反比例函数的图像和性质练习题
反比例函数的图象与性质

2、函数 y
2
4、一平行四边形的面积是12cm2,它的一边是acm,这边上的高是
12 hcm, 则a与h的函数关系式是 a , 这个函数是反比例 函数。 h
k 5、若点P(2,-3)在函数 y 的图象上,那么这个函数的图象 x 二、四象限内,在每一象限内,y随x的增大而 增大 是 双曲线 , 它在 。 2m 1 6、若反比例函数 y 的图象在第一、三象限,那么m的取值 x 1 范围是 m 2 ,在每一象限内,y随x 的增大而 减少 。
13、直线y=2x-b与双曲线 y 标是 A.(-1,2) ( B ) B.(2,-1)
2 1 交于点( ,4 ),则另一个交点的坐 x 2
C.(2,9)
D.(5,4)
14、如图,A为双曲线上一点,过A作AC⊥x轴,垂 足为C,且S△AOC =2. (1)求该反比例函数解析式; (2)若点(-1,y1),(-3,y2)在双曲 线上,试比较y1、 y2的大小.
4、在同一直角坐标系中,表示函数 y ax b ,与 y
ab ( ab 0) 的图象只能是 x
5、已知: a, b 0 点 pa , b 在反比例函数 y 过的象限为 ( A.第一象限 ) B.第二象限
a 的图象上,则直线 y ax b 不经 x
C.第三象限
D.第四象限
7、函数y=kx与 y
k 在同一直角坐标中的图象可能是 ( C ) x
8、已知直线y=ax+b如图所示,则函数 y 的图象应在 ( D ) A.第一、二象限 C.第一、三象限
ab x
B.第二、三象限 D.第二、四象限
9、 若y=-2xm-2+3n-1是反比例函数, 则y=5-m+x3n是 一次 函数。
第11章 11.2 反比例函数的图像和性质(解答题)

11.2 反比例函数的图像和性质(解答题)1.(2017•北京)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.2.(2017•宁波)如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.3.(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.4.(2017•株洲)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA 的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.5.(2017•绵阳)如图,设反比例函数的解析式为y=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.6.(2017•贵阳)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?7.(2017•随州)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.8.(2017•常德)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB 的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.9.(2017•安顺)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的表达式;(2)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.10.(2017•巴彦淖尔)如图,反比例函数y=与一次函数y=k2x+b的图象交于A(2,4),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.11.(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.12.(2017•广元)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=,OB=4,OE=2.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.13.(2017•聊城)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.14.(2017•广安)如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,(1)求函数y=和y=kx+b的解析式.(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.15.(2017•巴中)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣>0中x的取值范围;(3)求△AOB的面积.16.(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.17.(2017•岳阳)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.18.(2017•常州)如图,已知一次函数y=kx+b的图象与x轴交于点A,与反比例函数y=(x<0)的图象交于点B(﹣2,n),过点B作BC⊥x轴于点C,点D(3﹣3n,1)是该反比例函数图象上一点.(1)求m的值;(2)若∠DBC=∠ABC,求一次函数y=kx+b的表达式.19.(2017•黄冈)已知:如图,一次函数y=﹣2x+1与反比例函数y=的图象有两个交点A (﹣1,m)和B,过点A作AE⊥x轴,垂足为点E;过点B作BD⊥y轴,垂足为点D,且点D的坐标为(0,﹣2),连接DE.(1)求k的值;(2)求四边形AEDB的面积.20.(2017•菏泽)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A、B 两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.21.(2017•宜宾)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.22.(2017•吉林)如图,在平面直角坐标系中,直线AB与函数y=(x>0)的图象交于点A(m,2),B(2,n).过点A作AC平行于x轴交y轴于点C,在y轴负半轴上取一点D,使OD=OC,且△ACD的面积是6,连接BC.(1)求m,k,n的值;(2)求△ABC的面积.23.(2017•柳州)如图,直线y=﹣x+2与反比例函数(k≠0)的图象交于A(﹣1,m),B(m,﹣1)两点,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,(1)求m,n的值及反比例函数的解析式;(2)请问:在直线y=﹣x+2上是否存在点P,使得S△PAC=S△PBD?若存在,求出点P的坐标;若不存在,请说明理由.24.(2017•襄阳)如图,直线y1=ax+b与双曲线y2=交于A、B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(﹣3,﹣2).(1)求直线和双曲线的解析式;(2)求点C的坐标,并结合图象直接写出y1<0时x的取值范围.25.(2017•重庆)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A、B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为M,BM=OM,OB=2,点A的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC,求四边形MBOC的面积.26.(2017•湘西州)如图所示,一次函数y1=x+b(b为常数)的图象与反比例函数y2=的图象都经过点A(2,m).(1)求点A的坐标及一次函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时y1<y2.27.(2017•六盘水)已知函数y=kx+b,y=,b、k为整数且|bk|=1.(1)讨论b,k的取值.(2)分别画出两种函数的所有图象.(不需列表)(3)求y=kx+b与y=的交点个数.28.(2017•资阳)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m≠0,x<0)的图象交于点A(﹣3,1)和点C,与y轴交于点B,△AOB的面积是6.(1)求一次函数与反比例函数的解析式;(2)当x<0时,比较y1与y2的大小.29.(2017•百色)已知反比例函数y=(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D.(1)求这个反比函数的解析式;(2)求△ACD的面积.30.(2017•攀枝花)如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB与x轴平行,点B(1,﹣2),反比例函数y=(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.31.(2017•河南)如图,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(m,3)和B(3,1).(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.32.(2017•葫芦岛)如图,直线y=3x与双曲线y=(k≠0,且x>0)交于点A,点A的横坐标是1.(1)求点A的坐标及双曲线的解析式;(2)点B是双曲线上一点,且点B的纵坐标是1,连接OB,AB,求△AOB的面积.33.(2017•来宾)如图,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于点A(﹣2,1),B(1,﹣2).(1)求一次函数和反比例函数的解析式;(2)观察图象,直接写出不等式ax+b≤的解集.34.(2017•山西)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.(1)求函数y=的表达式,并直接写出E、F两点的坐标;(2)求△AEF的面积.35.