2015年高考数学创新设计精品习题专题训练1-1-3
2015年高考数学创新设计精品试题专题训练1-1-4

则g′(x)≤0在[1,2]上恒成立,
即-+2x+≤0在[1,2]上恒成立,
即aห้องสมุดไป่ตู้-x2在[1,2]上恒成立.
令h(x)=-x2,
在[1,2]上h′(x)=--2x=-<0,
所以h(x)在[1,2]上为减函数,h(x)min=h(2)=-.
所以a≤-.
10.(2014·北京西城区一模)已知函数f(x)=lnx-,其中a∈R.
解析f′(x)=x2-4x,由f′(x)>0,得x>4或x<0.
∴f(x)在(0,4)上递减,在(4,+∞)上递增,∴当x∈[0,+∞)时,f(x)min=f(4).∴要使f(x)+5≥0恒成立,只需f(4)+5≥0恒成立即可,代入解之得m≥.
答案A
4.已知函数f(x)=x3+ax2+3x+1有两个极值点,则实数a的取值范围是().
A.(,+∞)B.(-∞,-)
C.(-,)D.(-∞,-)∪(,+∞)
解析f′(x)=x2+2ax+3.
由题意知方程f′(x)=0有两个不相等的实数根,
所以Δ=4a2-12>0,
解得:a>或a<-.
答案D
二、填空题
5.已知函数f(x)=x2+mx+lnx是单调递增函数,则m的取值范围是________.
(2)由f(x)>-x+2,得lnx->-x+2,
即a<xlnx+x2-2x.
设函数g(x)=xlnx+x2-2x,
则g′(x)=lnx+2x-1.
因为x∈(1,+∞),
所以lnx>0,2x-1>0,
所以当x∈(1,+∞)时,g′(x)=lnx+2x-1>0,
故函数g(x)在x∈(1,+∞)上单调递增,
【创新设计】(江西专用)2015高考数学二轮复习 专题训练 突破练1 理

突破练一1.已知函数f (x )=sin x ·cos ⎝⎛⎭⎪⎫x -π6+cos 2x -12.(1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=12,b +c =3.求a 的最小值.解 (1)f (x )=sin x ⎝⎛⎭⎪⎫32cos x +12sin x +cos 2x -12=32sin x cos x +12cos 2x =12⎝ ⎛⎭⎪⎫32sin 2x +12cos 2x +14=12sin ⎝ ⎛⎭⎪⎫2x +π6+14. ∴函数f (x )的最大值为34.当f (x )取最大值时sin ⎝⎛⎭⎪⎫2x +π6=1, ∴2x +π6=2k π+π2(k ∈Z ),解得x =k π+π6,k ∈Z .故x 的取值集合为⎩⎨⎧⎭⎬⎫x |x =k π+π6,k ∈Z .(2)由题意f (A )=12sin ⎝ ⎛⎭⎪⎫2A +π6+14=12, 化简得sin (2A +π6)=12.∵A ∈(0,π),∴2A +π6∈(π6,13π6),∴2A +π6=5π6,∴A =π3.在△ABC 中,根据余弦定理,得a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =3,知bc ≤⎝⎛⎭⎪⎫b +c 22=94,即a 2≥94.∴当b =c =32时,a 取最小值32.2.某市为“市中学生知识竞赛”进行选拔性测试,且规定:成绩大于或等于90分的有参赛资格,90分以下(不包括90分)的被淘汰,若有500人参加测试,学生成绩的频率分布直方图如图.(1)求获得参赛资格的人数;(2)根据频率分布直方图,估算这500名学生测试的平均成绩;(3)若知识竞赛分初赛和复赛,在初赛中每人最多有5次选题答题的机会,累计答对3题或答错3题即终止,答对3题者方可参加复赛,已知参赛者甲答对每一个问题的概率都相同,并且相互之间没有影响,已知他连续两次答错的概率为19,求甲在初赛中答题个数ξ的分布列及数学期望E (ξ).解 (1)由频率分布直方图得,获得参赛资格的人数为500×(0.005 0+0.004 3+0.003 2)×20=125人.(2)设500名学生的平均成绩为x ,则x =[(30+50)×0.0 065+(50+70)× 0.0 140+(70+90)×0.0 170+(90+110)×0.0 050+(110+130)×0.0 043+(130+150)×0.0 032]×12×20=74.84分.(3)设学生甲答对每道题的概率为P (A ),则[1-P (A )]2=19,P (A )=23.学生甲答题个数ξ的可能值为3,4,5.则P (ξ=3)=⎝ ⎛⎭⎪⎫233+⎝ ⎛⎭⎪⎫133=13,P (ξ=4)=C 13⎝ ⎛⎭⎪⎫13⎝ ⎛⎭⎪⎫233+C 13⎝ ⎛⎭⎪⎫23⎝ ⎛⎭⎪⎫133=1027, P (ξ=5)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫232=827.