方案题不等式

合集下载

不等式方案问题

不等式方案问题

不等式方案问题引言不等式方案问题是数学中的一个重要概念,常常涉及到解决实际问题中的不等式方程,如经济增长模型、最优化问题等。

本文将介绍不等式方案问题的定义、解法以及应用。

一、不等式方案问题的定义不等式方案问题是指在满足一定条件下,求解不等式方程的解集合。

通常以形如 $f(x) \\geq 0$ 或 $f(x) \\leq 0$ 的形式存在,其中f(x)可以是一个复杂的数学表达式。

不等式方程的解集合往往表示了满足某种条件的变量的取值范围。

二、不等式方案问题的解法解决不等式方程的关键是确定变量的取值范围。

常用的解法包括如下几种:1. 图像法可以通过绘制函数的图像来直观地找出不等式的解集合。

只需将不等式转化为f(x)=0的形式,然后绘制f(x)的图像,通过观察图像的上升和下降趋势以及零点的位置,可以快速确定不等式的解集合。

2. 代数法代数法是通过代数运算来求解不等式方程。

可以利用常用的不等式性质和数学运算法则,对不等式进行变形,从而得到使不等式成立的取值范围。

3. 数学推导法数学推导法是通过对不等式的推理与证明来解决问题。

利用数学推导的方法,可以得到不等式解集的精确形式,更准确地描述变量的取值范围。

三、不等式方案问题的应用不等式方程是数学建模和应用题中常见的问题形式。

在实际应用中,不等式方程的解集合往往表示了变量的可行解范围,对于解决一些实际问题具有重要意义。

1. 经济增长模型经济增长模型是一个涉及到不等式方程的经济学模型。

通过研究经济增长过程中的供需关系、生产要素的合理配置等问题,可以建立相应的不等式方程来描述经济增长的可行解范围。

2. 最优化问题最优化问题是指在满足一定约束条件下,寻找使目标函数取得最大或最小值的变量取值。

在解决最优化问题时,往往需要建立约束条件的不等式方程,并通过求解不等式方程的解集合来确定问题的最优解。

3. 工程设计工程设计中,不等式方程常常用于描述资源的分配、系统约束等问题。

不等式中的方案设计问题

不等式中的方案设计问题
’ r
’,
( ) 该 超 市 同 时 一 次 购 进 甲 、 两 种 商 品共 1若 乙 8 件 , 好 用 去 10 元 , : 购 进 甲 、 O 恰 60 求 能 乙两 种 商 品
各多少件?
() 超市为使 甲 、 2该 乙两 种 商 品 共 8 元 的 总 利 O 润 ( 润 : 价 一 价 ) 少 于 6 0 , 又 不 超 过 利 售 进 不 0元 但 6 0 , 你 帮 助 该 超 市 设计 相 应 的进 货 方 案. 1元 请
物 全 部 运走 , 中每 辆 甲 型汽 车 最 多 能 装该 种 货 其 物 1 吨 ,每 辆 乙型 汽 车 最 多 能 装 该 种 货 物 1 吨. 6 8
已 知租 用 1 甲型 汽 车 和2 乙 型 汽 车 共 需 费 用 辆 辆 2 0 元 ; 用2 甲型 汽车 和 1 乙 型汽 车 共 需 费 50 租 辆 辆 用 2 5 元 ,且 同 一 种 型 号 汽 车 每 辆 租 车 费 用 相 40
1 .购 票 的 方 案 设计
例 1 2 0 年 8 ,北 京 奥 运会 帆 船 比赛 将 在 青 岛 国 际帆 船 08 月 中心 举 行.观 看 帆 船 比赛 的船 票 分 为 两 种 : A种船 票 6 0 张 , 0 元/ 曰
种 船 票 1 0 / . 旅 行 社 要 为 一 个 旅 行 团 代 购 部 分 船 票 , 购 2元 张 某 在
同.

