2013年全国高考物理试题分类汇编 专题九磁场
2013年高考物理试题精解精评——磁场

2013年全国高考物理试题分类汇编——磁场一、各种磁场及基本性质1.(2013年高考·上海卷)如图1,足够长的直线ab 靠近通电螺线管,与螺线管平行。
用磁传感器测量ab 上各点的磁感应强度B ,在计算机屏幕上显示的大致图像是A .B .C .D .解析 通电螺线管的磁场分布相当于条形磁铁如答图1,因此可根据磁感线的分布来确定磁感应强度的大小;因为ab 线段长度大于通电螺线管的长度,由磁感线的分布,可知选项C 正确。
答案 C点评 本题考查通电螺线管周围磁场的分布特点,要求学生对基本知识要有深刻的理解。
2.(2013年高考·海南卷)三条在同一平面(纸面)内的长直绝缘导线组成一等边三角形,在导线中通过的电流均为I ,方向如图2所示。
a 、b 和c 三点分别位于三角形的三个顶角的平分线上,且到相应顶点的距离相等。
将a 、b 和c 处的磁感应强度大小分别记为B 1、B 2和B 3,下列说法正确的是A .321B B B <= B .321B B B ==C .a 和b 处磁场方向垂直于纸面向外,c 处磁场方向垂直于纸面向里D .a 处磁场方向垂直于纸面向外,b 和c 处磁场方向垂直于纸面向里 解析 三条导线分别标记为1、2、3如答图2所示,根据安培定则可知它们在a 点产生的磁场方向分别为垂直纸面向外、垂直纸面向外和垂直纸面向里,且大小相等,所以合磁场方向垂直纸面向外,磁感应强度大小为导线1或2产生的磁场决定;同理b 点与a 点有相同的情况,则21B B =;而在c点处三根导线产生磁场方向均垂直于纸bObObObOabO·答题1图2答图2面向里,所以合磁场最强,则321B B B <=,所以选项A 、C 均正确。
答案 AC点评 本题考查通电直导线的磁场分布和磁场的叠加问题,注意安培定则的应用。
二、安培力相关问题3.(2013年高考·上海卷)如图3,通电导线MN 与单匝矩形线圈abcd 共面,位置靠近ab 且相互绝缘。
2013年高考物理真题汇编全解全析:专题九 磁 场 Word版含解析

专题九 磁 场1.(2013·高考新课标全国卷Ⅰ,18题)如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q (q >0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为R2.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )A.qBR2m B.qBR m C.3qBR 2m D.2qBR m【解析】选 B.本题应从带电粒子在磁场中的圆周运动角度入手并结合数学知识解决问题.带电粒子从距离ab 为R2处射入磁场,且射出时与射入时速度方向的夹角为60°,粒子运动轨迹如图,ce 为射入速度所在直线,d 为射出点,射出速度反向延长交ce 于f 点,磁场区域圆心为O ,带电粒子所做圆周运动圆心为O ′,则O 、f 、O ′在一条直线上,由几何关系得带电粒子所做圆周运动的轨迹半径为R ,由F 洛=F 向得q v B =m v 2R ,解得v =qBRm,选项B 正确.2.(2013·高考广东卷,21题)如图,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上.不计重力.下列说法正确的有( )A .a 、b 均带正电B .a 在磁场中飞行的时间比b 的短C .a 在磁场中飞行的路程比b 的短D .a 在P 上的落点与O 点的距离比b 的近【解析】选AD.带电离子垂直进入匀强磁场,在洛伦兹力的作用下做匀速圆周运动.根据洛伦兹力提供向心力和周期公式T =2πm qB 、半径公式r =mυqB 及t θ=T2π解决问题.带电离子打到屏P 上,说明带电离子向下偏转,根据左手定则,a 、b 两离子均带正电,选项A 正确;a 、b 两离子垂直进入磁场的初速度大小相同,电荷量、质量相等,由r =mυqB知半径相同.b 在磁场中运动了半个圆周,a 的运动大于半个圆周,故a 在P 上的落点与O 的距离比b 的近,飞行的路程比b 长,选项C 错误,选项D 正确;根据t θ=T2π知,a 在磁场中飞行的时间比b 的长,选项B 错误.3.(2013·高考安徽卷,15题)图中a ,b ,c ,d 为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是( )A .向上B .向下C .向左D .向右【解析】选 B.综合应用磁场的叠加原理、左手定则和安培定则解题.由安培定则分别判断出四根通电导线在O 点产生的磁感应强度的方向,再由磁场的叠加原理得出O 点的合磁场方向向左,最后由左手定则可判断带电粒子所受的洛伦兹力方向向下,故选项B 正确.4.(2013·高考新课标全国卷Ⅱ,17题)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R ,磁场方向垂直于横截面.一质量为m 、电荷量为q (q >0)的粒子以速率v 0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为( )A.3m v 03qRB.m v 0qRC.3m v 0qRD.3m v 0qk【解析】选A.带电粒子在磁场中做匀速圆周运动,利用几何关系和洛伦兹力公式即可求解.如图所示,粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,即q v 0B =m v 20r,据几何关系,粒子在磁场中的轨道半径r =R tan 60°=3R ,解得B =3m v 03qR,选项A 正确.5.(2013·高考大纲全国卷,26题) 如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为 B.一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M .粒子在磁场中运动的轨道半径为R .粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OP =R .不计重力.求M 点到O 点的距离和粒子在磁场中运动的时间.【解析】带电粒子在有界磁场中做圆周运动,作图并结合图象寻找解题的突破口.根据题意,带电粒子进入磁场后做圆周运动,运动轨迹交虚线OL 于A 点,圆心为y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴于P 点,与x 轴的夹角为β,如图所示.有q v B =m v 2R①周期为T =2πRv ②过A 点作x 、y 轴的垂线,垂足分别为B 、 D.