所以ξ的分布列为E (ξ)=3×13+4×1027+5×27=27. 3.数列{a n }的前n 项和为S n ,若a n +1=-4S n +1,a 1=1.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n . 解 (1)当n ≥2时,a n =-4S n -1+1, 又a n +1=-4S n +1, ∴a n +1-a n =-4a n ,即a n +1a n=-3,n ≥2, 又a 2=-4a 1+1=-3,a 1=1,∴数列{a n }是首项为a 1=1,公比为q =-3的等比数列, ∴a n =(-3)n -1.(2)由(1)可得b n =n ·(-3)n -1,T n =1·(-3)0+2·(-3)1+3·(-3)2+…+(n -1)·(-3)n -2+n ·(-3)n -1,-3T n =1·(-3)1+2·(-3)2+…+(n -2)·(-3)n -2+(n -1)·(-3)n -1+n (-3)n,∴4T n =1+(-3)1+(-3)2+…+(-3)n -1-n ·(-3)n,所以,T n =1-n +-n16.4.如图,在直角梯形ABCP 中,AP ∥BC ,AP ⊥AB ,AB =BC =12AP =2,D 是AP 的中点,E 、G分别为PC 、CB 的中点,F 是PD 上的点,将△PCD 沿CD 折起,使得PD ⊥平面ABCD . (1)若F 是PD 的中点,求证:AP ∥平面EFG ;(2)当二面角G -EF -D 的大小为π4时,求FG 与平面PBC 所成角的余弦值.(1)证明 F 是PD 的中点时,EF ∥CD ∥AB ,EG ∥PB ,∴AB ∥平面EFG ,PB ∥平面EFG ,AB ∩PB =B ,∴平面PAB ∥平面EFG ,AP ⊂平面PAB ,∴AP ∥平面EFG .(2)解 建立如图所示的坐标系,则有G (1,2,0),C (0,2,0),P (0,0,2),E (0,1,1),B (2,2,0),设F (0,0,a ),GF →=(-1,-2,a ),GE →=(-1,-1,1),设平面EFG 的法向量n 1=(x ,y,1),则有⎩⎪⎨⎪⎧-x -2y +a =0,-x -y +1=0,解得⎩⎪⎨⎪⎧x =2-a ,y =a -1,∴n 1=(2-a ,a -1,1).取平面EFD 的法向量n 2=(1,0,0),依题意, cos 〈n 1,n 2〉=2-a -a2+a -2+1=22, ∴a =1,于是GF →=(-1,-2,1).设平面PBC 的法向量n 3=(m ,n,1),PC →=(0,2,-2),BC →=(-2,0,0),则有⎩⎪⎨⎪⎧2n -2=0,-2m =0,解得⎩⎪⎨⎪⎧m =0,n =1.∴n 3=(0,1,1).设FG 与平面PBC 所成角为θ,则有sin θ=|cos 〈GF →,n 3〉|=16·2=36,故有cos θ=336. 5.过抛物线y 2=4x 的焦点F 作倾斜角为锐角的直线l ,l 与抛物线的一个交点为A ,与抛物线的准线交于点B ,且AF →=FB →.(1)求以AB 为直径的圆被抛物线的准线截得的弦长;(2)平行于AB 的直线与抛物线相交于C 、D 两点,若在抛物线上存在一点P ,使得直线PC 与PD 的斜率之积为-4,求直线CD 在y 轴上截距的最大值.解 (1)过A 作y 2=4x 准线的垂线AH ,垂足为H ,则|AH |=|AF |=12|AB |,所以直线AB 的方程为y =3(x -1),所以B (-1,-23),|BF |=4,所以,以AB 为直径的圆为(x -1)2+y 2=16,所以,截得的弦长为4 3.(2)设直线CD :y =3x +m ,P ⎝ ⎛⎭⎪⎫y 204,y 0,C ⎝ ⎛⎭⎪⎫y 214,y 1, D ⎝ ⎛⎭⎪⎫y 224,y 2,把y =3x +m 代入y 2=4x ,消去x 得,3y 2-4y +4m =0,则y 1+y 2=43,y 1·y 2=4m 3,Δ=16-163m >0,所以m <33, 所以,k PC ·k PD =4y 1+y 0·4y 2+y 0=-4, 所以y 1·y 2+y 0(y 1+y 2)+y 20=-4, 所以y 20+4y 03+4m3=-4, 所以3y 20+4y 0+(4m +43)=0.所以Δ=16-43(4m +43)≥0,所以m ≤-233当m =-233时,直线CD :y =3x -233,所以直线在y 轴上截距最大值为-23 3.6.