第 二 种 方 案 的 票 费 为 : x 0 10 9 4 8 6 6 0+ 2 x = 6 0
( ) 元 ;
所 以 , 一 种 方 案更 合 算 . 第 2 .进 货 的 方 案 设计 例2 某 超 市 销 售 有 甲 、 两种 商 品 , 乙 甲商 品每 件进价l元 , 价1元 ; 0 售 5 乙商 品 每件 进 价 3 元 , 价 O 售

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册方程组与不等式组解决《方案选择》应用题含答案

七年级下册不等式组《方案选择》专题1、为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A 和B 两类学校进行改扩建,根据预算,改扩建2所A 类学校和3所B 类学校共需资金7800万元,改扩建3所A 类学校和1所B 类学校共需资金5400万元。

(1)改扩建1所A 类学校和1所B 类学校所需资金分别是多少万元?(2)该县计划改扩建A 、B 两类学校共10所,改扩建资金由国家财政和地方财政共同承担。

规定若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A 、B 两类学校的改扩建资金分别为每所300万元和500万元。

请问共有哪几种改扩建方案?解:(1)设改扩建1所A 类学校需资金x 万元,改扩建1所B 类学校需资金y 万元则依题意可得⎩⎨⎧=+=+54003780032y x y x∴⎩⎨⎧==18001200y x ∴改扩建1所A 类学校需资金1200万元,改扩建1所B 类学校需资金1800万元 (2)设改扩建A 类学校m 所,则改扩建B 类学校(10-m )所依题意可得:()()()()⎩⎨⎧≥-+≤--+-400010500300118001050018003001200m m m m∴⎩⎨⎧≥-+≤-+4000500500030011800130013000900m m m m ∴⎩⎨⎧≤≥53m m∴53≤≤m ∵m 是正整数 ∴m=3或4或5 即共有3种方案方案一:改扩建A 类学校3所,B 类学校7所 方案二:改扩建A 类学校4所,B 类学校6所 方案三:改扩建A 类学校5所,B 类学校5所2、某房地产开发公司计划建A、B两种户型的住房共80套。

该公司所筹资金不少于2090万元,但不超过2096万元。

且所筹资金全部用于建房,两种户型的建房成本和售价如下表(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a 万元(a>0),且所建的两种住房可全部售出,该公司如何建房获得利润最大?解:(1)设A种户型的住房建x套,则B种户型的住房建(80-x)套根据题意,得()()⎩⎨⎧≤-+≥-+20968028252090802825xxxx,解得48≤x≤50∵x取非负整数,∴x为48,49,50(2由题意知:W=5x+6(80-x)=480-x∵k=-1,W随x的增大而减小∴当x=48时,即A型住房建48套,B型住房建32套获得利润最大(3)根据题意,得W=5x+(6-a)(80-x)=(a-1)x+480-80a∴当0<a<l时,x=48,W最大,即A型住房建48套,B型住房建32套当a=l时,a-1=0,三种建房方案获得利润相等当1<a<6时,x=50,W最大,即A型住房建50套,B型住房建30套3、某班到毕业时共结余经费1800元,班委会决定拿出不少于270元但不超过300元的资金为老师购买纪念品,其余资金用于在毕业晚会上给50位同学每人购买一件文化衫或一本相册作为纪念.已知每件文化衫比每本相册贵9元,用200元恰好可以买到2件文件衫和5本相册。

一元一次不等式的方案问题解题思路

一元一次不等式的方案问题解题思路

一元一次不等式的方案问题解题思路在数学学习中,不等式是一个重要的知识点。

而在不等式中,一元一次不等式也占有着举足轻重的地位,因为它不但对于初学者来说比较容易掌握,而且在实际生活中也有着广泛的应用。

本文将介绍如何解决一元一次不等式的方案问题,希望能够帮助大家更好地理解和应用这一知识点。

一、什么是一元一次不等式的方案问题在学习一元一次不等式时,我们会遇到方案问题,这是指询问满足某个不等式的变量范围。

例如,我们需要确定不等式 $3x+5>7$ 的解集,即 $x$ 的取值范围。

解决这类问题需要掌握一些基本的解题方法。

二、简单不等式的解法对于一元一次不等式,我们可以通过移项的方式将其转化为简单的形式,进而得到解的范围。

例如:$$3x+5>7$$将等式两边减去 $5$,得到:$$3x>2$$再将等式两边除以 $3$,得到:$$x>\frac{2}{3}$$因此,不等式 $3x+5>7$ 的解集为 $x>\frac{2}{3}$。

三、变式不等式的解法对于一些变式不等式,我们可以通过构造等价不等式的方法,将其转化为简单的形式。

例如:$$\frac{2x-3}{5-x}>0$$我们将其改写为$$(2x-3)(5-x)>0$$根据零点定理,不等式 $(2x-3)(5-x)>0$ 的解集为 $x<\frac{3}{2}$ 或 $x>5$。