(2017•兰州)如图,在平面直角坐标系xOy中,直线y=﹣x+3交y轴于点A,交反比例函数y=(k<0)的图象于点D,y=(k<0)的图象过矩形OABC的顶点B,矩形OABC 的面积为4,连接OD.(1)求反比例函数y=的表达式;(2)求△AOD的面积.36.(2017•恩施州)如图,∠AOB=90°,反比例函数y=﹣(x<0)的图象过点A(﹣1,a),反比例函数y=(k>0,x>0)的图象过点B,且AB∥x轴.(1)求a和k的值;(2)过点B作MN∥OA,交x轴于点M,交y轴于点N,交双曲线y=于另一点C,求△OBC的面积.37.(2017•天水)如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B (﹣4,n)两点.(1)分别求出一次函数与反比例函数的表达式;(2)过点B作BC⊥x轴,垂足为点C,连接AC,求△ACB的面积.38.(2017•苏州)如图,在△ABC中,AC=BC,AB⊥x轴,垂足为A.反比例函数y=(x >0)的图象经过点C,交AB于点D.已知AB=4,BC=.(1)若OA=4,求k的值;(2)连接OC,若BD=BC,求OC的长.39.(2017•东营)如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB 的面积为3.(1)求一次函数与反比例函数的解析式;(2)直接写出当x>0时,kx+b﹣<0的解集.40.已知直线y=x上点C,过点C作CD∥y轴交x轴于点D,交双曲线y=于点B,过点C作NC∥x轴交y轴于点N,交双曲线y=于点E,若B是CD的中点,且四边形OBCE 的面积为.(1)求k的值;(2)若A(3,3),M是双曲线y=第一象限上的任一点,求证:|MC|﹣|MA|为常数6.(3)现在双曲线y=上选一处M建一座码头,向A(3,3),P(9,6)两地转运货物,经测算,从M到A,从M到P修建公路的费用都是每单位长度a万元,则码头M应建在何处,才能使修建两条公路的总费用最低?(提示:利用(2)的结论转化)参考答案与解析1.(2017•北京)如图,在平面直角坐标系xOy中,函数y=(x>0)的图象与直线y=x﹣2交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x﹣2于点M,过点P作平行于y轴的直线,交函数y=(x>0)的图象于点N.①当n=1时,判断线段PM与PN的数量关系,并说明理由;②若PN≥PM,结合函数的图象,直接写出n的取值范围.【分析】(1)将A点代入y=x﹣2中即可求出m的值,然后将A的坐标代入反比例函数中即可求出k的值.(2)①当n=1时,分别求出M、N两点的坐标即可求出PM与PN的关系;②由题意可知:P的坐标为(n,n),由于PN≥PM,从而可知PN≥2,根据图象可求出n的范围.【解答】解:(1)将A(3,m)代入y=x﹣2,∴m=3﹣2=1,∴A(3,1),将A(3,1)代入y=,∴k=3×1=3,(2)①当n=1时,P(1,1),令y=1,代入y=x﹣2,x﹣2=1,∴x=3,∴M(3,1),∴PM=2,令x=1代入y=,∴y=3,∴N(1,3),∴PN=2∴PM=PN,②P(n,n),n>0点P在直线y=x上,过点P作平行于x轴的直线,交直线y=x﹣2于点M,M(n+2,n),∴PM=2,∵PN≥PM,即PN≥2,∵PN=|﹣n|,||≥2∴0<n≤1或n≥3【点评】本题考查反比例函数与一次函数的综合问题,解题的关键是求出反比例函数与一次函数的解析式,本题属于基础题型.2.(2017•宁波)如图,正比例函数y1=﹣3x的图象与反比例函数y2=的图象交于A、B两点.点C在x轴负半轴上,AC=AO,△ACO的面积为12.(1)求k的值;(2)根据图象,当y1>y2时,写出x的取值范围.【分析】(1)过点A作AD垂直于OC,由AC=AO,得到CD=DO,确定出三角形ADO与三角形ACD面积,即可求出k的值;(2)根据函数图象,找出满足题意x的范围即可.【解答】解:(1)如图,过点A作AD⊥OC,∵AC=AO,∴CD=DO,∴S△ADO=S△ACD=6,∴k=﹣12;(2)联立得:,解得:或,即A(﹣2,6),B(2,﹣6),根据图象得:当y1>y2时,x的范围为x<﹣2或0<x<2.【点评】此题考查了反比例函数与一次函数的交点问题,利用了数形结合的思想,熟练掌握各函数的性质是解本题的关键.3.(2017•成都)如图,在平面直角坐标系xOy中,已知正比例函数y=x的图象与反比例函数y=的图象交于A(a,﹣2),B两点.(1)求反比例函数的表达式和点B的坐标;(2)P是第一象限内反比例函数图象上一点,过点P作y轴的平行线,交直线AB于点C,连接PO,若△POC的面积为3,求点P的坐标.【分析】(1)把A(a,﹣2)代入y=x,可得A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得反比例函数的表达式为y=,再根据点B与点A关于原点对称,即可得到B的坐标;(2)过P作PE⊥x轴于E,交AB于C,先设P(m,),则C(m,m),根据△POC 的面积为3,可得方程m×|m﹣|=3,求得m的值,即可得到点P的坐标.【解答】解:(1)把A(a,﹣2)代入y=x,可得a=﹣4,∴A(﹣4,﹣2),把A(﹣4,﹣2)代入y=,可得k=8,∴反比例函数的表达式为y=,∵点B与点A关于原点对称,∴B(4,2);(2)如图所示,过P作PE⊥x轴于E,交AB于C,设P(m,),则C(m,m),∵△POC的面积为3,∴m×|m﹣|=3,解得m=2或2,∴P(2,)或(2,4).【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.4.(2017•株洲)如图所示,Rt△PAB的直角顶点P(3,4)在函数y=(x>0)的图象上,顶点A、B在函数y=(x>0,0<t<k)的图象上,PA∥y轴,连接OP,OA,记△OPA 的面积为S△OPA,△PAB的面积为S△PAB,设w=S△OPA﹣S△PAB.①求k的值以及w关于t的表达式;②若用w max和w min分别表示函数w的最大值和最小值,令T=w max+a2﹣a,其中a为实数,求T min.【分析】(1)由点P的坐标表示出点A、点B的坐标,从而得S△PAB=•PA•PB=(4﹣)(3﹣),再根据反比例系数k的几何意义知S△OPA=S△OPC﹣S△OAC=6﹣t,由w=S△OPA﹣S可得答案;△PAB(2)将(1)中所得解析式配方求得w max=,代入T=w max+a2﹣a配方即可得出答案.【解答】解:(1)∵点P(3,4),∴k=3×4=12,在y=中,当x=3时,y=,即点A(3,),当y=4时,x=,即点B(,4),则S△PAB=•PA•PB=(4﹣)(3﹣),如图,延长PA交x轴于点C,则PC⊥x轴,又S△OPA=S△OPC﹣S△OAC=×3×4﹣t=6﹣t,∴w=6﹣t﹣(4﹣)(3﹣)=﹣t2+t;(2)∵w=﹣t2+t=﹣(t﹣6)2+,∴w max=,则T=w max+a2﹣a=a2﹣a+=(a﹣)2+,∴当a=时,T min=.【点评】本题主要考查反比例函数系数k的几何意义及二次函数的性质,熟练掌握反比例系数k的几何意义及配方法求二次函数的最值是解题的关键.5.(2017•绵阳)如图,设反比例函数的解析式为y=(k>0).(1)若该反比例函数与正比例函数y=2x的图象有一个交点的纵坐标为2,求k的值;(2)若该反比例函数与过点M(﹣2,0)的直线l:y=kx+b的图象交于A,B两点,如图所示,当△ABO的面积为时,求直线l的解析式.【分析】(1)由题意可得A(1,2),利用待定系数法即可解决问题;(2)把M(﹣2,0)代入y=kx+b,可得b=2k,可得y=kx+2k,由消去y得到x2+2x﹣3=0,解得x=﹣3或1,推出B(﹣3,﹣k),A(1,3k),根据△ABO的面积为,可得•2•3k+•2•k=,解方程即可解决问题;【解答】解:(1)由题意A(1,2),把A(1,2)代入y=,得到3k=2,∴k=.(2)把M(﹣2,0)代入y=kx+b,可得b=2k,∴y=kx+2k,由消去y得到x2+2x﹣3=0,解得x=﹣3或1,∴B(﹣3,﹣k),A(1,3k),∵△ABO的面积为,∴•2•3k+•2•k=,解得k=,∴直线l的解析式为y=x+.【点评】本题考查一次函数与反比例函数图象的交点、待定系数法、二元一次方程组等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.6.(2017•贵阳)如图,直线y=2x+6与反比例函数y=(k>0)的图象交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图象于点M,交AB 于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?【分析】(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;【解答】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考常考题型.7.(2017•随州)如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=.(1)求反比例函数的解析式;(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.【分析】(1)求出点B坐标即可解决问题;(2)结论:P在第二象限,Q在第四象限.利用反比例函数的性质即可解决问题;【解答】解:(1)由题意B(﹣2,),把B(﹣2,)代入y=中,得到k=﹣3,∴反比例函数的解析式为y=﹣.(2)结论:P在第二象限,Q在第四象限.理由:∵k=﹣3<0,∴反比例函数y在每个象限y随x的增大而增大,∵P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,∴P、Q在不同的象限,∴P在第二象限,Q在第四象限.【点评】此题考查待定系数法、反比例函数的性质、坐标与图形的变化等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.(2017•常德)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB 的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当﹣3≤x≤﹣1时,求函数值y的取值范围.