由图中几何关系得 AD =R sin α OD =AD cot 60° BP =OD cot β OP =AD +BP α=β③ 由以上五式和题给条件得sin α+13cos α=1④ 解得α=30° ⑤ 或α=90°⑥设M 点到O 点的距离为h h =R -OC 根据几何关系OC =CD -OD =R cos α-33AD 利用以上两式和AD =R sin α得h =R -23R cos(α+30°) ⑦解得h =(1-33)R (α=30°) ⑧h =(1+33)R (α=90°) ⑨当α=30°时,粒子在磁场中运动的时间为 t =T 12=πm 6qB ⑩ 当α=90°时,粒子在磁场中运动的时间为 t =T 4=πm 2qB. 答案:(1-33)R (α=30°)或(1+33)R (α=90°) πm 6qB (α=30°)或πm2qB(α=90°)6.(2013·高考北京卷,22题)如图所示,两平行金属板间距为d ,电势差为U ,板间电场可视为匀强电场.金属板下方有一磁感应强度为B 的匀强磁场.带电量为+q 、质量为m 的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动.忽略重力的影响,求:(1)匀强电场场强E 的大小;(2)粒子从电场射出时速度v 的大小;(3)粒子在磁场中做匀速圆周运动的半径R .【解析】本题中带电粒子在电场中由静止开始做匀加速直线运动,可由动能定理或牛顿第二定律求解,选用动能定理进行解题更简捷.进入磁场后做匀速圆周运动,明确带电粒子的运动过程及相关公式是解题的关键.(1)电场强度E =Ud.(2)根据动能定理,有qU =12m v 2-0得v =2qUm.(3)粒子在磁场中做匀速圆周运动时,洛伦兹力提供向心力,有q v B =m v 2R得R =1B 2mU q .答案:(1)U d (2) 2qU m (3) 1B 2mUq7.(2013·高考天津卷,11题)一圆筒的横截面如图所示,其圆心为O .筒内有垂直于纸面向里的匀强磁场,磁感应强度为B.圆筒下面有相距为d 的平行金属板M 、N ,其中M 板带正电荷,N 板带等量负电荷.质量为m 、电荷量为q 的带正电粒子自M 板边缘的P 处由静止释放,经N 板的小孔S 以速度v 沿半径SO 方向射入磁场中.粒子与圆筒发生两次碰撞后仍从S 孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:(1)M 、N 间电场强度E 的大小;(2)圆筒的半径R ;(3)保持M 、N 间电场强度E 不变,仅将M 板向上平移23d ,粒子仍从M 板边缘的P 处由静止释放,粒子自进入圆筒至从S 孔射出期间,与圆筒的碰撞次数n .【解析】(1)设两板间的电压为U ,由动能定理得qU =12m v 2 ①由匀强电场中电势差与电场强度的关系得 U =Ed ② 联立上式可得E =m v 22qd. ③(2)粒子进入磁场后做匀速圆周运动,运用几何关系作出圆心为O ′,圆半径为r .设第一次碰撞点为A ,由于粒子与圆筒发生两次碰撞又从S 孔射出,因此,SA 弧所对的圆心角∠AO ′S等于π3.由几何关系得r =R tan π3④粒子运动过程中洛伦兹力提供向心力,由牛顿第二定律,得q v B =m v 2r⑤联立④⑤式得R =3m v 3qB. ⑥(3)保持M 、N 间电场强度E 不变,M 板向上平移23d 后,设板间电压为U ′,则U ′=Ed 3=U 3⑦设粒子进入S 孔时的速度为v ′,由①式看出 U ′U =v ′2v2 综合⑦式可得v ′=33v ⑧设粒子做圆周运动的半径为r ′,则r ′=3m v3qB⑨设粒子从S 到第一次与圆筒碰撞期间的轨迹所对圆心角为θ,比较⑥⑨两式得到r ′=R ,可见θ=π2○10 粒子需经过四个这样的圆弧才能从S 孔射出,故 n =3. ⑪答案:(1)m v 22qd (2)3m v3qB(3)38.(2013·高考重庆卷,7题)小明在研究性学习中设计了一种可测量磁感应强度的实验,其装置如图所示.在该实验中,磁铁固定在水平放置的电子测力计上,此时电子测力计的读数为G 1,磁铁两极之间的磁场可视为水平匀强磁场,其余区域磁场不计.直铜条AB 的两端通过导线与一电阻连接成闭合回路,总阻值为R .若让铜条水平且垂直于磁场,以恒定的速率v 在磁场中竖直向下运动,这时电子测力计的读数为G 2,铜条在磁场中的长度L .(1)判断铜条所受安培力的方向,G 1和G 2哪个大?(2)求铜条匀速运动时所受安培力的大小和磁感应强度的大小.【解析】(1)铜条匀速向下运动,由楞次定律可知,其所受安培力竖直向上.根据牛顿第三定律,铜条对磁铁的作用力竖直向下,故G 2>G 1.(2)由题意知:G 1=G 2-F ,F =G 2-G 1,由安培力公式 F =BIL , I =E R, E =BL v ,联立以上各式,解得B =1L(G 2-G 1)R v . 答案:(1)安培力的方向竖直向上,G 2>G 1(2)安培力的大小F =G 2-G 1 磁感应强度的大小B =1L (G 2-G 1)R v 9.(2013·高考福建卷,22题)如图甲,空间存在一范围足够大的垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B.让质量为m ,电荷量为q (q >0)的粒子从坐标原点O 沿xOy 平面以不同的初速度大小和方向入射到该磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿y 轴正向入射,恰好能经过x 轴上的A (a,0)点,求v 1的大小. (2)已知一粒子的初速度大小为v (v >v 1),为使该粒子能经过A (a,0)点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的sin θ值.(3)如图乙,若在此空间再加入沿y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿y 轴正向发射。
2013年高考物理二轮典型例题讲解(知识点归纳+例题)《专题9电磁感应》课件

小电动机刚达到额定功率时, 设金属棒所受拉力大小为 F1, 加速度大小为 a,感应电动势为 E1,流过金属棒的电流为 I1,根 据牛顿第二定律得:P=F1v1,v1=at 由法拉第电磁感应定律和欧姆定律分别有:E1=B1Lv1,I1 E1 = R+r 对金属棒受力分析可得:F1-mgsinθ-B1I1L=ma B2L2v1 v1 P 1 即 -mgsinθ- =m· ,解得 v1=4m/s. t v1 R+r
(2)注意弄清两种状态:①导体处于平衡状态——静止或匀 速直线运动(根据平衡条件——合外力等于零列式分析); ②导体 处于非平衡状态——加速度不为零(根据牛顿第二定律进行动态 分析或结合功能关系分析).