已知函数f (x )=ln x .(1)求证:当0<x <1时,f (1+x )<x -x 36;(2)设g (x )=ax -(x +1)f (x +1),若g (x )的最大值不大于0,求a 的取值集合; (3)求证:(1+1)(1+12) (1)1n)>e n -25(n ∈N *).(1)证明 要证f (x +1)<x -16x 3(0<x <1),即证:ln(x +1)<x -16x 3(0<x <1),设u (x )=x -16x 3-ln(x +1)(0<x <1),则u ′(x )=-x x +x -x +>0,所以,u (x )在(0,1)递增,即u (x )>u (0)=0. 从而f (x +1)<x -16x 3(0<x <1)成立.(2)解 g (x )=ax -(x +1)ln(x +1),∴g ′(x )=a -[1+ln(x +1)],令g ′(x 0)=0,则x 0=ea -1-1.∴g (x )max =g 极大值0x ,则a =x +1,∴g (x )max =e x-(x +1),设h (x )=e x -(x +1),则h ′(x )=e x-1.令h ′(x )=0,则x =0.所以,h (x )又因为g (x )max =ea -1-a ≤0,所以,e a -1-a =0,即:a =1.(3)证明 要证(1+1)⎝⎛⎭⎪⎫1+12…+⎝⎛⎭⎪⎫1+1n >e ,即证:ln(1+1)+ln ⎝⎛⎭⎪⎫1+12+…+ln ⎝⎛⎭⎪⎫1+1n >n -25, 由(2)可知ln(x +1)≥xx +1,令x =1n, 当n ≥3时,ln ⎝ ⎛⎭⎪⎫1+1n ≥11+n >1n -1+n =n -n -1, 所以,ln ⎝⎛⎭⎪⎫1+12≥2-1,ln ⎝ ⎛⎭⎪⎫1+13>3-2,…,ln ⎝⎛⎭⎪⎫1+1n >n -n -1, 所以,ln(1+1)+ln ⎝ ⎛⎭⎪⎫1+12+…+ln ⎝ ⎛⎭⎪⎫1+1n >n -1+ln 2>n -25,即:(1+1)⎝ ⎛⎭⎪⎫1+12…(1+1n )>e成立.。
【创新设计】(人教通用)2015高考数学二轮复习 专题整合限时练1 理(含最新原创题,含解析)

【创新设计】(人教通用)2015高考数学二轮复习 专题整合限时练1理(含最新原创题,含解析)(建议用时:40分钟) 一、选择题1.若A ={x |2<2x<16,x ∈Z },B ={x |x 2-2x -3<0},则A ∩B 中元素个数为 ( ).A .0B .1C .2D .3解析 因为A ={x |2<2x<16,x ∈Z }={x |1<x <4,x ∈Z }={2,3},B ={x |x 2-2x -3<0}={x |-1<x <3},所以A ∩B ={2}. 答案 B2.若(1+2a i)i =1-b i ,其中a ,b ∈R ,则|a +b i|=( ).A.12+i B . 5 C.52D .54解析 因为(1+2a i)i =1-b i ,所以-2a +i =1-b i ,a =-12,b =-1,|a +b i|=|-12-i|=52. 答案 C3.我校要从4名男生和2名女生中选出2人担任H 7N 9禽流感防御宣传工作,则在选出的宣传者中男、女都有的概率为( ). A.815B .12 C.25D .415解析 从4名男生和2名女生中选出2人担任H 7N 9禽流感防御宣传工作,总的方法数为C 04C 22+C 14C 12+C 24C 02=15,其中选出的宣传者中男、女都有的方法数为C 14C 12=8,所以,所求概率为815.答案 A4.等差数列{a n }的前n 项和为S n ,若a 2+a 4+a 6=12,则S 7的值是( ).A .21B .24C .28D .7解析 ∵a 2+a 4+a 6=3a 4=12, ∴a 4=4, ∴S 7=a 1+a 72×7=7a 4=28.答案 C5.设a ,b ∈R ,则“(a -b )·a 2<0”是“a <b ”的( ).A .充分非必要条件B .必要非充分条件C .充要条件D .既不充分也不必要条件解析 由(a -b )·a 2<0得,a ≠0且a <b ;反之,由a <b ,不能推出(a -b )·a 2<0,即“(a -b )·a 2<0”是“a <b ”的充分非必要条件. 答案 A6.抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是( ).A.12 B .32C .1D . 3解析 抛物线y 2=4x 的焦点为(1,0),双曲线x 2-y 23=1的渐近线为x ±33y =0,所以抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是|1±33×0|1+332=32. 