【分析】(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.【解答】解:(1)∵△AOB的面积为2,∴k=4,∴反比例函数解析式为y=,∵A(4,m),∴m==1;(2)∵当x=﹣3时,y=﹣;当x=﹣1时,y=﹣4,又∵反比例函数y=在x<0时,y随x的增大而减小,∴当﹣3≤x≤﹣1时,y的取值范围为﹣4≤y≤﹣.【点评】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,点在图象上,点的横纵坐标满足图象的解析式;也考查了反比例函数的性质以及代数式的变形能力.9.(2017•安顺)已知反比例函数y1=的图象与一次函数y2=ax+b的图象交于点A(1,4)和点B(m,﹣2).(1)求这两个函数的表达式;(2)根据图象直接写出一次函数的值大于反比例函数的值的x的取值范围.【分析】(1)由A在反比例函数图象上,把A的坐标代入反比例解析式,即可得出反比例函数解析式,又B也在反比例函数图象上,把B的坐标代入确定出的反比例解析式即可确定出m的值,从而得到B的坐标,由待定系数法即可求出一次函数解析式;(2)根据题意,结合图象,找一次函数的图象在反比例函数图象上方的区域,易得答案.【解答】解:(1)∵A(1,4)在反比例函数图象上,∴把A(1,4)代入反比例函数y1=得:4=,解得k1=4,∴反比例函数解析式为y1=的,又B(m,﹣2)在反比例函数图象上,∴把B(m,﹣2)代入反比例函数解析式,解得m=﹣2,即B(﹣2,﹣2),把A(1,4)和B坐标(﹣2,﹣2)代入一次函数解析式y2=ax+b得:,解得:,∴一次函数解析式为y2=2x+2;(2)根据图象得:﹣2<x<0或x>1.【点评】此题主要考查了反比例函数和一次函数的图象性质及待定系数法求解析式,要掌握它们的性质才能灵活解题.10.(2017•巴彦淖尔)如图,反比例函数y=与一次函数y=k2x+b的图象交于A(2,4),B(﹣4,m)两点.(1)求k1,k2,b的值;(2)求△AOB的面积;(3)若M(x1,y1),N(x2,y2)是反比例函数y=的图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限.【分析】(1)利用待定系数法即可解决问题;(2)直线y=x+2,交y轴与D(0,2),可以根据S△AOB=S△BOD+S△AOD计算即可;(3)利用图象法解决问题即可;【解答】解:(1)∵y=与一次函数y=k2x+b的图象交于A(2,4),B(﹣4,m)两点∴k1=8,m=﹣2,∴B(﹣4,﹣2),则有解得,∴k1=8,k2=1,b=2;(2)∵直线y=x+2,交y轴与D(0,2),∴S△AOB=S△BOD+S△AOD=×2×6=6.(3)观察图象可知,点M在第三象限,点N在第四象限;【点评】本题考查反比例函数的性质、一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.11.(2017•深圳)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.【分析】(1)先确定出反比例函数的解析式,进而求出点B的坐标,最后用待定系数法求出直线AB的解析式;(2)由(1)知,直线AB的解析式,进而求出C,D坐标,构造直角三角形,利用勾股定理即可得出结论.【解答】解:(1)将点A(2,4)代入y=中,得,m=2×4=8,∴反比例函数的解析式为y=,将点B(a,1)代入y=中,得,a=8,∴B(8,1),将点A(2,4),B(8,1)代入y=kx+b中,得,,∴,∴一次函数解析式为y=﹣x+5;(2)∵直线AB的解析式为y=﹣x+5,∴C(10,0),D(0,5),如图,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∴E(0,4),F(8,0),∴AE=2,DE=1,BF=1,CF=2,在Rt△ADE中,根据勾股定理得,AD==,在Rt△BCF中,根据勾股定理得,BC==,∴AD=BC.【点评】此题是反比例函数与一次函数交点坐标问题,主要考查了待定系数法,勾股定理,解(1)的关键是掌握待定系数法求函数的解析式,解(2)的关键是构造直角三角形.12.(2017•广元)如图,一次函数y=ax+b的图象与反比例函数y=的图象交于C,D两点,与x,y轴交于B,A两点,且tan∠ABO=,OB=4,OE=2.(1)求一次函数的解析式和反比例函数的解析式;(2)求△OCD的面积;(3)根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.【分析】(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.【解答】解:(1)∵OB=4,OE=2,∴BE=2+4=6.∵CE⊥x轴于点E,tan∠ABO===,∴OA=2,CE=3.∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得.故直线AB的解析式为y=﹣x+2.∵反比例函数y=的图象过C,∴3=,∴k=﹣6.∴该反比例函数的解析式为y=﹣;(2)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(6,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=6,故△OCD的面积为2+6=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<6.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.13.(2017•聊城)如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.【分析】(1)作AE、BF分别垂直于x轴,垂足为E、F,根据△AOE∽△BOF,则设A的横坐标是m,则可利用m表示出A和B的坐标,利用待定系数法求得k的值;(2)根据AC∥x轴,则可利用m表示出C的坐标,利用三角形的面积公式求解.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S△ABC=×8m×=8.【点评】本题考查了待定系数法确定函数关系式以及相似三角形的判定与性质,正确利用m 表示出个点的坐标是关键.14.(2017•广安)如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6,(1)求函数y=和y=kx+b的解析式.(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.【分析】(1)把点A(4,2)代入反比例函数y=,可得反比例函数解析式,把点A(4,2),B(0,﹣6)代入一次函数y=kx+b,可得一次函数解析式;(2)根据C(3,0),可得CO=3,设P(a,),根据S△POC=9,可得×3×=9,解得a=,即可得到点P的坐标.【解答】解:(1)把点A(4,2)代入反比例函数y=,可得m=8,∴反比例函数解析式为y=,∵OB=6,∴B(0,﹣6),把点A(4,2),B(0,﹣6)代入一次函数y=kx+b,可得,解得,∴一次函数解析式为y=2x﹣6;(2)在y=2x﹣6中,令y=0,则x=3,即C(3,0),∴CO=3,设P(a,),则由S△POC=9,可得×3×=9,解得a=,∴P(,6).【点评】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点坐标同时满足两个函数解析式.15.(2017•巴中)如图,一次函数y=kx+b与反比例函数y=(x>0)的图象交于A(m,4),B(2,n)两点,与坐标轴分别交于M、N两点.(1)求一次函数的解析式;(2)根据图象直接写出kx+b﹣>0中x的取值范围;(3)求△AOB的面积.【分析】(1)将点A、点B的坐标分别代入解析式即可求出m、n的值,从而求出两点坐标;(2)由图直接解答;(3)将△AOB的面积转化为S△AON﹣S△BON的面积即可.【解答】解:(1)∵点A 在反比例函数y=上,∴=4,解得m=1,∴点A的坐标为(1,4),又∵点B也在反比例函数y=上,∴=n,解得n=2,∴点B的坐标为(2,2),又∵点A、B在y=kx+b的图象上,∴,解得,∴一次函数的解析式为y=﹣2x+6.(2)x的取值范围为1<x<2;(3)∵直线y=﹣2x+6与x轴的交点为N,∴点N的坐标为(3,0),S△AOB=S△AON﹣S△BON=×3×4﹣×3×2=3.【点评】本题考查了反比例函数与一次函数的交点问题,数形结合是解题的关键.16.(2017•武汉)如图,直线y=2x+4与反比例函数y=的图象相交于A(﹣3,a)和B两点(1)求k的值;(2)直线y=m(m>0)与直线AB相交于点M,与反比例函数的图象相交于点N.若MN=4,求m的值;(3)直接写出不等式>x的解集.【分析】(1)把点A(﹣3,a)代入y=2x+4与y=即可得到结论;(2)根据已知条件得到M(,m),N(,m),根据MN=4列方程即可得到结论;(3)根据>x得到>0解不等式组即可得到结论.【解答】(1)∵点A(﹣3,a)在y=2x+4与y=的图象上,∴2×(﹣3)+4=a,∴a=﹣2,∴k=(﹣3)×(﹣2)=6;(2)∵M在直线AB上,∴M(,m),N在反比例函数y=上,∴N(,m),∴MN=x N﹣x M=﹣=4或x M﹣x N=﹣=4,解得:∵m>0,∴m=2或m=6+4;(3)x<﹣1或5<x<6,方法1:x﹣5=m,则x=m+5,<m+5,反比例函数y=与一次函数y=m+5的交点是(﹣6,﹣1),(1,6),函数y=与函数y=x的交点是(﹣1,﹣1),(6,6),综上,原不等式的解集是:x<﹣1或5<x<6.方法:2:由>x得:﹣x>0,∴>0,∴<0,∴或,结合抛物线y=x2﹣5x﹣6的图象可知,由得,∴或,∴此时x<﹣1,由得,,∴,解得:5<x<6,综上,原不等式的解集是:x<﹣1或5<x<6.【点评】本题考查了反比例函数与一次函数的交点问题,求不等式组的解集,正确的理解题意是解题的关键17.(2017•岳阳)如图,直线y=x+b与双曲线y=(k为常数,k≠0)在第一象限内交于点A(1,2),且与x轴、y轴分别交于B,C两点.(1)求直线和双曲线的解析式;(2)点P在x轴上,且△BCP的面积等于2,求P点的坐标.【分析】(1)把A(1,2)代入双曲线以及直线y=x+b,分别可得k,b的值;(2)先根据直线解析式得到BO=CO=1,再根据△BCP的面积等于2,即可得到P的坐标.【解答】解:(1)把A(1,2)代入双曲线y=,可得k=2,∴双曲线的解析式为y=;把A(1,2)代入直线y=x+b,可得b=1,∴直线的解析式为y=x+1;(2)设P点的坐标为(x,0),在y=x+1中,令y=0,则x=﹣1;令x=0,则y=1,∴B(﹣1,0),C(0,1),即BO=1=CO,∵△BCP的面积等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得x=3或﹣5,∴P点的坐标为(3,0)或(﹣5,0).【点评】本题主要考查了反比例函数与一次函数交点问题,解题时注意:反比例函数与一次函数交点的坐标同时满足两个函数解析式.。