(3)注意动力学的临界问题. 一 般 分 析 方 法 是 : 导 体 受 外 力 运 动 → 感 应 电 动 势 (E = E BLv)→感应电流(I= )→导体受安培力(F=BIL)→合外力变 R+r 化(F=ma)→加速度变化→速度变化→临界状态.
(3)如图所示,导体棒围绕棒的一端在垂直磁场的平面内做 1 2 匀速圆周运动而切割磁感线产生的电动势,E= Bl ω. 2
(4)感应电荷量的计算. 回路中发生磁通量变化时,在Δt内迁移的电荷量(感应电荷 E ΔΦ ΔΦ 量)为q=IΔt=RΔt=RΔtΔt= R .可见,q仅由回路电阻和磁通量 的变化量决定,与发生磁通量变化的时间无关.
[答案] B
电磁感应中的力学问题
常考点三
命题指数:★★★★
典题必研 [例 3] 在范围足够大,方向竖直向下的匀强磁场中,磁感
应强度 B=0.2 T,有一水平放置的光滑框架,宽度为 L=0.4m, 如图所示, 框架上放置一质量为 0.05kg, 电阻为 1Ω 的金属杆 cd, 框架电阻不计.若 cd 杆以恒定加速度 a=2m/s2 由静止开始做匀 变速运动,则
【备考2014】2013高考物理 (真题+模拟新题分类汇编) 磁场

磁场K1 磁场安培力18.K1 [2013·新课标全国卷Ⅱ] 如图,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k.若三个小球均处于静止状态,则匀强电场场强的大小为( )A.3kq 3l 2B.3kq l 2C.3kq l 2 D.2 3kql218.B [解析] 由题意,三个小球均处于静止状态,对c 球而言,a 、b 两球在c 球所在位置处产生的合场强与匀强电场的场强等大反向,故匀强电电场的场强大小E =2kql 2cos30°=3kql2,B 正确. 3.[2013·广东省汕头市期末] 如图X183所示,长方形线框abcd 通有电流I ,放在直线电流I ′附近,线框与直线电流共面,则下列表述正确的是( )A .线圈四个边都受安培力作用,它们的合力方向向左B .只有ad 和bc 边受安培力作用,它们的合力为零C .ab 和dc 边所受安培力大小相等,方向相同D .线圈四个边都受安培力作用,它们的合力为零图X1843.A [解析] 线圈四个边都受安培力作用,由于ad 边所在处的磁感应强度大于bc 边所在处的磁感应强度,ad 边所受的向左的安培力大于bc 边所受的向右的安培力,它们的合力方向向左,选项A 正确,选项B 、D 错误;ab 和dc 边所受安培力大小相等,方向相反,选项C 错误.25.K1、E1、L4[2013·浙江卷] (22分)为了降低潜艇噪音,提高其前进速度,可用电磁推进器替代螺旋桨.潜艇下方有左、右两组推进器,每组由6个相同的、用绝缘材料制成的直线通道推进器构成,其原理示意图如下.在直线通道内充满电阻率ρ=0.2 Ω·m 的海水,通道中a×b×c=0.3 m ×0.4 m ×0.3 m 的空间内,存在着由超导线圈产生的匀强磁场,其磁感应强度B =6.4 T 、方向垂直通道侧面向外.磁场区域上、下方各有a×b=0.3 m ×0.4 m 的金属板M 、N ,当其与推进器专用直流电源相连后,在两板之间的海水中产生了从N 到M ,大小恒为I =1.0×103A 的电流,设该电流只存在于磁场区域.不计电源内阻及导线电阻,海水密度ρm ≈1.0×103 kg/m 3.(1)求一个直线通道推进器内磁场对通电海水的作用力大小,并判断其方向. (2)在不改变潜艇结构的前提下,简述潜艇如何转弯?如何“倒车”? (3)当潜艇以恒定速度v 0=30 m/s 前进时,海水在出口处相对于推进器的速度v =34 m/s ,思考专用直流电源所提供的电功率如何分配,求出相应功率的大小.25.[解析] (1)将通电海水看成导线,所受磁场力 F =IBL代入数据得:F =IBc =1.0×103×6.4×0.3 N =1.92 N用左手定则判断磁场对海水作用力方向向右(或与海水出口方向相同)(2)考虑到潜艇下方有左、右2组推进器,可以开启或关闭不同个数的左、右两侧的直线通道推进器,实施转弯.改变电流方向,或者磁场方向,可以改变海水所受到磁场力的方向,根据牛顿第三定律,使潜艇“倒车”.(3)电源提供的电功率中的第一部分:牵引功率 P 1=F 牵v 0根据牛顿第三定律:F 牵=12IBL 当v 0=30 m/s 时,代入数据得:P 1=F 牵v 0=12×1.92×103×30 W =6.9×105W 第二部分:海水的焦耳热功率对单个直线推进器,根据电阻定律:R =ρl S代入数据得:R =ρc ab =0.2×0.30.3×0.4Ω=0.5 Ω 由热功率公式,P =I 2R 代入数据得:P 单=I 2R =5.0×105WP 2=12×5.0×105W =6.0×106W第三部分:单位时间内海水动能的增加值 设Δt 时间内喷出的海水质量为m P 3=12×ΔΕkΔt考虑到海水的初动能为零, ΔΕk =Εk =12mv 2水对地m =ρm bcv 水对地ΔtP 3=12×ΔΕk Δt =12×12ρm bcv 3水对地=4.6×104WK2 磁场对运动电荷的作用5.[2013·河南省郑州市高三第一次质量预测] 如图X194所示,中轴线PQ 将矩形区域MNDC 分成上、下两部分,上部分充满垂直纸面向外的匀强磁场,下部分充满垂直纸面向内的匀强磁场,磁感应强度皆为B .