答案 B7.已知a 为执行如图所示的程序框图输出的结果,则二项式⎝⎛⎭⎪⎫a x -1x 6的展开式中含x 2项的系数是( ).A .192B .32C .96D .-192解析 由程序框图可知,a 计算的结果依次为2,-1,12,2,…,成周期性变化,周期为3;当i =2 011时运行结束,2 011=3×670+1,所以a =2.所以,⎝⎛⎭⎪⎫a x -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6,T r +1=C r 6(2x )6-r⎝⎛⎭⎪⎫-1x r=(-1)r C r 6·26-r x 3-r, 令3-r =2,得r =1,所以,含x 2项的系数是(-1)C 1625=-192. 答案 D8.已知函数f (x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象如图所示,则f (x )的解析式为( ).A .f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3B .f (x )=sin ⎝ ⎛⎭⎪⎫2x -π3C .f (x )=sin ⎝⎛⎭⎪⎫2x +π6 D .f (x )=sin ⎝⎛⎭⎪⎫2x -π6 解析 由图象可知A =1,且14T =14×2πω=7π12-π3=π4,∴ω=2,f (x )=sin (2x +φ). 把⎝⎛⎭⎪⎫7π12,-1代入得:-1=sin ⎝ ⎛⎭⎪⎫2×7π12+φ,又∵|φ|<π2,∴7π6+φ=3π2,∴φ=π3,∴f (x )=sin (2x +π3).答案 A9.已知O 是坐标原点,点A (-2,1),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2,x ≤1,y ≤2上的一个动点,则O A →·O M →的取值X 围是( ). A .[-1,0]B .[-1,2]C .[0,1]D .[0,2]解析 ∵A (-2,1),M (x ,y ),∴z =O A →·O M →=-2x +y ,作出不等式组对应的平面区域及直线-2x +y =0,如图所示.平移直线-2x +y =0,由图象可知当直线经过点N (1,1)时,z min =-2+1= -1;经过点M (0,2)时,z max =2. 答案 B10.如图F 1,F 2是双曲线C 1:x 2-y 23=1与椭圆C 2的公共焦点,点A 是C 1,C 2在第一象限的公共点.若|F 1F 2|=|F 1A |,则C 2的离心率是( ).A.13 B .23 C.15D .25解析 由题意知,|F 1F 2|=|F 1A |=4,∵|F 1A |-|F 2A |=2,∴|F 2A |=2,∴|F 1A |+|F 2A |=6,∵|F 1F 2|=4,∴C 2的离心率是46=23. 答案 B11.已知某几何体的三视图如图所示,其中俯视图和侧视图都是腰长为4的等腰直角三角形正视图为直角梯形,则此几何体的体积V 为( ).A.323 B .403C.163D .40解析 观察三视图可知,该几何体为四棱锥,底面为直角梯形,两个侧面与底面垂直,棱锥的高为4,由图中数据得该几何体的体积为13×4+12×4×4=403.答案 B12.已知定义在R 上的函数f (x )是奇函数且满足f ⎝ ⎛⎭⎪⎫32-x =f (x ),f (-2)=-3,数列{a n }满足a 1=-1,且S n n =2×a n n+1(其中S n 为{a n }的前n 项和),则f (a 5)+f (a 6)=( ). A .-3 B .-2 C .3D .2解析 ∵函数f (x )是奇函数,∴f (-x )=-f (x ),∵f (32-x )=f (x ),∴f (32-x )=-f (-x ),∴f (3+x )=f (x ),∴f (x )是以3为周期的周期函数. ∵S n n =2×a n n+1,∴S n =2a n +n ,S n -1=2a n -1+(n -1)(n ≥2). 两式相减并整理得出a n =2a n -1-1, 即a n -1=2(a n -1-1),∴数列{a n -1}是以2为公比的等比数列,首项为a 1-1=-2,∴a n -1=-2·2n -1=-2n ,a n =-2n+1,∴a 5=-31,a 6=-63.∴f (a 5)+f (a 6)=f (-31)+f (-63)=f (2)+f (0)=f (2)=-f (-2)=3. 答案 C 二、填空题13.