反比例函数的图像与性质训练卷

反比例函数的图像与性质训练卷一.选择题(共15小题)1.如图,正比例函数y=k1x与反比例函数y=的图象交于A(1,m)、B两点,当k1x ≤时,x的取值范围是()A.﹣1≤x<0或x≥1B.x≤﹣1或0<x≤1C.x≤﹣1或x≥1D.﹣1≤x<0或0<x≤12.已知反比例函数y=(k≠0)的图象经过点(﹣2,4),那么该反比例函数图象也一定经过点()A.(4,2)B.(1,8)C.(﹣1,8)D.(﹣1,﹣8)3.若点A(﹣2,y1),B(﹣1,y2)都在反比例函数y=的图象上,则y1,y2的大小关系是()A.y1<y2B.y1=y2C.y1>y2D.不能确定4.二次函数y=ax2+bx+c(a≠0)的图象如图所示,则一次函数y=ax+b和反比例函数y=(c≠0)在同一直角坐标系中的图象可能是()A.B.C.D.5.如图,等边三角形OAB,点B在x轴正半轴上,S△OAB=4,若反比例函数y=(k ≠0)图象的一支经过点A,则k的值是()A.B.C.D.6.如图,矩形OABC与反比例函数y1=(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3B.﹣3C.D.7.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数y=的图象上,顶点A在反比例函数y=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.﹣1D.﹣28.点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y49.如图是同一直角坐标系中函数y1=2x和y2=的图象.观察图象可得不等式2x>的解集为()A.﹣1<x<1B.x<﹣1或x>1C.x<﹣1或0<x<1D.﹣1<x<0或x>110.若点A(x1,2),B(x2,﹣1),C(x3,4)都在反比例函数y=的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x2<x1<x3 11.如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A 作AB⊥x轴于点B,连接OA,则△AOB的面积是()A.1B.C.2D.12.反比例函数y=的图象分别位于()A.第一、第三象限B.第一、第四象限C.第二、第三象限D.第二、第四象限13.一次函数y=ax+1与反比例函数y=﹣在同一坐标系中的大致图象是()A.B.C.D.14.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y与该校参加竞赛人数x的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图象上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是()A.甲B.乙C.丙D.丁15.已知一次函数y=kx+b的图象如图所示,则y=﹣kx+b与y=的图象为()A.B.C.D.二.填空题(共8小题)16.如图,反比例函数y=的图象经过矩形ABCD对角线的交点E和点A,点B、C在x 轴上,△OCE的面积为6,则k=.17.如图,点P(x,y)在双曲线y=的图象上,P A⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为.18.反比例函数y=的图象分布情况如图所示,则k的值可以是(写出一个符合条件的k值即可).19.根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S (m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.20.如图,△OMN是边长为10的等边三角形,反比例函数y=(x>0)的图象与边MN、OM分别交于点A、B(点B不与点M重合).若AB⊥OM于点B,则k的值为.21.在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是.22.如图,正比例函数y=k1x和反比例函数y=图象相交于A、B两点,若点A的坐标是(3,2),则点B的坐标是.23.在反比例函数y=的图象的每一支曲线上,函数值y随自变量x的增大而增大,则m的取值范围是.三.解答题(共12小题)24.已知反比例函数y=(k为常数,k≠0)的图象经过点A(﹣2,).(1)求这个函数的解析式;(2)若点B(m+2,m)在这个函数的图象上,求m的值.25.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(4,1),B(﹣2,n)两点,与y轴交于点C.(1)求一次函数与反比例函数的解析式;(2)若点D在y轴上,且S△ABD=12,求点D的坐标;(3)当y1>y2时,自变量x的取值范围为.26.如图,一次函数y=﹣x+3的图象与反比例函数y=(x>0)的图象交于A(1,a),B两点,与x轴交于点C.(1)求反比例函数的解析式和点B的坐标;(2)根据图象,直接写出关于x的不等式﹣x+3<的解集;(3)若点P在x轴上,且S△APC=5,求点P的坐标.27.已知一次函数y=kx+b(k≠0)与反比例函数(m≠0)的图象交于A(2,3),B (﹣6,n)两点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积.28.如图,一次函数y=x+5的图象与反比例函数的图象交于A、B两点,其中A(﹣1,a).(1)求k的值及点B的坐标;(2)请根据图象直接写出不等式的解集.29.如图,一次函数y=ax+1(a≠0)的图象与x轴交于点A,与反比例函数y=的图象在第一象限交于点B(1,3),过点B作BC⊥x轴于点C.(1)求一次函数和反比例函数的解析式.(2)求△ABC的面积.30.如图,在平面直角坐标系中,一次函数y=k1x+b(k1≠0)的图象与反比例函数y=(k2≠0)的图象相交于A(3,4),B(﹣4,m)两点.(1)求一次函数和反比例函数的解析式;(2)若点D在x轴上,位于原点右侧,且OA=OD,求△AOD的面积.31.如图,直线AB与反比例函数y=(k>0,x>0)的图象相交于点A和点C(3,2),与x轴的正半轴相交于点B.(1)求k的值;(2)连接OA,OC,若点C为线段AB的中点,求△AOC的面积.32.已知反比例函数y=(k≠0)的图象的一支如图所示,它经过点(3,﹣2).(1)求这个反比例函数的表达式,并补画该函数图象的另一支.(2)求当y≤5,且y≠0时自变量x的取值范围.33.如图,点A(m,4)在反比例函数y=(x>0)的图象上,点B在y轴上,OB=2,将线段AB向右下方平移,得到线段CD,此时点C落在反比例函数的图象上,点D落在x轴正半轴上,且OD=1.(1)点B的坐标为,点D的坐标为,点C的坐标为(用含m的式子表示);(2)求k的值和直线AC的表达式.34.如图,在平面直角坐标系xOy中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于P、Q两点.点P(﹣4,3),点Q的纵坐标为﹣2.(1)求反比例函数与一次函数的表达式;(2)求△POQ的面积.35.如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.。
北师大版九年级数学上册第六章反比例函数第2节反比例函数的图像和性质课堂练习

第六章反比例函数第2节反比例函数的图像和性质课堂练习学校:___________姓名:___________班级:___________考生__________ 评卷人 得分一、单选题1.反比例函数y =1x(x <0)的图象位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于反比例函数3y x=,下列说法错误的是( ) A .图象经过点()1,3B .图象在第一、三象限C .0x >时,y 随x 的增大而增大D .x 0<时,y 随x 增大而减小3.若点A(x 1,y 1),B(x 2,y 2)在反比例函数3y -x=的图象上,且x 1<0<x 2.则( )A .12y 0y <<B .12y 0y >>C .12y 0y >>D .12y 0y <<4.反比例函数y =mx的图象如图所示,以下结论:①常数m >0;①在每个象限内,y 随x 的增大而增大;①若A (﹣1,h ),B (2,k )在图象上,则h <k ;①若P (x ,y )在图象上,则P '(﹣x ,﹣y )也一定在图象上.其中正确的是( )A .①①B .①①C .①①①D .①①①5.如图,P (x ,y )是反比例函数3y x=的图象在第一象限分支上的一个动点,P A ①x 轴于点A ,PB ①y 轴于点B ,随着自变量x 的逐渐增大,矩形OAPB 的面积( )A .保持不变B .逐渐增大C .逐渐减小D .无法确定6.已知正比例函数1y k x=和反比例函数2kyx=,在同一直角坐标系下的图象如图所示,其中符合120k k⋅>的是()A.①①B.①①C.①①D.①①7.若反比例函数()110ay a xx-=><,图象上有两个点()()1122,,x y x y,,设()1212()m x x y y=--,则y mx m=-不经过第()象限.A.一B.二C.三D.四8.如图,过x轴正半轴上的任意一点P,作y轴的平行线,分别与反比例函数y3=x (x>0)和y6=x-(x>0)的图象交于B、A两点.若点C是y轴上任意一点,则①ABC的面积为()A.3B.6C.9D.92评卷人得分二、填空题9.