一质量为m 、带电荷量为q 的带正电粒子从P 点进入磁场,速度与边MC 的夹角θ=30°.MC 边长为a ,MN 边长为8a ,不计粒子重力.求:图X194(1)若要该粒子不从MN 边射出磁场,其速度最大值是多少?(2)若要该粒子恰从Q 点射出磁场,其在磁场中的运行时间最少是多少? 5.(1)qBa m (2)10πm 3qB[解析] (1)设该粒子恰不从MN 边射出磁场时的轨迹半径为r ,由几何关系得:r cos60°=r -12a解得r =a又由qvB =m v 2r解得最大速度v =qBa m. (2)粒子每经过分界线PQ 一次,在PQ 方向前进的位移为轨迹半径R 的3倍. 设粒子进入磁场后第n 次经过PQ 线时恰好到达Q 点 有n ×3R =8a 且R <a解得 n >4.62,n 所能取的最小自然数为5, 粒子做圆周运动的周期为 T =2πmqB粒子每经过PQ 分界线一次用去的时间为 t =13T =2πm 3qB粒子到达Q 点的最短时间为 t min =5t =10πm3qB .20.I3、K2[2013·浙江卷] 在半导体离子注入工艺中,初速度可忽略的磷离子P +和P 3+,经电压为U 的电场加速后,垂直进入磁感应强度大小为B 、方向垂直纸面向里、有一定宽度的匀强磁场区域,如图所示.已知离子P +在磁场中转过θ=30°后从磁场右边界射出.在电场和磁场中运动时,离子P +和P 3+( )A .在电场中的加速度之比为1∶1B .在磁场中运动的半径之比为3∶1C .在磁场中转过的角度之比为1∶2D .离开电场区域时的动能之比为1∶320.BCD [解析] 离子在电场中的加速度a =Uq dm ,故a 1a 2=q 1q 2=13,A 错误.离开电场区域时的动能E k =Uq ,故E k1E k2=q 1q 2=13,D 正确.在磁场中运动的半径r =mv Bq =mBq 2Uq m =1B2Um q ,故r 1r 2=q 2q 1=31,B 正确.在磁场中转过的角度的正弦值sin θ=dr=Bd q 2Um ,故sin θ1sin θ2=q 1q 2=13,因θ1=30°,则sin θ2=32,即θ2=60°,所以θ1θ2=12,C 正确.21.K2[2013·广东卷] 如图所示,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上.不计重力.下列说法正确的有( )A .a 、b 均带正电B .a 在磁场中飞行的时间比b 的短C .a 在磁场中飞行的路程比b 的短D .a 在P 上的落点与O 点的距离比b 的近21.AD [解析] 由左手定则可知A 正确;根据洛伦兹力提供向心力,有Bvq =mv2r ,解得r =mvBq ,由于同种粒子且速度相同,所以在磁场中运动的轨道半径相同,示意图如图所示,从图中可以看出b 离子轨迹为半圆,a 离子轨迹超过半圆,B 、C 错误,D 正确.18.K2 [2013·新课标全国卷Ⅰ] 如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为R2.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )A.qBR 2mB.qBR mC.3qBR 2m D.2qBRm18.B [解析] 由Bqv =mv 2r 可得v =Bqrm ,作出粒子运动轨迹如图所示,根据几何知识得半径r =R ,故B 正确.17.K2 [2013·新课标全国卷Ⅱ] 空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R ,磁场方向垂直于横截面.一质量为m 、电荷量为q(q>0)的粒子以速率v 0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°.不计重力,该磁场的磁感应强度大小为( )A.3mv 03qR B.mv 0qRC.3mv 0qR D.3 mv 0qR17.A [解析] 由Bqv 0=mv 20r 可得:B =mv 0qr ,粒子沿半径射入磁场必沿半径射出磁场,可作出运动轨迹图如图所示,由几何知识可得:r =3R ,即B =3mv 03qR,A 正确.23.I3K2 [2013·安徽卷] 如图所示的平面直角坐标系xOy ,在第Ⅰ象限内有平行于y 轴的匀强电场,方向沿y 轴正方向;在第Ⅳ象限的正三角形abc 区域内有匀强磁场,方向垂直于xOy 平面向里,正三角形边长为L ,且ab 边与y 轴平行.一质量为m 、电荷量为q 的粒子,从y 轴上的P(0,h)点,以大小为v 0的速度沿x 轴正方向射入电场,通过电场后从x 轴上的a(2h ,0)点进入第Ⅳ象限,又经过磁场从y 轴上的某点进入第Ⅲ象限,且速度与y 轴负方向成45°角,不计粒子所受的重力.求:(1)电场强度E 的大小;(2)粒子到达a 点时速度的大小和方向;(3)abc 区域内磁场的磁感应强度B 的最小值.23.[解析] (1)设粒子在电场中运动的时间为t ,则有x =v 0t =2h , y =12at 2=h , qE =ma ,联立以上各式可得E =mv 22qh.(2)粒子到达a 点时沿负y 方向的分速度为v y =at =v 0,所以v =v 20+v 2y =2v 0,方向指向第Ⅳ象限与x 轴正方向成45°角.(3)粒子在磁场中运动时,有qvB =m v2r,当粒子从b点射出时,磁场的磁感应强度为最小值,此时有r=22L,所以B=2mv0qL.K3带电粒子在组合场及复合场中运动2.