已知向量p =(2,-1),q =(x,2),且p ⊥q ,则|p +λq |的最小值为__________.解析 ∵p ·q =2x -2=0,∴x =1, ∴p +λq =(2+λ,2λ-1), ∴|p +λq |=2+λ2+2λ-12=5λ2+5≥ 5.答案514.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若a =2,b =2,sin B +cos B =2,则角A 的大小为________.解析 由sin B +cos B =2得,2sin ⎝ ⎛⎭⎪⎫B +π4=2,sin ⎝⎛⎭⎪⎫B +π4=1,而B ∈(0,π),所以B =π4.由正弦定理得,sin A =a sin B b =12,又A +B +C =π,A ∈⎝⎛⎭⎪⎫0,3π4,∴A =π6.答案π615.若曲线y =x 在点(m ,m)处的切线与两坐标轴围成三角形的面积为18,则m =________. 解析 由y =x ,得y ′=-12x,所以,曲线y =x在点(m ,m)处的切线方程为y -m=-12m(x -m ),由已知,得12×32m×3m =18(m >0),m =64.答案 6416.已知a >0,b >0,方程为x 2+y 2-4x +2y =0的曲线关于直线ax -by -1=0对称,则3a +2bab的最小值为________.解析 该曲线表示圆心为(2,-1)的圆,直线ax -by -1=0经过圆心,则2a +b -1=0,即2a +b =1,所以 3a +2b ab =3b +2a =(3b +2a )(2a +b )=6a b +2b a+7≥26a b ·2ba+7=7+43(当且仅当a =2-3,b =23-3时等号成立). 答案 7+4 3。
2015年高考数学创新设计精品试题专题训练1-6-1

答案96
7.(2014·德州模拟)在区间[-2,3]上任取一个数a,则函数f(x)=x3-ax2+(a+2)x有极值的概率为________.
专题六概率与统计
第1讲 统计与概率拟)从8名女生和4名男生中,抽取3名学生参加某档电视节目,如果按性别比例分层抽样,则不同的抽取方法数为().
A.224B.112
C.56D.28
解析根据分层抽样,应抽取男生1名,女生2名,抽取2名女生1名男生的方法有CC=112.
B.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”
C.有97.5%以上的把握认为“爱好该项运动与性别有关”
D.有97.5%以上的把握认为“爱好该项运动与性别无关”
解析因为4.762>3.841,所以在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”,或者认为有95%以上的把握认为“爱好该项运动与性别有关”,因此,只能选A.
④对分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大.
其中真命题的有____________(填序号).
解析①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是系统抽样,不是分层抽样.故①是假命题;
②两个随机变量的线性相关性越强,相关系数的绝对值越接近于1.故②是真命题;
答案B
2.(2014·北京顺义区统练)某商场在国庆黄金周的促销活动中,对10月1日9时至14时的销售额进行统计,其频率分布直方图如图所示.已知9时至10时的销售额为3万元,则11时至12时的销售额为().
2015年高考数学创新设计精品试题专题训练1-1-3

二、填空题
5.(2014·盐城模拟)已知f(x)=x2+2xf′(2 014)+2 014lnx,则f′(2 014)=_____.
解析因为f′(x)=x+2f′(2 014)+,
所以f′(2 014)=2 014+2f′(பைடு நூலகம் 014)+,
即f′(2 014)=-(2 014+1)=-2 015.
答案-2 015
6.函数f(x)=2mcos2+1的导函数的最大值等于1,则实数m的值为________.
解析显然m≠0,所以f(x)=2mcos2+1
=m+m+1=mcosx+m+1,
因此f′(x)=-msinx,其最大值为1,故有m=±1.
答案±1
7.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-alnx在(1,2)上为增函数,则a的值等于________.
(2)由(1)知,f(x)=(x-5)2+6lnx(x>0),
f′(x)=x-5+=.
令f′(x)=0,解得x=2或3.