已知反比例函数6yx=,当x>3时,y的取值范围是_____.10.如图,直线y=kx与双曲线y=2x交于A,B两点,BC①y轴于点C,则△ABC的面积为_____.11.如果点(﹣1,y1)、B(1,y2)、C(2,y3)是反比例函数y=1x图象上的三个点,则y1、y2、y3的大小关系是_____.12.若点A(-2,a),B(1,b),C(4,c)都在反比例函数8yx=-的图象上,则a、b、c大小关系是________.13.若点A(﹣5,y1),B(1,y2),C(2,y3)在反比例函数21ayx+=(a为常数)的图象上,则y1,y2,y3的大小关系是_____.(用“<”连接)14.如图,点A是反比例函数y=kx图象上的一个动点,过点A作AB①x轴,AC①y 轴,垂足点分别为B、C,矩形ABOC的面积为4,则k=________.15.如图,点A在双曲线y=kx的第一象限的那一支上,AB①y轴于点B,点C在x 轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若①ADE的面积为32,则k的值为______.评卷人得分三、解答题16.如图,()A4,3是反比例函数kyx=在第一象限图象上一点,连接OA,过A作AB//x轴,截取AB OA(B=在A右侧),连接OB,交反比例函数kyx=的图象于点P.(1)求反比例函数kyx=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求OAP的面积.17.如图,反比例函数kyx=与一次函数y x b=-+的图象交于点A(1,3)和点B.(1)求k的值和点B的坐标.(2)结合图象,直接写出当不等式kx bx<-+成立时x的取值范围.(3)若点C是反比例函数kyx=第三象限图象上的一个动点,当CA CB=时,求点C的坐标.18.如图,Rt AOB ∆的直角边OB 在x 轴的正半轴上,反比例函数(0)k y x x=>的图象经过斜边OA的中点D ,与直角边AB 相交于点C . ①若点(4,6)A ,求点C 的坐标: ①若9S OCD ∆=,求k 的值.19.如图,已知一次函数y =kx +b 的图象与反比例函数8y x=-的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式; (2)△AOB 的面积.20.已知:如图,∆ABC是等腰直角三角形,①B=90°,点B的坐标为(1,2).反比例函数kyx的图象经过点C,一次函数y=ax+b的图象经A,C两点.(1)求反比例函数和一次函数的关系式;(2)直接写出不等式组0<ax+b≤kx的解集.参考答案:1.C 【解析】 【分析】根据题目中的函数解析式和x 的取值范围,可以解答本题. 【详解】解:①反比例函数y =1x(x <0)中,k =1>0,①该函数图象在第三象限, 故选:C . 【点睛】本题考查反比例函数的图象,关键在于熟记反比例函数图象的性质. 2.C 【解析】 【分析】根据反比例函数的性质得出函数的增减性以及所在象限和经过的点的特点分别分析得出即可. 【详解】解:A ,因为133⨯=,所以图象经过点(1)3,,A 选项正确,故不选A ; B ,因为30k =>,图象在第一、三象限,B 选项正确,故不选B ;C ,因为30k =>,图象在第一、三象限,所以0x >时,y 随x 的增大而减小,C 选项错误,故选C ;D ,因为30k =>,图象在第一、三象限,所以0x <时,y 随x 的增大而减小,D 选项正确,故不选D . 故选:C . 【点睛】此题主要考查了反比例函数的性质,根据解析式确定函数的性质是解题的关键. 3.B 【解析】 【分析】根据题意和反比例函数的性质可以解答本题.①反比例函数3y -x=,①该函数图像在第二、四象限,在每个象限y 随x 的增大而增大, ①A(x 1,y 1),B(x 2,y 2)在反比例函数3y -x=的图象上,且x 1<0<x 2,①12y 0y >>, 故选B. 【点睛】本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确题意,利用反比例函数的性质解答. 4.D 【解析】 【分析】根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可. 【详解】解:①反比例函数的图象可知,m >0,故①正确;当反比例函数的图象位于一、三象限时,在每一象限内,y 随x 的增大而减小,故①错误; 将A (-1,h ),B (2,k )代入y =mx得到h=-m ,2k=m , ①m >0,①h <k ,故①正确; 将P (x ,y )代入y =m x 得到m=xy ,将P′(-x ,-y )代入y =mx得到m=xy , 若P (x ,y )在图象上,则P′(-x ,-y )也在图象上 故①正确, 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,熟练掌握反比例函数的图象和性质是解题的关键. 5.A【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,即S=12|k|,所以随着x 的逐渐增大,矩形OAPB 的面积将不变. 【详解】解:依题意有矩形OAPB 的面积=2×12|k|=3,所以随着x 的逐渐增大,矩形OAPB 的面积将不变. 故选:A . 【点睛】本题考查了反比例函数 y =kx中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|. 6.B 【解析】 【分析】根据正比例函数和反比例函数的图象逐一判断即可. 【详解】解: 观察图像①可得120,0k k >>,所以120k k >,①符合题意; 观察图像①可得120,0k k <>,所以120k k <,①不符合题意; 观察图像①可得120,0k k ><,所以120k k <,①不符合题意; 观察图像①可得120,0k k <<,所以120k k >,①符合题意; 综上,其中符合120k k ⋅>的是①①, 故答案为:B . 【点睛】本题考查的是正比例函数和反比例函数的图像,当k >0时,正比例函数和反比例函数经过一、三象限,当k <0时,正比例函数和反比例函数经过二、四象限. 7.C【分析】利用反比例函数的性质判断出m 的正负,再根据一次函数的性质即可判断. 【详解】 解:①()110a y a x x-=><,, ①a-1>0, ①()110a y a x x-=><,图象在三象限,且y 随x 的增大而减小, ①图象上有两个点(x 1,y 1),(x 2,y 2),x 1与y 1同负,x 2与y 2同负, ①m=(x 1-x 2)(y 1-y 2)<0,①y=mx-m 的图象经过一,二、四象限,不经过三象限, 故选:C . 【点睛】本题考查反比例函数的性质,一次函数的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型. 8.D 【解析】 【分析】设P (a ,0),由直线APB 与y 轴平行,得到A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x-=和y 3x =中,分别表示出A 和B 的纵坐标,进而由AP +BP 表示出AB ,三角形ABC 的面积12⨯=AB ×P 的横坐标,求出即可.【详解】解:设P (a ,0),a >0,则A 和B 的横坐标都为a ,将x =a 代入反比例函数y 6x =-中得:y 6a=-,故A (a ,6a -);将x=a代入反比例函数y3x=中得:y3a=,故B(a,3a),①AB=AP+BP639a a a+==,则S△ABC12=AB•xP19922aa=⨯⨯=,故选D.【点睛】本题主要考查反比例函数图象k的几何意义,解决本题的关键是要熟练掌握反比例函数k 的几何意义.9.0<y<2【解析】【分析】根据反比例函数的性质可以得到反比例函数y=6x,当x>3时,即可得到y的取值范围.【详解】①y=6x,6>0,①当x>0时,y随x的增大而减小,当x=3时,y=2,①当x>3时,y的取值范围是0<y<2,故答案为0<y<2【点睛】本题考查反比例函数的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.10.2【解析】【分析】根据直线y=kx与双曲线y=2x交于A,B两点,可得A、B关于原点对称,从而得到S△BOC=S△AOC,然后根据反比例函数的系数k的几何意义求出的S△BOC面积即可.【详解】①直线y=kx与双曲线y=2x交于A,B两点,①点A与点B关于原点对称,①S△BOC=S△AOC,而S△BOC=12×2=1,①S△ABC=2S△BOC=2.故答案为2.【点睛】反比例函数中比例系数k的几何意义是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.11.y2>y3>y1【解析】【分析】先根据反比例函数的解析式判断出函数图象所在的象限,再根据各点横坐标的特点进行解答即可.【详解】解:①1>0,反比例函数y=1x图象在一、三象限,并且在每一象限内y随x的增大而减小,因为-1<0,①A点在第三象限,①y1<0,①2>1>0,①B、C两点在第一象限,①y2>y3>0,①y2>y3>y1.故答案是:y2>y3>y1.【点睛】本题主要考查的是反比例函数图象上点的坐标特点,解决本题的关键是要熟练掌握反比例函数图象性质.12.a>c>b【解析】【分析】根据题意,分别求出a 、b 、c 的值,然后进行判断,即可得到答案.【详解】解:①点A 、B 、C 都在反比例函数8y x =-的图象上,则 当2x =-时,则842a =-=-; 当1x =时,则881b =-=-; 当4x =时,则824c =-=-; ①a c b >>;故答案为:a c b >>.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.13.y 1<y 3<y 2.【解析】【分析】先计算出自变量为﹣5、1、2对应的函数值,从而得到y 1,y 2,y 3的大小关系. 【详解】当x =﹣5时,y 1=﹣15(a 2+1); 当x =1时,y 2=a 2+1;当x =2时,y 3=12(a 2+1), 所以y 1<y 3<y 2.故答案为:y 1<y 3<y 2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.14.