[2013·浙江省十二校新高考研究联盟第一次联考] 如图X202所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m,带电荷量为q,小球可在棒上滑动,现将此棒竖直放入沿水平方向的且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由棒的下端以某一速度上滑的过程中一定有( )图X202A.小球加速度一直减小B.小球的速度先减小,直到最后匀速C.杆对小球的弹力一直减小D.小球队受到的洛伦兹力一直减小2.D [解析] 小球上滑的过程中,在竖直方向上受到竖直向下的重力和摩擦力作用,所以小球的速度一直减小,根据公式F洛=qvB,小球所受洛伦兹力一直减小,选项B错误,选项D正确;在水平方向上,小球共受到水平向右的电场力、水平向左的洛伦兹力和杆的弹力三个力的作用,三力的合力为零,如果刚开始,小球的初速度较大,其洛伦兹力大于电场力,杆对小球的弹力水平向右,大小F N=F洛-F会随着速度的减小而减小,小球的加速度也一直减小;如果刚开始小球的初速度较小,其洛伦兹力小于电场力,杆对小球的弹力水平向左,大小F N=F-F洛会随着速度的减小而增大,小球的加速度也一直增大,可见,选项A、C错误.图X2033.[2013·安徽省黄山市一模] 回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两个D形金属盒处于垂直于盒底的匀强磁场中,如图X203所示,现用同一回旋加速器分别加速两种同位素,关于高频交流电源的周期和获得的最大动能的大小,下列说法正确的是( )A.加速质量大的交流电源的周期较大,加速次数少B.加速质量大的交流电源的周期较大,加速次数多C.加速质量大的交流电源的周期较小,加速次数多D.加速质量大的交流电源的周期较小,加速次数少3.A [解析] 对于粒子在匀强磁场中的运动,由R =mvqB可知,随着粒子速度的增大,粒子的运动半径也逐渐增大,设粒子的质量为m ,电荷量为q ,在窄缝间被加速的次数为n ,则由12mv 2=nqU 和R =mv qB (其中R 为D 形盒中运动的最大圆周半径)可得,n =qB 2R 22mU ,显然,质量大的加速次数少,获得的动能较小;由T =2πm qB 可知,T 与m q成正比,故加速质量大的交流电源的周期较大,选项A 正确.22.E2,K3,K4[2013·福建卷] 如图甲,空间存在一范围足够大的垂直于 xOy 平面向外的匀强磁场, 磁感应强度大小为B.让质量为m ,电量为q(q>0)的粒子从坐标原点O 沿 xOy 平面以不同的初速度大小和方向入射到该磁场中.不计重力和粒子间的影响.(1)若粒子以初速度v 1沿 y 轴正向入射,恰好能经过 x 轴上的A (a ,0)点,求v 1的大小;(2)已知一粒子的初速度大小为v (v>v 1) ,为使该粒子能经过A (a ,0) 点,其入射角θ(粒子初速度与x 轴正向的夹角)有几个?并求出对应的 sin θ值;(3)如图乙,若在此空间再加入沿 y 轴正向、大小为E 的匀强电场,一粒子从O 点以初速度v 0沿 y 轴正向发射.研究表明:粒子在 xOy 平面内做周期性运动,且在任一时刻,粒子速度的 x 分量v x 与其所在位置的 y 坐标成正比,比例系数与场强大小E 无关.求该粒子运动过程中的最大速度值v m .22.[解析] (1)带电粒子以速率v 在匀强磁场B 中做匀速圆周运动,半径为R ,有qvB =m v 2R① 当粒子沿y 轴正向入射,转过半个圆周至A 点,该圆周半径为R 1,有:R 1=a2②由②代入①式得v 1=qBa2m(2)如图,O 、A 两点处于同一圆周上,且圆心在x =a2的直线上,半径为R.当给定一个初速率v 时,有2个入射角,分别在第1、2象限,有sin θ′=sin θ=a2R④由①④式解得sin θ=aqB2mv⑤(3)粒子在运动过程中仅电场力做功,因而在轨道的最高点处速率最大,用y m 表示其y 坐标,由动能定理,有qEy m =12mv 2m -12mv 20⑥由题知,有v m =ky m ⑦若E =0时,粒子以初速度v 0沿y 轴正向入射,有 qv 0B =m v 2R 0⑧由⑥⑦⑧式解得 v m =E B+(E B)2+v 20。
[精品]2013年全国高考物理试题精编电磁感应及答案
![[精品]2013年全国高考物理试题精编电磁感应及答案](https://img.taocdn.com/s3/m/b0755accb8f67c1cfad6b8c7.png)
3(2013天津卷)..如图所示,纸面内有一矩形导体闭合线框动bcd.b边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN。
第一次b边平行MN进入磁场.线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1:第二次bc边平行MN进入磁场.线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则AQ1>Q2 q1=q2B Q1>Q2 q1>q2Q1=Q2 q1=q2D Q1=Q2 q1>q2答案:A16(2013安徽高考).如图所示,足够长平行金属导轨倾斜放置,倾角灯泡,电阻为1Ω。
一导体棒MN垂直于导轨放置,质量为02g,接入电路的电阻为1Ω,两端于导轨接触良好,与导轨间的动摩擦因为05。