当0<x<2或x>3时,f′(x)>0,
故f(x)在(0,2),(3,+∞)上为增函数;
当2<x<3时,f′(x)<0,
故f(x)在(2,3)上为减函数.
由此可知f(x)在x=2处取得极大值f(2)=+6ln 2,在x=3处取得极小值f(3)=2+6ln 3.
解析∵函数f(x)=x2-ax+3在(0,1)上为减函数,
∴≥1,得a≥2.
又∵g′(x)=2x-,依题意g′(x)≥0在x∈(1,2)上恒成立,得2x2≥a在x∈(1,2)上恒成立,有a≤2,∴a=2.
答案2
8.(2014·绍兴模拟)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值为________.
【创新设计】(江苏专用)2015高考数学二轮复习 专题整合突破练1 理(含最新原创题,含解析)

又CD⊂平面PCD,所以平面PAC⊥平面PCD.
(2)取AE中点G,连接FG,BG.
因为F为ED的中点,所以FG∥AD且FG= AD.
在△ACD中,AC⊥CD,∠DAC=60°,
所以AC= AD,所以BC= AD.
在△ABC中,AB=BC=AC,所以∠ACB=60°,
T6=T5b6=T3b4b5b6=T3b1b2b3= T3,
……
T3n+1+T3n+2+T3n+3=T3n-2b3n-1b3nb3n+1+
T3n-1b3nb3n+1b3n+2+T3nb3n+1b3n+2b3n+3
=T3n-2b1b2b3+T3n-1b1b2b3+T3nb1b2b3
= (T3n-2+T3n-1+T3n),
代入上式可得2x1x2+2m-(m+1)(x1+x2)=0,
∴2× +2m-(m+1)× =0,即2m-6=0,∴m=3,
∴存在Q(3,0)使得直线QA,QB的倾斜角互为补角.
4.某创业投资公司拟投资开发某种新能源产品,估计能获得10万元到1 000万元的投资收益.现准备制定一个对科研课题组的奖励方案:奖金y(单位:万元)随投资收益x(单位:万元)的增加而增加,且奖金不超过9万元,同时奖金不超过投资收益的20%.
(1)若建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的基本要求,并分析函数y= +2是否符合公司要求的奖励函数模型,并说明原因;
(2)若该公司采用模型函数y= 作为奖励函数模型,试确定最小的正整数a的值.
解(1)设奖励函数模型为y=f(x),按公司对函数模型的基本要求,函数y=f(x)满足:
故该函数模型不符合公司要求.
2015年高考数学创新设计精品习题专题训练1-2-2

7.(2014·天津卷)在△ABC中,内角A,B,C所对的边分别是a,b,c.已知b-c=a,2sinB=3sinC,则cosA的值为________.
解析∵2sinB=3sinC,由正弦定理得2b=3c,∴b=c,
又b-c=a,∴a=4(b-c),∴a=2c.
∴cosA===-.
答案-
8.(2014·江苏卷)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是________.
答案A
2.(2014·益阳模拟)在△ABC中,角A,B,C所对的边分别为a,b,c.若asinA+bsinB-csinC=asinB,则角C等于().
A.B.
C.D.
解析由正弦定理,得a2+b2-c2=ab,
所以cosC==,又0<C<π,所以C=.
答案A
3.(2014·吉林省实验中学一模)在△ABC中,sin(A+B)·sin(A-B)=sin2C,则此三角形的形状是().
答案A
二、填空题
6.(2014·福建卷)在△ABC中,A=60°,AC=4,BC=2,则△ABC的面积等于________.
解析由余弦定理得,BC2=AB2+AC2-2AB·AC·cosA,
∴12=AB2+16-2×AB×4×cos 60°,解得AB=2,
∴S△ABC=·AB·AC·sinA=×2×4×sin 60°=2.
第2讲 解三角形问题
一、选择题
1.(2014·西安模拟)△ABC的三个内角A,B,C所对的边分别为a,b,c,且
asinAsinB+bcos2A=a,则因为asinAsinB+bcos2A=a,所以由正弦定理,得sinAsinAsinB+sinB=sinA,即sinB=sinA,所以=.
