化过程
(2) “二” (3)“一对一”
有两个变量x和y
对于变量x的每一个确定的 值,都能随之确定一个y值
不能把函数概念理解成“当x发生变化时,y 也随之发生变化”,因为y也可以保持不变。
随堂练习
(3)小树的高度与小明的体重。 答:小树的高度与小明的体重虽然是两个变量,但这两个 变量不是在同一变化过程中,这两个变量没有直接关系, 故这两个变量不是函数关系。
考查函数概念问题的解题关键是看在同一个变化过程中,自变 量每取一个确定的值时,函数是否有唯一确定的值与之对应。
随堂练习
例1 人行道用同样大小的小
答:y=3x+2
函数及相关概念
(3)在问题(2)中,哪些量是常量?哪些量是变量? y的值是由哪个变量的取值确定的? 答:在问题(2)中,y用关于x的代数式表示为y=3x+2,
其中3,2是常量,y和x是变量, y的值是由x的取值确定的, 例如,当x=4时,y=14(枚)
你发现y和x之间有什么关系?
函数及相关概念
如果一个变量与另一个变量之间的函数关系可以用一个数学 式子表示出来,我们就把这个数学式子叫做该函数的_表__达__式_。

函数的初步认识

函数的初步认识

§5.5函数的初步认识【学习目标】1.初步掌握函数的概念2.能判断两个变量间的关系是否函数关系3.初步形成利用函数的观点认识现实世界的意识和能力重点:函数概念的理解难点:会判定两个变量间的关系是否函数关系【课前延伸】回顾§5.4的4个y关于x的代数式和图5-5,并自学P116“交流与发现”,完成问题1.问题1中,______随______的增大而___ ____。

2.问题2中,______随______的增大而____ ___。

3.问题3中,______随______的增大而____ ___。

4.问题4中,______随______的增大而____ ___。

5.图5-5中,从0时到3时,温度随时间的增大而_______;从3时到15时,______随______的增大而_______;从15时到24时,______随______的增大而_______。

6.在课本P116的问题中,______随______的增大而___ ____。

【探索新知】1.在关系式中,当时,,当时,,变量y随变量x的______而_______(填“增大”或“减小”),变量y的取值是由变量x的取值确定的。

(填“唯一”或“多个”)2.通过观察、计算后完成下面表格200速度V(千米时)时间t (小时)80548501008/3…………时间t(小时)与速度V(千米/小时)之间的关系式是t=_________,变量速度v(千米/小时)的取值是由变量时间t(小时)______确定的。

(填“唯一”或“多个”)3.观察图像,完成下列题目。

下图是一个水池放水时,水池中的剩余水量随时间的变化情况。

1234510080604020t(小时)剩余水量Q(立方米)①由图象观察可知,每小时可放水立方米。

②剩余水量Q(立方米)与时间t(小时)之间的关系式是__________(0≤t≤5),Q随x的______而_______;③当t=2.5时,Q= ,当t=3.2时,Q= ;④变量剩余水量Q(立方米)的取值是由变量时间t(小时)的取值确定的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
‹# ›
1
1.5
2
2.6
3.2
学习目标 1.结合实例,知道自变量与函数的意义,能够区分自变量与函数. 2.对于给定的函数,能根据自变量的值求出函数的值. 【学习重点与难点】 重点:对于给定的函数,能根据自变量的值求出函数的值. 难点:正确区分自变量与函数.
‹# ›
新知探究(一)自变量与函数
1.自学要求: 自主学习课本116页,完成下列问题: (1) 什么是函数?什么是自变量? (2) 什么是一个函数的函数值?怎样求?
‹# ›
探究(二)利用给定的函数,能根据自变量的值求出函数的 值. 自学要求:自学课本117页的内容,弄清以下问题: 1.什么是函数值? 2.如何求函数值? 3.例1中s的与n分别代表什么?它们之间的函数关系式是 什么? 4.在序号为100的图形中,100在函数关系式中代表什么?
‹# ›
例1.变式题:观察下图,根据表格中的问题回答下列问题:
‹# ›Βιβλιοθήκη 课堂检测站1.举三个日常生活中遇到的函数关系的例子. 答:(1)___________________________________ _______; (2)___________________________________________; (3)___________________________________________. 2.函数y=-3x +7中,当x=2时,函数值为 ( A.3 B.2 C.1 D.0 )
‹# ›
预习效果检测
①下列变量之间的关系不是函数关系的是( ) A.矩形的一条边长是6 cm,它的面积S cm与另一边长x cm的关系 B.正方形的面积与周长的关系 C.圆的面积与周长的关系 D.某图形的面积与它所在的平面的位置关系 ②一般地,如果在一个______________中,有两个________, 例如x 和y,对于x的每—个值,y都有______________与之对应,我们就说x是 ________________,y是________________,此时也称y是x的__________ 通过以上的练习,你一定知道函数和自变量了?和同桌交流一下 吧,找出它们之间的联系与区别. 点拨:1.必须有两个变量
梯形个数n
图形周长l
1
5
2
8
3
11
4
14
5
17
……
……
1.写出l与n的关系式,在这个关系式中,哪个量是常量,哪个 量是变量? 2.求n=11时的图形周长.
‹# ›
对应训练:
1. 课本练习题1,2题 2.习题5.5B组第2题。
‹# ›
1.你学到了哪些知识?要
注意什么问题?
2.在学习的过程 中你
有什么体会?
对应训练: 1.每种商品的单价是每只5元,它的销售额y(元)与所授 商品数量x(只)之间的关系式是( ),其中( ) 是( )的函数。 2.如图是某物体的抛射曲线图,其中s表示物体与抛射点之 间的水平距离,h表示物体的高度.该图中的变量是( ) 与( ),其中( )是自变量( )的函数.
3.课本练习题3题。
3.写出下列函数关系式,指出自变量与函数. 一辆汽车从南京开出,行驶在去上海的高速公路上,速度为120km /h,南京至上海约270km,则该汽车离上海的路程s与行驶时间t之间的 函数关系; 4.印刷一张矩形的张贴广告(如图17—5),它的印刷面积为 ,上下空白各 1dm,两边空白各0.5dm,设印刷部分从上到下的长是x dm,四周空白面 积为S ,求S与x的函数关系式,并求出当x=8dm时,S的值.
义务教育课程标准实验教科书数学· 七年级· 上册(泰山版)
第5章
代数式与函数的初步认识
‹ # ›
【知识回顾】
1.正方形的周长c与边长a的关系式为_____________, 其中常量是________________, 变量是___________________. 2.如果用r表示圆的半径,S表示圆的面积,则S与r之间满足下 列关系:S=__________. 利用这个关系式,试求出半径1cm、1.5cm、2cm、2.6cm、 3.2cm时圆的面积,并将结果填入下表: 半径(cm) 圆面积( cm2) 由此可以看出,圆的半径越大,面积就_________.
2.自变量每取一个值,函数都有唯一的值对应。
‹# ›
典例剖析
例:用总长为60m的篱笆围成矩形场地,求矩形面积 s(m2)与一边长l(m)之间的关系式。并指出式中的常量与 变量,并判断是否是函数关系式,若是,指出 自变量与 函数。
说明:解决此类问题,关键是了解常量与变量,自变量 与函数的意义。
‹# ›
‹# ›
相关文档
最新文档