在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为08T。
将导体棒MN由静止释放,运动一端时间后,小灯泡稳定发光,此后导体棒MN的运动速度及小灯泡消耗的电功率分别为(重力加速度g取10/2,370=06)A.25/ 1W B.5/ 1W.75/ 9W D.15/ 9W【答案】B11【2013上海高考】.如图,通电导线MN与单匝矩形线圈bcd共面,位置靠近b且相互绝缘。
当MN中电流突然减小时,线圈所受安培力的合力方向(A)向左(B)向右()垂直纸面向外(D)垂直纸面向里答案:B13【2013江苏高考】 (15 分)如图所示,匀强磁场中有一矩形闭合线圈bcd,线圈平面与磁场垂直已知线圈的匝N=100,边长b =1 0 、bc =0 5 ,电阻r =2 Ω磁感应强度B 在0 ~1 内从零均匀变到0 2 T在1 ~5 内从0 2 T 均匀变到-0 2 T,取垂直纸面向里为磁场的正方向求(1)0 5 时线圈内感应电动势的大小 E 和感应电流的方向;(2)在1~5 内通过线圈的电荷量q;(3)0~5 内线圈产生的焦耳热Q答案:36【2013广东高考】(18分)如图19()所示,在垂直于匀强磁场B 的平面内,半径为r的金属圆盘绕过圆心O的轴转动,圆心O和边缘通过电刷与一个电路连接,电路中的P是加上一定正向电压才能导通的电子元件。
北京市2013届高三物理各类考试分类汇编专题9磁场Word版含解析

专题9 磁场1.(2013·北京房山二模,20题)如图所示,在第Ⅱ象限内有水平向右的匀强电场,在第Ⅰ、Ⅳ象限内分别存在如图所示的匀强磁场,磁感应强度大小相等.有一个带正电的带电粒子以垂直于x 轴的初速度v 0从x 轴上的P 点进入匀强电场中,并且恰好与y 轴的正方向成45°角进入磁场,又恰好垂直进入第Ⅳ象限的磁场.已知OP 之间的距离为d ,则带电粒子在磁场中第二次经过x 轴时,在电场和磁场中运动的总时间为A .7πd 2v 0B .d v 0(2+5π)C .d v 0(2+3π2)D .d v 0(2+7π2) 【答案】D【KS5U 解析】根据题意作出粒子的运动轨迹,如图所示:粒子进入电场后做类平抛运动,从x 轴上的P 点进入匀强电场,恰好与y 轴成45°角射出电场,所以v=sin 45v ︒v 0v x =v 0tan45°=v 0,沿x 轴方向有:x=12at 2,所以2012at x y v t ==01122x v v ⨯=,故OA=2OP=2d ,在垂直电场方向做匀速运动,所以在电场中运动的时间为:t 1=02dv ,如图,AO 1为在磁场中运动的轨道半径,根据几何关系可知: AO 1=sin 45AO =︒,粒子从A 点进入磁场,先在第一象限运动13533608︒=︒个圆周而进入第四象限,后经过半个圆周,第二次经过x 轴,所以自进入磁场至第二次经过x 轴所用时间为t 2=031()27822rd v v ππ+⨯=,故自进入电场至在磁场中第二次经过x 轴的时间为t=t 1+t 2=d v 0(2+7π2),故D 正确. 2.(2013·北京丰台二模,19题) 如图是质谱仪的工作原理示意图。
粒子源(在加速电场上方,未画出)产生的带电粒子被加速电场加速后,进入速度选择器。
速度选择器内相互正交的匀强磁场和匀强电场的强度分别为B 和E 。
2013年全国各地高考物理试题分类汇编磁场

2013年全国各地高考招生物理试题汇编--磁场5(2013重庆卷).如题5图所示,一段长方体形导电材料,左右两端面的边长都为a 和b ,内有带电量为q 的某种自由运动电荷。
导电材料置于方向垂直于其前表面向里的匀强磁场中,内部磁感应强度大小为B 。
当通以从左到右的稳恒电流I 时,测得导电材料上、下表面之间的电压为U ,且上表面的电势比下表面的低。
由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为 A .aU q IB ,负 B .aU q IB,正 C .bU q IB ,负 D .bUq IB,正 答案:C21【2013广东高考】.如图9,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进人匀强磁场,最后打到屏P 上。
不计重力。
下列说法正确的有 A .a 、b 均带正电B .a 在磁场中飞行的时间比b 的短C .a 在磁场中飞行的路程比b 的短D .a 在P 上的落点与O 点的距离比b 的近 答案:AD13【2013上海高考】.如图,足够长的直线ab 靠近通电螺线管,与螺线管平行。
用磁传感器测量ab 上各点的磁感应强度B ,在计算机屏幕上显示的大致图像是答案:C15【2013江苏高考】. (16 分)在科学研究中,可以通过施加适当的电场和磁场来实现对带电粒子运动的控制. 如题15-1 图所示的xOy 平面处于匀强电场和匀强磁场中,电场强度E 和磁感应强度B 随时间t 作周期性变化的图象如题15-2 图所示. x 轴正方向为E 的正方向,垂直纸面向里为B 的正方向. 在坐标原点O 有一粒子P,其质量和电荷量分别为m 和+q. 不计重力. 在t =2T时刻释放P,它恰能沿一定轨道做往复运动. (1)求 P 在磁场中运动时速度的大小 v 0; (2)求B 0 应满足的关系; (3)在t 0(0<t 0 <2T)时刻释放P,求P 速度为零时的坐标.答案:26【2013上海高考】.(3分)演示地磁场存在的实验装置(由环形线圈,微电流传感器,DIS 等组成)如图所示。