【三维设计】2015年高考数学总复习创新问题专项训练(二)文北师大版

创新问题专项训练(二)一、选择题 1.用C (A )表示非空集合A 中的元素个数,定义A *B =⎩⎪⎨⎪⎧C A -C B ,C A C B ,C B -C A ,C AC B ,若A ={x |x 2-ax -1=0,a ∈R },B ={x ||x 2+bx +1|=1,b ∈R },设S ={b |A *B =1},则C (S )等于( )A .4B .3C .2D .12.已知集合A ={(x ,y )||x -2|+|y -3|≤1},集合B ={(x ,y )|x 2+y 2+Dx +Ey +F ≤0,D 2+E 2-4F >0},若集合A ,B 恒满足“A ⊆B ”,则集合B 中的点所形成的几何图形面积的最小值是( )A.22πB .πC.12πD.2π3.已知数组(x 1,y 1),(x 2,y 2),…,(x 10,y 10)满足线性回归方程y ^=b ^x +a ^,则“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”是“x 0=x 1+x 2+ … +x 1010,y 0=y 1+y 2+…+y 1010”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1D .f (x )=x ·e x5.定义:若函数f (x )的图像经过变换T 后所得图像对应函数的值域与f (x )的值域相同,则称变换T 是f (x )的同值变换.下面给出四个函数及其对应的变换T ,其中T 不属于f (x )的同值变换的是( )A .f (x )=(x -1)2,T 将函数f (x )的图像关于y 轴对称 B .f (x )=2x -1-1,T 将函数f (x )的图像关于x 轴对称C .f (x )=2x +3,T 将函数f (x )的图像关于点(-1,1)对称D .f (x )=sin(x +π3),T 将函数f (x )的图像关于点(-1,0)对称二、填空题6.对于非空实数集A ,记A *={y |任意x ∈A ,y ≥x }.设非空实数集合M ,P ,满足M ⊆P .给出以下结论:①P *⊆M *;②M *∩P ≠∅;③M ∩P *=∅.其中正确的结论是________(写出所有正确结论的序号).7.已知[x ]表示不超过实数x 的最大整数,如[1.8]=1,[-1.2]=-2.x 0是函数f (x )=ln x -2x的零点,则[x 0]等于________.8.某同学为研究函数f (x )=1+x 2+1+-x2(0≤x ≤1)的性质,构造了如图所示的两个边长为1的正方形ABCD 和BEFC ,点P 是边BC 上的一个动点,设CP =x ,则AP +PF =f (x ).请你参考这些信息,推知函数f (x )的极值点是______;函数f (x )的值域是________.9.(1)如图,矩形ABCD 的三个顶点A ,B ,C 分别在函数y =x ,y =x 12,y =(22)x的图像上,且矩形的边分别平行于两坐标轴.若点A 的纵坐标为2,则点D 的坐标为________.(2)若存在实常数k 和b ,使得函数f (x )和g (x )对其定义域上的任意实数x 分别满足:f (x )≥kx +b 和g (x )≤kx +b ,则称直线l :y =kx +b 为f (x )和g (x )的“隔离直线”.已知h (x )=x 2,φ(x )=2eln x (其中e 为自然对数的底数),根据你的数学知识,推断h (x )与φ(x )间的隔离直线方程为________.三、解答题10.已知二次函数f (x )=ax 2+bx +c 和g (x )=ax 2+bx +c ·ln x (abc ≠0). (1)证明:当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数; (2)在同一函数图像上取任意两个不同的点A (x 1,y 1),B (x 2,y 2),线段AB 的中点C (x 0,y 0),记直线AB 的斜率为k ,若f (x )满足k =f ′(x 0),则称其为“K 函数”.判断函数f (x )=ax 2+bx +c 与g (x )=ax 2+bx +c ·ln x (abc ≠0)是否为“K 函数”?并证明你的结论.11.如图,两个圆形飞轮通过皮带传动,大飞轮O 1的半径为2r (r 为常数),小飞轮O 2的半径为r ,O 1O 2=4r .在大飞轮的边缘上有两个点A ,B ,满足∠BO 1A=π3,在小飞轮的边缘上有点C .设大飞轮逆时针旋转,传动开始时,点B ,C 在水平直线O 1O 2上.