注意到原不等式中的分母为$5-x$,而$x=5$ 会使$5-x=0$,从而分母无意义。

因此,不等式 $\frac{2x-3}{5-x}>0$ 的解集为 $x<\frac{3}{2}$ 或 $x>5$,即 $x$ 属于区间$(-\infty,\frac{3}{2})\cup(5,\infty)$。

四、绝对值不等式的解法对于绝对值不等式,我们可以将其变形为复合不等式,然后利用复合不等式的求解方法得到其解集。

不等式(组)应用题(最优方案)(北师版)(含答案)

不等式(组)应用题(最优方案)(北师版)(含答案)

不等式(组)应用题(最优方案)(北师版)一、单选题(共7道,每道14分)1.为改善城市生态环境,实现城市生活垃圾减量化、资源化、无害化的目标,某市决定从3月1日起,在全市部分社区试点实施生活垃圾分类处理.某街道计划建造垃圾初级处理点20个,解决垃圾投放问题.A,B两种类型处理点的占地面积、可供居民使用幢数及造价见下表:已知可供建造垃圾初级处理点占地面积不超过,该街道共有490幢居民楼.设建造A类型处理点x个.(1)满足条件的建造方案共有几种?根据题意,所列方程(组)或不等式(组)正确的是( ) A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:不等式(组)应用题2.(上接第1题)(2)设建造垃圾处理点的总费用为w万元,则w与x之间的函数关系式为__________;当x=________时,费用最少.横线处依次所填正确的是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:一次函数的增减性3.2011年11月6日下午,广西第一条高速铁路-南宁至钦州铁路扩能改造工程正式进入铺轨阶段.现要把248吨物资从某地运往南宁、钦州两地,用大、小两种货车共20辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往南宁、钦州两地的运费如下表:(1)如果安排9辆货车前往南宁,其余货车前往钦州,设前往南宁的大货车为a辆,则表格中①②③所对应的代数式(表示辆数)分别是( )A.12-a,9-a,a-1B.8-a,9-a,a+3C.9-a,12-a,a-1D.9-a,8-a,a+3答案:D解题思路:试题难度:三颗星知识点:解方程组4.(上接第3题)(2)设前往南宁、钦州两地的总运费为w元,则w与a的函数关系式为( )(写出自变量的取值范围)A.B.C.D.答案:A解题思路:试题难度:三颗星知识点:一次函数的应用5.(3)在第3题,第4题的条件下,若运往南宁的物资不少于120吨,则当a=_____时,总运费最少,最少总运费为_______元.横线处依次所填正确的是( )A.8,11760B.5,11200C.9,11480D.5,11550答案:B解题思路:试题难度:三颗星知识点:一次函数应用题6.在某市开展城乡综合治理的活动中,需要将A,B,C三地的垃圾50立方米、40立方米、50立方米全部运往垃圾处理场D,E两地进行处理.已知运往D地的数量为90立方米,运往E的数量为50立方米.(1)若A地运往D地a立方米(a为整数),B地运往D地30立方米,C地运往D地的数量小于A地运往D地的2倍.其余全部运往E地,且C地运往E地的数量不超过12立方米,则A,C两地运往D,E两地共有( )种方案.A.4B.3C.2D.1答案:C解题思路:试题难度:三颗星知识点:一元一次不等式组的应用7.(上接第6题)(2)已知从A,B,C三地把垃圾运往D,E两地处理所需费用如下表:在(1)的条件下,最少费用是( )元.A.2870B.2873C.2876D.2879答案:B解题思路:试题难度:三颗星知识点:一次函数的应用。

一元一次不等式选择方案问题及答案Microsoft Word 文档

一元一次不等式选择方案问题及答案Microsoft Word 文档

选择方案1、一种节能灯的功率为10瓦(即0.01千瓦)售价为60元,一种白炽灯功率为60瓦(即0.06千瓦)售价为3元。

两种灯的照明效果一样,使用寿命也相同(3000小时以上)如果电费价格为0.5元/千瓦·时,消费者选用哪种灯省钱?解:节能灯的总费用=0.5×0.01x+60白炽灯的总费用=0.5×0.06x+30.5×0.01x+60=0.5×0.06x+3x=22800.5×0.01x+60>0.5×0.06x+3x<22800.5×0.01x+60<0.5×0.06x+3x>2280答:当x=2280时选用两种灯总费用一样当x<2280时选用白炽灯总费用省当x>2280时选用节能灯总费用省2、某单位要制作一批宣传材料,甲公司提出,每份材料收费20元,另收3000元设计费;乙公司提出,每份材料收费30元,不收设计费。