2013年高考物理试题分类汇编(磁场部分)

2013磁场试题(2013大纲理综)26.(20分)如图所示,虚线OL 与y 轴的夹角为θ=60°,在此角范围内有垂直于xOy 平面向外的匀强磁场,磁感应强度大小为B 。
一质量为m 、电荷量为q (q >0)的粒子从左侧平行于x 轴射入磁场,入射点为M 。
粒子在磁场中运动的轨道半径为R 。
粒子离开磁场后的运动轨迹与x 轴交于P 点(图中未画出),且OD =R 。
不计重力。
求M 点到O 点的距离和粒子在磁场中运动的时间。
【答案】(1R-π6m qB (α30=︒)(1R+π2m qB(α90=︒) 【解析】根据题意,粒子进入磁场后做匀速圆周运动,设运动轨迹交虚线OL 于A 点,圆心在y 轴上的C 点,AC 与y 轴的夹角为α;粒子从A 点射出后,运动轨迹交x 轴的P 点,设AP 与x 轴的夹角为β,如图所示。
有 (判断出圆心在y 轴上得1分)2qvB m R =v(1分) 周期为 2πm T qB = (1分) 过A 点作x 、y 轴的垂线,垂足分别为B 、D 。
由几何知识得sin αAD R =,cot 60OD AD =︒,cot β=,OP AD BP =+αβ= (2分)联立得到sin αα1+= (2分) 解得 α30=︒,或α90=︒ (各2分) 设M 点到O 点的距离为h ,有 sin αAD R =h R OC =-,cos αR =-=-联立得到cos(α30)h R R =-+︒ (1分) 解得(1h R =- (α30=︒) (2分)(1h R =+ (α90=︒) (2分)当α30=︒时,粒子在磁场中运动的时间为π126T m t qB== (2分) 当α90=︒时,粒子在磁场中运动的时间为π42T m t qB== (2分)(2013新课标1理综)18.如图,半径为R 的圆死一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外。
一电荷量为q (q >0)、质量为m 的粒子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为R /2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题九 磁场
考点一 磁场 磁场力
1.(2013安徽理综,15,6分)图中a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截
面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示。
一带正
电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方
向是( )
A.向上
B.向下
C.向左
D.向右
答案 B
2.(2013上海单科,11,3分)如图,通电导线MN 与单匝矩形线圈abcd 共面,位置靠近ab 且
相互绝缘。
当MN 中电流突然减小时,线圈所受安培力的合力方向( )
A.向左
B.向右
C.垂直纸面向外
D.垂直纸面向里
答案 B
考点二 带电粒子在匀强磁场中的运动
3.(2013课标Ⅱ,17,6分)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直于横截面。
一质量为m 、电荷量为q(q>0)的粒子以速率v 0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°。
不计重力,该磁场的磁感应强度大小为( )
A.
3m v 03qR B.mv 0qR C.
3m v 0qR D.
3mv 0qR
答案 A
4.(2013课标Ⅰ,18,6分)如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强
度大小为B,方向垂直于纸面向外。
一电荷量为q(q>0)、质量为m 的粒子沿平行于直径ab 的
方向射入磁场区域,射入点与ab的距离为R
2。
已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)( )
A.qBR
2m B.qBR
m
C.3qBR
2m
D.2qBR
m
答案B
5.(2013广东理综,21,4分)(多选)如图,两个初速度大小相同的同种离子a和b,
从O点沿垂直磁场方向进入匀强磁场,最后打到屏P上。
不计重力。
下列说法
正确的有()
A.a、b均带正电
B.a在磁场中飞行的时间比b的短
C.a在磁场中飞行的路程比b的短
D.a在P上的落点与O点的距离比b的近
答案AD
6.(2013天津理综,11,18分)一圆筒的横截面如图所示,其圆心为O。
筒内有垂直于纸面向里的匀强磁场,磁感应强度为B。
圆筒下面有相距为d的平行金属板M、N,其中M板带正电荷,N板带等量负电荷。
质量为m、电荷量为q的带正电粒子自M板边缘的P处由静止释放,经N板的小孔S以速度v沿半径SO方向射入磁场中。
粒子与圆筒发生两次碰撞后仍从S孔射出,设粒子与圆筒碰撞过程中没有动能损失,且电荷量保持不变,在不计重力的情况下,求:
(1)M、N间电场强度E的大小;
(2)圆筒的半径R;
(3)保持M、N间电场强度E不变,仅将M板向上平移2
3
d,粒子仍从M板边缘的P处由静止释放,粒子自进入圆筒至从S孔射出期间,与圆筒的碰撞次数n。