-4【解析】【详解】试题分析:由于点A是反比例函数y=kx上一点,矩形ABOC的面积S=|k|=4,则k的值为-4.考点:反比例函数15.83【解析】【分析】如下图,连接CD,由AE=3EC,①ADE的面积为32,得到①CDE的面积为12,则①ADC 的面积为2,设A点坐标为(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBAC=S△ABD+S△ADC+S△ODC即可得出ab的值进而得出结论.【详解】如下图,连CD①AE=3EC,①ADE的面积为32,①①CDE的面积为12,①①ADC的面积为2,设A点坐标为(a,b),则AB=a,OC=2AB=2a,①点D为OB的中点,①BD=OD=12b,①S梯形OBAC=S△ABD+S△ADC+S△ODC,①12(a+2a)×b=12a×12b+2+12×2a×12b,①ab=83,把A(a,b)代入双曲线y=kx得,k =ab =83. 故答案为:83. 【点睛】本题考查利用几何图形的面积求解反比例函数的解析式,解题关键是将几何图形的面积和点的坐标结合起来,然后利用待定系数法求得解析式.16.(1)12y x =(2)(9,3);13y x = (3)5 【解析】【分析】(1)直接代入A 点坐标课的k 的值,进而可得函数解析式;(2)过点A 作AC①x 轴于点C ,利用勾股定理计算出AO 的长,进而可得AB 长,然后可得B 点坐标.设OB 所在直线解析式为y=mx (m≠0)利用待定系数法可求出BO 的解析式;(3)首先联立两个函数解析式,求出P 点坐标,过点P 作PD①x 轴,延长DP 交AB 于点E ,连接AP ,再确定E 点坐标,最后求面积即可.【详解】解:()1将点()A 4,3代入()k y k 0x=≠, 得:12k =,则反比例函数解析式为:12y x =; () 2如图,过点A 作AC x ⊥轴于点C ,则OC 4=、AC 3=,22OA 435∴=+=,AB//x 轴,且AB OA 5==,∴点B的坐标为()9,3;设OB所在直线解析式为()y mx m0=≠,将点()B9,3代入得13=m,OB∴所在直线解析式为1y x3=;()3联立解析式:1y x312yx⎧=⎪⎪⎨⎪=⎪⎩,解得:x6,y2=⎧⎨=⎩可得点P坐标为()6,2,过点P作PD x⊥轴,延长DP交AB于点E,连接AP,则点E坐标为()6,3,AE2∴=,PE1=,PD2=,则OAP的面积()11126362215222=⨯+⨯-⨯⨯-⨯⨯=.【点睛】此题主要考查了待定系数法求反比例函数和正比例函数解析式,关键是掌握凡是函数图象经过的点,必能满足解析式.17.(1)3k=,B(3,1);(2)1x3<<或x0<;(3)C(33--,)【解析】【分析】(1)分别把()1,3A代入一次函数与反比例函数,可得,k b的值,联立两个解析式,解方程组可得B的坐标;(2)由k x<x b -+,则反比例函数值小于一次函数值,所以反比例函数的图像在一次函数的图像的下方,从而可得答案;(3)由,CA CB = 则C 在AB 的垂直平分线上,利用直线AB 与坐标轴构成的三角形是等腰直角三角形,证明AB 的垂直平分线经过原点,再求解垂直平分线的解析式,联立两个解析式解方程组即可得到答案.【详解】解:(1)把()1,3A 代入y x b =-+,13,b ∴-+=4,b ∴=所以:一次函数为:4,y x =-+把()1,3A 代入k y x=, 133,k ∴=⨯= 3,y x∴= 3,4y x y x ⎧=⎪∴⎨⎪=-+⎩ 34,x x∴=-+ 2430,x x ∴-+=121,3,x x ∴== 把11x =代入4,y x =-+13,y ∴=把23x =代入4,y x =-+21,y ∴=121213,,31x x y y ==⎧⎧∴⎨⎨==⎩⎩ 经检验:方程的解符合题意,()3,1.B ∴(2)由kx<x b-+,则反比例函数值小于一次函数值,所以反比例函数的图像在一次函数的图像的下方,结合图像可得:1x3<<或0x<.(3),CA CB=C∴在AB的垂直平分线上,记AB的中点为D,()()1,3,3,1,A B∴()2,2,D∴记AB与,x y轴的交点分别为,F EAB为4,y x=-+()()4,0,0,4,F E∴4,OE OF∴==OD∴为AB的垂直平分线,设OD为,y mx=把()2,2D代入:22,m=1,m∴=AB∴的垂直平分线为:,y x=,3y xyx=⎧⎪∴⎨=⎪⎩解得:121233,,33x x y y ⎧⎧==-⎪⎪⎨⎨==-⎪⎪⎩⎩ 经检验:方程的解符合题意,C 在第三象限,()3,3.C ∴--【点睛】本题考查的是利用待定系数法求解一次函数与反比例函数中的字母参数,同时考查利用图像判断一次函数值与反比例函数值的大小,还考查线段的垂直平分线的性质,函数的交点坐标问题,一元二次方程的解法,掌握以上知识是解题的关键.18.①(4,32);①k=12 【解析】【分析】①根据点D 是OA 的中点即可求出D 点坐标,再将D 的坐标代入解析式求出解析式,从而得到C 的坐标;①连接OC, 设A(a,b),先用代数式表示出三角形OAB,OBC,OCD 的面积,再根据条件列出方程求k 的值即可.【详解】解:①①D 是OA 的中点,点A 的坐标为(4,6),①D (42,62),即(2,3) ①k=2×3=6①解析式为6y x= ①A 的坐标为(4,6),AB①x 轴①把x=4代入6y x=得y=32 ①C 的坐标为(4,32) ①连接OC,设A(a,b),则D(2a , 2b ) 可得k=4ab ,ab=4k ①解析式为4ab y x= ①B(a,0),C(a, 4b ) ①11222OAB SOB AB ab k === 1122OBC S OB BC k =•= 11()22OCD OAC OAB OBC S S S S ∴==- ①11(2)922k k -= 解得:k=12【点睛】本题考查了一次函数的性质,要正确理解参数k 的几何意义,能用代数式表达三角形OCD 的面积是解题的关键.19.(1)y =-x +2;(2)6【解析】【分析】(1)把点A 的横坐标代入8y x=-,可得4y =,即可求出A 点的坐标,把B 点的纵坐标代入8y x=-,可得4x =,即可求出B 点的坐标,把A B 、两点的坐标代入一次函数的解析式即可求解;(2)首先求出直线AB 与x 轴的交点坐标M ,然后根据AOB AOM BOM S S S ∆∆∆=+进行求解即可;【详解】解:(1)把2A x =-代入8y x=-中,得4A y = ① 点()2,4A -把2B y =-代入8y x=-中,得4B x = ① 点()4,2B -把AB 、两点的坐标代入y kx b =+中,得 42,24.k b k b ⎧⎨-⎩=-+=+ 解得1,2.k b ⎧⎨⎩=-= ① 所求一次函数的解析式为2y x =-+(2)当0y =时,2x =, ①2y x =-+与x 轴的交点为()2,0M ,即2OM =①AOB AOM BOM S S S ∆∆∆=+ B A y OM y OM ⋅⋅⋅⋅2121+=11242222⨯⨯⨯⨯=+=6【点睛】本题主要考查反比例函数与一次函数的综合,熟练掌握一次函数的解析式求法以及图中的面积求法是求解本题的关键.20.(1)反比例函数关系式为y =6x,一次函数函数关系式为y =x-1;(2)1<x ≤3 【解析】【分析】①根据等腰三角形的性质求出A,C 点的坐标,即可求出反比例和一次函数关系式 ①观察图像即可找出x 的解集【详解】解:(1)①∆ABC 是等腰直角三角形且点B 的坐标为(1,2)①AB =BC =2①点C 的坐标为(3,2),点A 的坐标为(1,0)把点C 的坐标代入y =k x,解得k =6 ①反比例函数关系式为y =6x 把点C(3,2),点A(1,0)代入一次函数y=ax+b320a b a b +=⎧⎨+=⎩解得11a b =⎧⎨=-⎩①一次函数函数关系式为y =x-1(2)由函数图像及A ,C 两点坐标可得不等式组的解集为:1<x ≤3【点睛】本题解题的关键是根据等腰直角三角形的性质求出A,C 点的坐标,写x 的范围时可以先用笔画出符合要求的线段不易出错。
反比例函数的图像及性质

(C)y=-2x+2; (D)y=4x.
2
x
C
8、如图是三个反比例函数在x轴上方的图像, 由此观察得到( ) A k1>k2>k3 B k3>k2>k1 C k2>k1>k3 D k3>k1>k2
x
y
0
x
y
0
x
y
0
x
y
0
(A)
(B)
(C)
(D)
D
O
x
y
A
C
O
x
y
D
x
y
o
O
x
y
B
D
.
____
)
0
k(Leabharlann xky)
x
1
(
k
y
.
4
图象的是
在同一坐标系中的大致
和
如图能表示
¹
=
-
=
5.若 ,则函数 与 在同一平面直角坐标系中的图象大致是( )
k
x
. 如图所示,已知直线y1=x+m与x轴、y轴分别交于点A、B,与双曲线y2= (k<0)分别交于点C、D,且C点坐标为(-1,2).
(2)D(-2,1)利用图象直接写出当x在什么范围内取何值时,y1>y2.
(1)分别求直线AB与双曲线的解析式;
反比例函数的图像与性质(必考)

命题点7 反比例函数的图象与性质(必考)
2022版课标要求能画反比例函数的图象,根据图象和表达式 探索并理解 和 时图象的变化情况.
1. 反比例函数的定义:一般地,形如 <m></m> ( <m></m> 为常数, <m></m> )的函数叫作反比例函数,自变量 <m></m> 的取值范围是______.点拨:反比例函数图象上点的坐标特征为:横、纵坐标之积为定值.
或 Βιβλιοθήκη 1.(人教九下P21第5题)已知在反比例函数 的图象的每一支上, 都随 的增大而增大.
(1) <m></m> 的取值范围为_______;
(2)该反比例函数的图象位于第________象限;
二、四
(3)若点 <m></m> , <m></m> 为图象上的两点,则 <m></m> ___;
(4)若该函数图象经过点 <m></m> , <m></m> ,且 <m></m> ,则比较 <m></m> , <m></m> 的大小为________;
(5)若该函数图象经过点 <m></m> , <m></m> ,且 <m></m> ,则比较 <m></m> , <m></m> 的大小为________;
(6)若 <m></m> ,已知点 <m></m> , <m></m> , <m></m> 在该反比例函数的图象上,则 <m></m> , <m></m> , <m></m> 的大小关系是_____________.