问,哪家公司制作这批宣传材料比较合算?解:设制作材料x份,则甲公司所收费用=20x+3000乙公司所收费用=30x20x+3000=30xx=30020x+3000>30xx<30020x+3000<30xx>300答:当x=300时选用两公司总费用一样。

当x<300时选用乙公司总费用省。

当x>300时选用甲公司总费用省。

3、某中学需要刻录一批电脑光盘,若到电脑公司刻录,每张需8元(包括空白光盘费);若学校自刻,出租用刻录机需120元外,每张光盘还需成本4元(包括空白光盘费)。

问刻录这批电脑光盘,该校如何选择,才能使费用较少?解:设这批电脑光盘有x张,根据题意:到电脑公司刻录的费用为8x,学校自刻的费用为:120+4x①若8x=4x+120,x=30,当您刻录的光盘数等于30张光盘时花钱是一样的;②若8x>4x+120解得x>30。

当您刻录的光盘数多于30张时,学校自刻合算③若8x<4x+120解得x<30。

不等式(组)的应用——方案问题

不等式(组)的应用——方案问题

不等式(组)的应用——方案问题一.解答题(共12小题)1.(2014•舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?2.(2014•台湾)小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.3.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台) 12 10月污水处理能力(吨/月) 200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.4.(2014•南宁)“保护好环境,拒绝冒黑烟”.某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.(1)求购买A型和B型公交车每辆各需多少万元?(2)预计在该线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?5.(2014•福州)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.(1)求A,B两种商品每件各是多少元?(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?6.(2014•齐齐哈尔)某工厂计划生产A、B两种产品共60件,需购买甲、乙两种材料,生产一件A产品需甲种材料4千克,乙种材料1千克;生产一件B产品需甲、乙两种材料各3千克,经测算,购买甲、乙两种材料各1千克共需资金60元;购买甲种材料2千克和乙种材料3千克共需资金155元.(1)甲、乙两种材料每千克分别是多少元?(2)现工厂用于购买甲、乙两种材料的资金不超过9900元,且生产B产品不少于38件,问符合生产条件的生产方案有哪几种?(3)在(2)的条件下,若生产一件A产品需加工费40元,若生产一件B产品需加工费50元,应选择哪种生产方案,使生产这60件产品的成本最低?(成本=材料费+加工费)7.(2014•黄石)某校九(3)班去大冶茗山乡花卉基地参加社会实践活动,该基地有玫瑰花和蓑衣草两种花卉,活动后,小明编制了一道数学题:花卉基地有甲乙两家种植户,种植面积与卖花总收入如下表.(假设不同种植户种植的同种花卉每亩卖花平均收入相等)种植户玫瑰花种植面积(亩)蓑衣草种植面积(亩)卖花总收入(元)甲 5 3 33500乙 3 7 43500(1)试求玫瑰花,蓑衣草每亩卖花的平均收入各是多少?(2)甲、乙种植户计划合租30亩地用来种植玫瑰花和蓑衣草,根据市场调查,要求玫瑰花的种植面积大于蓑衣草的种植面积(两种花的种植面积均为整数亩),花卉基地对种植玫瑰花的种植给予补贴,种植玫瑰花的面积不超过15亩的部分,每亩补贴100元;超过15亩但不超过20亩的部分,每亩补贴200元;超过20亩的部分每亩补贴300元.为了使总收入不低于127500元,则他们有几种种植方案?8.(2014•开封二模)某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:甲乙进价(元/件)15 35售价(元/件)20 45(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.9.(2014•道里区三模)我市为创建全国卫生城市,有关部门计划购买甲、乙两种名贵树苗,栽种在入城大道的两侧,已知买甲种树苗、乙种树苗各1棵共需220元;买甲种树苗3棵,乙种树苗1棵共需420元,资料提示:甲、乙两种树苗的成活率分别为90%和95%.(1)购买两种树苗每棵各需多少元;(2)市相关部门研究决定:购买甲、乙两种树苗共800棵,购买树苗的钱数不得超过86500元,且这批树苗的成活率不低于92%,共有多少种购买方案?