答案(1)mv 2
2qd (2)3mv
3qB
(3)3
7.(2013安徽理综,23,16分)如图所示的平面直角坐标系xOy,在第Ⅰ象限内有平行于y 轴的匀强电场,方向沿y 轴正方向;在第Ⅳ象限的正三角形abc 区域内有匀强磁场,方向垂直于xOy 平面向里,正三角形边长为L,且ab 边与y 轴平行。
一质量为m 、电荷量为q 的粒子,从y 轴上的P(0,h)点,以大小为v 0的速度沿x 轴正方向射入电场,通过电场后从x 轴上的a(2h,0)点进入第Ⅳ象限,又经过磁场从y 轴上的某点进入第Ⅲ象限,且速度与y 轴负方向成45°角,不计粒子所受的重力。
求:
(1)电场强度E 的大小;
(2)粒子到达a 点时速度的大小和方向;
(3)abc 区域内磁场的磁感应强度B 的最小值。
答案 (1)mv 022qℎ (2) 2v 0 指向第Ⅳ象限与x 轴成45°角 (3)2mv 0qL
考点三 带电粒子在复合场中的运动
8.(2013重庆理综,5,6分)如图所示,一段长方体形导电材料,左右两端面的边长
都为a 和b,内有带电量为q 的某种自由运动电荷。
导电材料置于方向垂直于
其前表面向里的匀强磁场中,内部磁感应强度大小为B 。
当通以从左到右的稳
恒电流I 时,测得导电材料上、下表面之间的电压为U,且上表面的电势比下表面的低。
由此可得该导电材料单位体积内自由运动电荷数及自由运动电荷的正负分别为( )
A.IB |q |aU ,负
B.IB |q |aU ,正
C.IB |q |bU ,负
D.IB |q |bU
,正 答案 C
9.(2013浙江理综,20,6分)(多选)在半导体离子注入工艺中,初速度可忽略的磷离子P +和P 3+,经电压为U 的电场加速后,垂直进入磁感应强度大小为B 、方向垂直纸面向里、有一定宽度的匀强磁场区域,如图所示。
已知离子P +在磁场中转过θ=30°后从磁场右边界射出。
在电场和磁场中运动时,离子P +和P 3+( )
A.在电场中的加速度之比为1∶1
B.在磁场中运动的半径之比为 3∶1
C.在磁场中转过的角度之比为1∶2
D.离开电场区域时的动能之比为1∶3
答案 BCD
10.(2013山东理综,23,18分)如图所示,在坐标系xOy 的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xOy 平面向里;第四象限内有沿y 轴正方向的匀强电场,电场强度大小为E 。
一带电量为+q 、质量为m 的粒子,自y 轴上的P 点沿x 轴正方向射入第四象限,经x 轴上的Q 点进入第一象限,随即撤去电场,以后仅保留磁场。
已知OP=d,OQ=2d 。
不计粒子重力。
(1)求粒子过Q 点时速度的大小和方向。
(2)若磁感应强度的大小为一确定值B 0,粒子将以垂直y 轴的方向进入第二象限,求B 0。
(3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q 点,且速度与第一次过Q 点时相同,求该粒子相邻两次经过Q 点所用的时间。
答案(1)2qEd
m 与x轴正方向夹角45°(2)mE
2qd
(3)(2+π)2md
qE
11.(2013四川理综,11,19分)如图所示,竖直平面(纸面)内有直角坐标系xOy,x轴沿水平方向。
在x≤0的区域
内存在方向垂直于纸面向里,磁感应强度大小为B1的匀强磁场。
在第二象限紧贴y轴固定放置长为l、表面粗糙的不带电绝缘平板,平板平行于x轴且与x轴相距h。
在第一象限内的某区域存在方向相互垂直的匀强磁场(磁感应强度大小为B2、方向垂直于纸面向外)和匀强电场(图中未画出)。
一质量为m、不带电的小球Q 从平板下侧A点沿x轴正向抛出;另一质量也为m、带电量为q的小球P从A点紧贴平板沿x轴正向运动,
变为匀速运动后从y轴上的D点进入电磁场区域做匀速圆周运动,经1
4
圆周离开电磁场区域,沿y轴负方向运动,然后从x轴上的K点进入第四象限。
小球P、Q相遇在第四象限的某一点,且竖直方向速度相同。
设运动过程中小球P电量不变,小球P和Q始终在纸面内运动且均看作质点,重力加速度为g。
求:
(1)匀强电场的场强大小,并判断P球所带电荷的正负;
(2)小球Q的抛出速度v0的取值范围;
(3)B1是B2的多少倍?
答案(1)mg
q 正(2)0<v0≤2gℎ
2ℎ
(l+m
2g
B1B2q2
)
(3)0.5
12.(2013福建理综,22,20分)如图甲,空间存在一范围足够大的垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。
让质量为m,电量为q(q>0)的粒子从坐标原点O沿xOy平面以不同的初速度大小和方向入射到该磁场中。
不计重力和粒子间的影响。
(1)若粒子以初速度v1沿y轴正向入射,恰好能经过x轴上的A(a,0)点,求v1的大小;
(2)已知一粒子的初速度大小为v(v>v1),为使该粒子能经过A(a,0)点,其入射角θ(粒子初速度与x轴正向的夹角)有几个?并求出对应的sinθ值;
(3)如图乙,若在此空间再加入沿y轴正向、大小为E的匀强电场,一粒子从O点以初速度v0沿y轴正向发射。
研究表明:粒子在xOy平面内做周期性运动,且在任一时刻,粒子速度的x分量v x与其所在位置的y坐标成正比,比例系数与场强大小E无关。
求该粒子运动过程中的最大速度值v m。
答案(1)qBa
2m (2)2个aqB
2mv
(3)E
B
+(E
B
)2+v02。