反比例函数的图象与性质综合问题(真题6道+模拟30道)-中考数学重难题型押题培优导练案【原卷版】

专题12反比例函数的图象与性质综合问题(北京真题6道+模拟30道)【方法归纳】题型概述,方法小结,有的放矢考点考查年份考查频率反比例函数(大题)2011.2012.2014.2017.2018 12年5考1.反比例函数的图象及性质(1)双曲线kyx=与坐标轴没有交点,当k>0时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当k<0时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(2)对称性图象关于原点对称,即若(a,b)在双曲线的一支上,则(-a,-b)在双曲线的另一支上.图象关于直线y=±x对称,即若(a,b)在双曲线的一支上,则(b,a)和(-b,-a)在双曲线的另一支上.(3)k的几何意义如图1,设点P(a,b)是双曲线kyx=上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是|k|(三角形PAO和三角形PBO的面积都是12|k|).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为2|k|.图1 图22.反比例函数的应用(1)利用反比例函数解决实际问题①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.(4)数形结合类综合题利用图象解决问题,从图上获取有用的信息,是解题的关键所在.已知点在图象上,那么点一定满足这个函数解析式,反过来如果这点满足函数的解析式,那么这个点也一定在函数图象上.还能利用图象直接比较函数值或是自变量的大小.将数形结合在一起,是分析解决问题的一种好方法.【典例剖析】典例精讲,方法提炼,精准提分(x>0)的图象与直线y=x−2【例1】(2017·北京·中考真题)如图,在平面直角坐标系xOy中,函数y=kx交于点A(3,m).(1)求k、m的值;(2)已知点P(n,n)(n>0),过点P作平行于x轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,(x>0)的图象于点N.交函数y=kx①当n=1时,判断线段PM与PN的数量关系,并说明理由;①若PN≥PM,结合函数的图象,直接写出n的取值范围.【例2】(2018·北京·中考真题)在平面直角坐标系xOy中,函数y=k(x>0)的图象G经过点A(4,1),xx+b与图象G交于点B,与y轴交于点C.直线l∶y=14(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.记图象G在点A,B之间的部分与线段OA,OC,BC围成的区域(不含边界)为W.①当b=−1时,直接写出区域W内的整点个数;①若区域W内恰有4个整点,结合函数图象,求b的取值范围.【真题再现】必刷真题,关注素养,把握核心1.(2011·北京·中考真题)如图,已知反比例函数y1=k1x(k1>0)与一次函数y2=k2x+1(k2≠0)相交于A、B两点,AC①x轴于点C. 若①OAC的面积为1,且tan①AOC=2 .(1)求出反比例函数与一次函数的解析式;(2)请直接写出B点的坐标,并指出当x为何值时,反比例函数y1的值大于一次函数y2的值.2.(2012·北京·中考真题)如图,在平面直角坐标系xoy中,函数y=4x(x>0)的图象与一次函数y=kx-k 的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若P是x轴上一点,且满足①PAB的面积是4,直接写出点P的坐标.3.(2011·北京·中考真题)如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=kx的图象的一个交点为A(﹣1,n).(1)求反比例函数y=k的解析式;x(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.4.(2014·北京·中考真题)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足−M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,下图中的函数是有界函数,其边界值是1.(x>0)和y=x+1(−4<x≤2)是不是有界函数?若是有界函数,求其边界值;(1)分别判断函数y=1x(2)若函数y=−x+1(a⩽x⩽b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;(3)将函数y=x2(−1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么≤t≤1范围时,满足34【模拟精练】押题必刷,巅峰冲刺,提分培优1.(2022·北京市广渠门中学模拟预测)在平面直角坐标系xOy中,一次函数y=k(x−1)+4(k>0)的图象与反比(m≠0)的图象的一个交点的横坐标为1.例函数y=mx(1)求这个反比例函数的解析式;(2)当x<−4时,对于x的每一个值,反比例函数y=m的值大于一次函数y=k(x−1)+4(k>0)的值,直接x写出k的取值范围.2.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交于点(4,0),且与反比例函数y=m的图象在第四象限的交点为(n,−1).x(1)求b,m的值;<y p<4,连接OP,结合函数图象,直(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足m xp接写出OP长的取值范围.(k≠0)与一次函数y2=ax+4(a≠0) 3.(2022·北京·二模)图,在平面直角坐标系xOy中,反比例函数y1=kx的图像只有一个公共点A(2,2),直线y3=mx(m≠0)也过点A.(1)求k、a及m的值;(2)结合图像,写出y1>y2>y3时x的取值范围.(k≠0)经过点A(2,−1),直线l:4.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=kxy=−2x+b经过点B(2,−2).(1)求k,b的值;(k≠0)交于点C,与直线l交于点D.(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=kx①当n=2时,判断CD与CP的数量关系;①当CD≤CP时,结合图象,直接写出n的取值范围.(x>0)的图象交5.(2022·北京顺义·二模)在平面直角坐标系xOy中,直线l:y=kx−k+4与函数y=mx于点A(1,4).(1)求m的值;(x>0)的图象所围成的区域(不含边界)为W.点(2)横、纵坐标都是整数的点叫做整点.记直线l与函数y=mxB(n,1)(n≥4,n为整数)在直线l上.①当n=5时,求k的值,并写出区域W内的整点个数;①当区域W内恰有5个整点时,直接写出n和k的值.6.(2022·北京市十一学校模拟预测)在平面直角坐标系xOy中,直线l1:y=−x+b与双曲线G:y=−12的x一个交点为A(−3,n).(1)求n和b的值;(2)若直线l2:y=kx(k≠0)与双曲线G:y=−12有两个公共点,它们的横坐标分别为x1,x2(x1<x2).直线xl1与直线l2的交点横坐标记为x3,若x1<x3<x2,请结合函数图象,求k的取值范围.7.(2022·北京海淀·二模)在平面直角坐标系xOy中,一次函数y=k(x−1)+6(k>0)的图象与反比例函数y=mx(m≠0)的图象的一个交点的横坐标为1.(1)求这个反比例函数的解析式;(2)当x<﹣3时,对于x的每一个值,反比例函数y=mx的值大于一次函数y=k(x−1)+6(k>0)的值,直接写出k的取值范围.8.(2022·北京东城·一模)在平面直角坐标系xOy中,一次函数y=x−2的图象与x轴交于点A,与反比例函数y=kx (k≠0)的图象交于点B(3,m),点P为反比例函数y=kx(k≠0)的图象上一点.(1)求m,k的值;(2)连接OP,AP.当S△OAP=2时,求点P的坐标.9.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函数y=mx.(1)当函数y=mx的图象经过点Q时,求m的值并画出直线y=-x-m.(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.10.(2022·北京师大附中模拟预测)如图,一次函数y=-2x-2的图象分别交x轴、y轴于点B、A,与反比例函数y=mx(m≠0)的图象在第二象限交于点M,①OBM的面积是1.(1)求反比例函数的解析式;(2)若x轴上的点P与点A,M是以AM为直角边的直角三角形的三个顶点,求点P的坐标.11.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=k的图象上,求m的值;x(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;①当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.(k≠0)的两个交点分别为12.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=kxA(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(k≠0)于点Q.当点Q位于点P的左侧时,(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=kx求点P的纵坐标n的取值范围.13.(2022·北京市第一六一中学分校一模)如图,在平面直角坐标系中,A(a,2)是直线l:y=x−1与函数(x>0)的图像G的交点.y=kx(1)①求a的值;(x>0)的解析式.①求函数y=kx(2)过点P(n,0)(n>0)且垂直于x轴的直线与直线l和图像G的交点分别为M,N,当S△OPM>S△OPN时,直接写出n的取值范围.(k>0)的图象交于A,B 14.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=kx两点.(1)当点A的坐标为(2,1)时.①求m,k的值;①当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值15.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线y=mx交于点Ax(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交函数y=k(xx>0)的图象于点N.①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;①若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.16.(2022·北京·模拟预测)如图,在平面直角坐标系xOy中,直线l:y=x﹣1的图象与反比例函数y=k(xx>0)的图象交于点A(3,m).(1)求m、k的值;(2)点P(xp,0)是x轴上的一点,过点P作x轴的垂线,交直线l于点M,交反比例函数y=k(x>0)的x(x>0)的图象在点A,N之间的部分与线段AM,图象于点N.横、纵坐标都是整数的点叫做整点.记y=kxMN围成的区域(不含边界)为W.①当xp=5时,直接写出区域W内的整点的坐标为_____;①若区域W内恰有6个整点,结合函数图象,求出xp的取值范围.−3的图象与性质.小17.(2022·北京·中国人民大学附属中学分校一模)有这样一个问题:探究函数y=2x−1−3的图象与性质进行了探究.下面是小亮的探究过程,请补充完亮根据学习函数的经验,对函数y=2x−1整:(1)函数y=2x−1−3中自变量x的取值范围是;(2)表格是y与x的几组对应值.x…−3−2−1012322345…y…−72−113−4−5−7m−1−2−73−52…直接写出m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:①该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线越来越靠近而永不相交.