(3)直接写出最省钱的购买方案及此时买树苗的费用.10.(2014•昌宁县二模)某商店欲购进甲、乙两种商品,已知购进的甲商品的单价是乙商品的一半,进3件甲商品和1件乙商品恰好用200元,该商店决定用不少于6710元且不超过6810元购进这两种商品共100件.(1)求购进的这两种商品的单价.(2)该商店有哪几种进货方案?11.(2014•牡丹江一模)为响应“大课间”活动,某学校准备购买棒球和篮球共200个,已知棒球每个55元,篮球每个95元,学校计划至少投入资金18200元,但不多于18300元.(1)学校有多少种购买方案;(2)哪种购买方案使学校投入资金最少?(3)当学校按(2)的方案买回200个球在“大课间”投入使用后,学校领导根据实际情况发现还应同时购买足球和大绳若干,来补充“大课间”活动,所以又投入资金2880元,若每个足球80元,每条大绳30元,则在钱全部用尽的情况下有多少种购买方法,请直接写出购买方法的种数.12.(2014•濮阳一模)某中学计划购买A,B两种型号的课桌凳,已知一套A型课桌凳比一套B型课桌凳少40元,且购买5套A型和1套B型共需1000元.(1)购买一套A型课桌凳和一套B型课桌凳各需要多少元?(2)学校根据实际情况计划购买A,B两种型号的共100套,且购买课桌凳的总费用不超过18480元,并且购买A 型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费用最低?不等式(组)的应用—-方案问题参考答案与试题解析一.解答题(共12小题)1.(2014•舟山)某汽车专卖店销售A,B两种型号的新能源汽车.上周售出1辆A型车和3辆B型车,销售额为96万元;本周已售出2辆A型车和1辆B型车,销售额为62万元.(1)求每辆A型车和B型车的售价各为多少元.(2)甲公司拟向该店购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元.则有哪几种购车方案?考点:一元一次不等式组的应用;二元一次方程组的应用.专题:应用题.分析:(1)每辆A型车和B型车的售价分别是x万元、y万元.则等量关系为:1辆A型车和3辆B型车,销售额为96万元,2辆A型车和1辆B型车,销售额为62万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则根据“购买A,B两种型号的新能源汽车共6辆,购车费不少于130万元,且不超过140万元”得到不等式组.解答:解:(1)每辆A型车和B型车的售价分别是x万元、y万元.则,解得.答:每辆A型车的售价为18万元,每辆B型车的售价为26万元;(2)设购买A型车a辆,则购买B型车(6﹣a)辆,则依题意得,解得2≤a≤3.∵a是正整数,∴a=2或a=3.∴共有两种方案:方案一:购买2辆A型车和4辆B型车;方案二:购买3辆A型车和3辆B型车.点评:本题考查了一元一次不等式组的应用和二元一次方程组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.2.(2014•台湾)小佳的老板预计订购5盒巧克力,每盒颗数皆相同,分给工作人员,预定每人分15颗,会剩余80颗,后来因经费不足少订了2盒,于是改成每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗).请问所有可能的工作人员人数为何?请完整写出你的解题过程及所有可能的答案.考点:一元一次不等式组的应用.分析:设该公司的工作人员为x人.则每盒巧克力的颗数是,根据不等关系:每人分12颗,但最后分到小佳时巧克力不够分,只有小佳拿不到12颗,但她仍分到3颗以上(含3颗),列不等式组.解答:解:设该公司的工作人员为x人.则,解得16<x≤19.因为x是整数,所以x=17,18,19.答:所有可能的工作人员人数是17人、18人、19人.点评:本题考查了一元一次不等式组的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.3.(2014•湘潭)某企业新增了一个化工项目,为了节约资源,保护环境,该企业决定购买A、B两种型号的污水处理设备共8台,具体情况如下表:A型B型价格(万元/台)12 10月污水处理能力(吨/月)200 160经预算,企业最多支出89万元购买设备,且要求月处理污水能力不低于1380吨.(1)该企业有几种购买方案?(2)哪种方案更省钱,说明理由.考点:一元一次不等式组的应用.专题:应用题.分析:(1)设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据企业最多支出89万元购买设备,要求月处理污水能力不低于1380吨,列出不等式组,然后找出最合适的方案即可.(2)计算出每一方案的花费,通过比较即可得到答案.解答:解:设购买污水处理设备A型号x台,则购买B型号(8﹣x)台,根据题意,得,解这个不等式组,得:2。