①请再写出此函数的一条性质:.(5)已知不等式kx+b<2x−1−3的解集为1<x<2或x>4,则k+b的值为.18.(2020·北京·模拟预测)如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,4),双曲线y=kx(x>0)的图象经过BC的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是边OC上一点,当△FBC~△DEB时,求直线FB的解析式.19.(2022·北京四中模拟预测)在平面直角坐标系xOy中,直线l1:y=x+b与双曲线G:y=2x的一个交点为A(2,n).(1)求n和b的值;(2)若直线l2:y=kx(k≠0)与双曲线G:y=2x有两个公共点,它们的横坐标分别为x1,x2(x1<x2),直线l1与直线l2的交点横坐标为x3,若x1<x3<x2,请结合函数图象,求k的取值范围.20.(2022·北京朝阳·模拟预测)已知:一次函数y1=x﹣2﹣k与反比例函数y2=−2k(k≠0).x(1)当k=1时,①求出两个函数图象的交点坐标;①根据图象回答:x取何值时,y1<y2;(2)请说明:当k取任何不为0的值时,两个函数图象总有交点;(3)若两个函数图象有两个不同的交点A、B,且AB=5√2,求k值.21.(2022·北京·北理工附中模拟预测)在平面直角坐标系xOy中已知双曲线y=k过点A(1,1),与直线yx=4x交于B,C两点(点B的横坐标小于点C的横坐标).(1)求k的值;(2)求点B,C的坐标;(3)若直线x=t与双曲线y=k,交于点D(t,y1),与直线y=4x交于点E(t,y2).当y1<y2时,直接写出tx的取值范围.22.(2022·北京朝阳·模拟预测)如图,一次函数y=kx+b的图象交反比例函数y=m的图象于A(2,−4),xB(a,−1)两点.(1)求反比例函数与一次函数解析式.(2)连接OA,OB,求ΔOAB的面积.(3)根据图象直接回答:当x为何值时,一次函数的值大于反比例函数的值?23.(2022·北京·二模)一次函数y=kx+b(k≠0)的图像与反比例函数y=m的图象相交于A(2,3),B(6,n)x两点(1)求一次函数的解析式(2)将直线AB沿y轴向下平移8个单位后得到直线l,l与两坐标轴分别相交于M,N,与反比例函数的图象相交于点P,Q,求PQ的值MN24.(2022·北京·模拟预测)如图,在平面直角坐标系xOy中,直线y=kx+b(k≠0)经过点A(0,-1)和点B(3,2).(1)求直线y=kx+b(k≠0)的表达式;(m≠0).(2)已知双曲线y=mx(m≠0)经过点B时,求m的值;①当双曲线y=mx①若当x>3时,总有kx+b>m直接写出m的取值范围.x(x>0)的图象上.25.(2021·北京·二模)如图,A、B两点在函数y=mx(1)求m的值及直线AB的解析式;(x>0)的图象(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出函数y=mx与直线AB围出的封闭图形中(不包括边界)所含格点的坐标.26.(2021·北京朝阳·二模)在平面直角坐标系xOy中,过点A(2,2)作x轴,y轴的垂线,与反比例函数y=k(k<4)的图象分别交于点B,C,直线AB与x轴相交于点D.x(1)当k=−4时,求线段AC,BD的长;(2)当AC<2BD时,直接写出k的取值范围.27.(2021·北京顺义·二模)在平面直角坐标系xOy中,反比例函数y=m与一次函数y=kx+b相交于A(3,x2)、B(-2,n)两点.(1)求反比例函数和一次函数的表达式;交于点C,与一次函数y=kx+b交于(2)过P(p,0)(P≠0)作垂直于x轴的直线,与反比例函数y=mx点D,若SΔCOP=3SΔDOP,直接写出p的值.28.(2021·北京门头沟·二模)在平面直角坐标系xOy中,反比例函数y=k的图象过点P(2 , 2 ).x(1)求k的值;(x > 0)的图象交于点N,过点M作x轴(2)一次函数y=x+a与y轴相交于点M,与反比例函数y=kx≤S△MNQ≤2时,通过画图,直接写出a的取的平行线,过点N作y轴的平行线,两平行线相交于点Q,当12值范围.(m≠0)的29.(2021·北京丰台·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与反比例函数y=mx图象交于点A(−1,n),B(2,−1)两点.(1)求m,n的值;(m≠0)(2)已知点P(a,0)(a>0),过点P作x轴的垂线,分别交直线y=kx+b(k≠0)和反比例函数y=mx的图象于点M,N,若线段MN的长随a的增大而增大,直接写出a的取值范围.(x>0)的30.(2021·北京西城·二模)在平面直角坐标系xOy中,直线l:y=kx−k+2(k>0),函数y=2kx图象为F.(x>0)的图象F上,求直线l对应的函数解析式:(1)若A(2,1)在函数y=2kx(2)横、纵坐标都是整数的点叫做整点.记直线l:y=kx−k+2(k>0),图象F和直线y=1围成的区域2(不含边界)为图形G.①在(1)的条件下,写出图形G内的整点的坐标;①若图形G内有三个整点,直接写出k的取值范围.。
反比例函数的图像与性质习题

5.(2013•安徽模拟)如图,Rt△ABC 的斜边 AC 的两个顶点在反比例函数 y= k1 的图象上,
x
点 B 在反比例函数 y= k2 的图象上,AB 与 x 轴平行,BC=2,点 A 的坐标为(1,3).
x
(1)求 C 点的坐标;
(2)求点 B 所在函数图象的解析式.
6.(2010•房山区二模)在平面直角坐标系 xOy 中,反比例函数 y= k 的图象与 y= 3 的图象
4 3.(2013•香洲区二模)如图是双曲线 y1、y2 在第一象限的图象,y1= ,过 y1 上的任意一点 A,作 x 轴的平
x
行线交 y2 于 B,交 y 轴于 C,若 S△AOB=1,求双曲线 y2 的解析式.
k
2.(2009•宁德)如图,已知点 A、B 在双曲线 y= (x>0)上,AC⊥x 轴于点 C,BD⊥y 轴于点 D,AC 与
的图象如图所示,点 A(-1,b1),B(-
x
2,b2)是该图象上的两点.
(Ⅰ)求 m 的取值范围;
(Ⅱ)比较 b1 与 b2 的大小;
(Ⅲ)若点 C(3,1)在该反比例函数图象上,求此反比例函数的解析式;
(Ⅳ)若 P 为第一象限上的一点,作 PH⊥x 轴于点 H,求△OPH 的面积(用含 m 的式子表示)
x
9.如图是反比例函数 y= 5 2m 的图象的一支.根据图象回答下列问题:
x
(1)图象的另一支在哪个象限?常数 m 的取值范围是什么? (2)若点 A(m-3,b1)和点 B(m-4,b2)是该反比例函数图象上的两点,请你判断 b1 与 b2 的 大小关系,并说明理由.
10.如图是三个反比例函数 y= k1 ,y= k2 ,y= k3 在 x 轴上方的图象,由此观察得到
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数的图像和性质练习题
一、选择题
1.下列函数中,y 与x 成反比例函数是( )
A 、 1)1(=-y x
B 、 11+=x y
C 、 21x y =
D 、 x y 31= 2.反比例函数x
k y 2-=的图象两支分布在第二、四象限,则k 取值范围为( ) A .k <2 B .k>2 C .2≠k D . 0≠k
3.如果双曲线y=k x
经过点(-2,3),那么此双曲线也经过点( ) A .(-2,-3) B .(3,2) C .(3,-2) D .(-3,-2)
4.下列函数中,当x>0时,y 随x 的增大而减小的是( )
A .y=3x+4
B .y=13x-2
C .y=-4x
D .y=12x
5.如果y 是n的反比例函数,n是x 的反比例函数,那么y 是x 的( )
A .反比例函数
B .正比例函数
C .一次函数
D .反比例或正比例
6.如图,某个反比例函数的图象经过点P ,则它的解析式为( )
A .y=
1x (x>0) B .y=-1x (x>0) C .y=1x (x<0) D .y=-1x
(x<0) 7.一次函数1+-=kx y 与反比例函数x k y =在同一坐标系中的图像大致是( ) (第6题图) (第7题图)
8.面积为2的△ABC,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示大致是( )
(第8题图) (第9题图)
9、已知一次函数y 1=kx+b 与反比例函数y 2=
在同一直角坐标系中的图象如图所示,
1-1y
x P
O (1,4)y
x A O 32y x B O (1,4)y x C O 44
y x
D O
则当y 1<y 2时,x 的取值范围是( )
A .x <﹣1或0<x <3
B .﹣1<x <0或x >3
C .﹣1<x <0
D .x >3
10、如图,点P 是x 轴正半轴上一个动点,过点P 作x 轴的垂线PQ 交双曲线y =于
点Q ,连结OQ ,点P 沿x 轴正方向运动时,Rt △QOP 的面积( ).
A 、逐渐增大
B 、逐渐减小
C 、保持不变
D 、无法确定
(第10题图) (第11题图) (第12题图)
11、如图,直线l 和双曲线(0)k y k x
=>交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、0P ,设△AOC 的面积为S 1、△BOD 的面积为S 2、△POE 的面积为S 3,则( )
A 、S 1<S 2<S 3
B 、S 1>S 2>S 3
C 、S 1=S 2>S 3
D 、S 1=S 2<S 3
12、如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数
x
y x y 24=-=和的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )A .3 B .4 C .5 D .6
二、填空题
13.如果一个反比例函数y=k x
的图象经过点(2,-1),那么它的解析式为 . Q
p x y
o
14.反比例函数y=
x k 2008-图像的每一条曲线上,y 随x 的增大而减小,k 取值范围 。
15.已知反比例函数的图象经过(3,4)和(-2,n)两点,则n=_________。
16.如果双曲线y=k x
在第一、三象限,则直线y=kx+1不经过________象限. 17.已知函数32-k -=k x
y )((k 为整数),当k 为_________时,y 是x 的反比例
函数. 18.当x>0时,反比例函数x
y 3-
=随x 的增大而 ,图象在第_______象限. 19、如图,点A 是反比例函数`4x y =图象上一点,AB ⊥y 轴于点B , 那么△AOB 的面积是 。
20、在同一直角坐标平面内,若直线1y x k =与双曲线2k y x
=有
交点,那么1k .2k 的取值范围是 。
三、解答题:
21、.已知y-2与x+3成反比例,并且当x=2时y=4.
(1)求y和x之间的函数关系式;(2)求当x=-2时y的值
22、如图所示,直线l 1的方程为y =-x +l ,直线l 2的方程为y =x +5,且两直线相交
于点P ,过点P 的双曲线k y x
=与直线l 1的另一交点为Q (3,M ).
(1)求双曲线的解析式.(2)根据图象直接写出不等式k
>-x+l的解集.
x
23.某气球内充满了一定质量的气球,当温度不变时,气球内气球的压力p(千帕)是气球的体积V(米2)的反比例函数,其图象如图所示(千帕是一种压强单
位)
(1)写出这个函数的解析式;
(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?
(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?
24、如图, 已知反比例函数y =x
k 的图象与一次函数y =a x +b 的图象交于M (2,m )和N (-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON 的面积;
(3)请判断点P (4,1)是否在这个反比例函数的图象上,
并说明理由.。