不等式解决方案问题

不等式解决方案问题

3.当甲市场的花费等于乙市场时, 当甲市场的花费等于乙市场时 20X+3000=30X --10X= --3000 X=300 此时两个市场收费相同。 此时两个市场收费相同。
甲、乙两家商店出售同样的茶壶和茶杯, 乙两家商店出售同样的茶壶和茶杯, 茶壶每只定价都是20 20元 茶壶每只定价都是20元,茶杯每只定价 都是5 两家商店的优惠办法不同: 都是5元。两家商店的优惠办法不同: 甲商店是购买1只茶壶赠送1只茶杯; 甲商店是购买1只茶壶赠送1只茶杯;乙 商店是按售价的92%收款。 92%收款 商店是按售价的92%收款。某顾客需购 只茶壶、若干只(超过4 茶杯, 买4只茶壶、若干只(超过4只)茶杯, 去哪家商店购买优惠更多? 去哪家商店购买优惠更多? 解:设这个顾客购买了x只茶杯, 设这个顾客购买了x只茶杯,
例:小平的爸爸新买了一部手机,他从移 小平的爸爸新买了一部手机, 动公司了解到现在有两种通话计费方式: 动公司了解到现在有两种通话计费方式:
方式一 月租费 本地通话费 30元 30元/月 0.30元 0.30元/分 方式二 0 0.40元 0.40元/分
他正为选哪一种方式犹豫, 他正为选哪一种方式犹豫 你能帮助他作个选择吗? 你能帮助他作个选择吗?
②当甲市场的花费大于乙市场时, 100+0.9(x-100)>50+0.95(x-50) 当甲市场的花费大于乙市场时, > 解得: X<150 解得: 此时到乙市场买更合算。 此时到乙市场买更合算。
③当甲市场的花费等于乙市场时, 100+0.9(x-100)=50+0.95(x-50) 解得: 此时两个市场收费相同。 解得: X=150 此时两个市场收费相同。 综上, 综上,当0<x≤50和x=150时,此时两个市场收费相同; < 和 时 此时两个市场收费相同; 当50<x <150时,此时到乙市场买更合算; < 时 此时到乙市场买更合算; 当x>150时,此时到甲市场买更合算。 > 时 此时到甲市场买更合算。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某厂有甲、乙两种原料配制成某种饮料,已知这两种原料的维生素C含量及购买这两种原料的价格如下表:
原料
甲种原料乙种原料
维生素C及价格
维生素C/(单位/千克)600 100
原料价格/(元/千克)8 4
现配制这种饮料10千克,要求至少含有4200单位的维生素C,并要求购买甲、乙两种原料的费用不超过72元,
(1)设需用x千克甲种原料,写出x应满足的不等式组。

(2)按上述的条件购买甲种原料应在什么范围之内?
某校办厂生产了一批新产品,现有两种销售方案,方案一:在这学期开学时售出该批产品,可获利30000元,然后将该批产品的投入资金和已获利30000元进行再投资,到这学期结束时再投资又可获利4.8%;方案二:在这学期结结束时售出该批产品,可获利35940元,但要付投入资金的0.2%作保管费,问:
(1)当该批产品投入资金是多少元时,方案一和方案二的获利是一样的?
(2)按所需投入资金的多少讨论方案一和方案二哪个获利多。

某园林的门票每张10元,一次使用,考虑到人们的不同需要,也为了吸引更多的游客,该
园林除保留原来的售票方法外,还推出了一种“购买年票”的方法。

年票分为A、B、C三种:A 年票每张120元,持票进入不用再买门票;B类每张60元,持票进入园林需要再买门票,每张2元,C类年票每张40元,持票进入园林时,购买每张3元的门票。

(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式。

(2)求一年中进入该园林至少多少时,购买A类年票才比较合算。

为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元.
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)若该县的A类学校不超过5所,则B类学校至少有多少所?
(3)我市计划今年对该县A、B两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到A、B两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?。

相关文档
最新文档