(1)求点A 到达最高点时A ,C 间的距离; (2)求点B ,C 在传动过程中高度差的最大值.答 案1.选B 显然集合A 的元素个数为2,根据A *B =1可知,集合B 的元素个数为1或3,即方程|x 2+bx +1|=1有1个根或有3个根.结合函数y =|x 2+bx +1|的图象可得,b =0或4-b 24=-1,即b =0或b =±2 2.2.选B 集合A 可以看作是由区域{(x ,y )||x |+|y |≤1}向右平移2个单位长度、向上平移3个单位长度得到的,这是一个边长为2的正方形区域,集合B 是一个圆形区域,如果A ⊆B 且集合B 中的点形成的几何图形的面积最小,则圆x 2+y 2+Dx +Ey +F =0是|x -2|+|y -3|=1所表示正方形的外接圆,其面积是π×12=π.3.选B 由于线性回归方程恒过样本点的中心(x ,y ),则由“x 0=x 1+x 2+…+x 1010,y 0=y 1+y 2+…+y 1010”一定能推出“(x 0,y 0)满足线性回归方程y ^=b ^x +a ^”,反之不一定成立.4.选D 由凸函数的定义可得该题即判断f (x )的二阶导函数f ″(x )的正负.对于A ,f ′(x )=cos x -sin x ,f ″(x )=-sin x -cos x ,在x ∈(0,π2)上,恒有f ″(x )<0;对于B ,f ′(x )=1x -2,f ″(x )=-1x 2,在x ∈(0,π2)上,恒有f ″(x )<0;对于C ,f ′(x )=-3x 2+2,f ″(x )=-6x ,在x ∈(0,π2)上,恒有f ″(x )<0;对于D ,f ′(x )=e x +x e x ,f ″(x )=e x +e x +x e x =2e x +x e x,在x ∈(0,π2)上,恒有f ″(x )>0.5.选B 选项B 中,f (x )=2x -1-1的值域为(-1,+∞),将函数f (x )的图象关于x轴对称变换后所得函数的值域为(-∞,1),值域改变,不属于同值变换.经验证,其他选项正确.6.解析:对于①,由M ⊆P 得知,集合M 中的最大元素m 必不超过集合P 中的最大元素p ,依题意有P *={y |y ≥p },M *={y |y ≥m },又m ≤p ,因此有P *⊆M *,①正确;对于②,取M =P ={y |y <1},依题意得M *={y |y ≥1},此时M *∩P =∅,因此②不正确;对于③,取M ={0,-1,1},P ={y |y ≤1},此时P *={y |y ≥1},M ∩P *={1}≠∅,因此③不正确.综上所述,其中正确的结论是①.答案:①7.解析:∵函数f (x )的定义域为(0,+∞),∴函数f ′(x )=1x +2x2>0,即函数f (x )在(0,+∞)上单调递增.由f (2)=ln 2-1<0,f (e)=ln e -2e >0,知x 0∈(2,e),∴[x 0]=2.答案:28.解析:显然当点P 为线段BC 的中点时,A ,P ,F 三点共线,此时AP =PF ,且函数f (x )取得最小值5,函数f (x )的图象的对称轴为x =12;当x ∈[0,12]时,函数f (x )单调递减,且值域为[5,2+1];当x ∈[12,1]时,函数f (x )单调递增,且值域为[5,2+1],∴函数f (x )的值域为[5,2+1].答案:x =12[5,2+1]9.解析:(1)由A 点的纵坐标为2,得点A 的横坐标是⎝⎛⎭⎪⎫222=12,由矩形的边平行于坐标轴,得B 点的纵坐标是2,从而横坐标是22=4,所以C 点的横坐标是4,纵坐标是(22)4=14,所以点D 的横坐标等于A 点的横坐标12,点D 的纵坐标等于C 点的纵坐标14,即D 点的坐标是(12,14).(2)容易观察到h (x )和φ(x )有公共点(e ,e),又(x -e)2≥0,即x 2≥2e x -e ,所以猜想h (x )和φ(x )间的隔离直线为y =2e x -e ,下面只需证明2eln x ≤2e x -e 恒成立即可,构造函数λ(x )=2eln x -2e x +e.由于λ′(x )=2e e -xx(x >0),即函数λ(x )在区间(0,e)上递增,在(e ,+∞)上递减,故λ(x )≤λ(e)=0,即2eln x -2e x +e≤0,得2eln x ≤2e x -e.故猜想成立,所以两函数间的隔离直线方程为y =2e x -e.答案:(1)(12,14)(2)y =2e x -e10.解:(1)假设g (x )在定义域(0,+∞)上为增函数,则有g ′(x )=2ax +b +c x =2ax 2+bx +cx>0对于一切x >0恒成立,从而必有2ax 2+bx +c >0对于一切x >0恒成立.又a <0,由二次函数的图象可知:2ax 2+bx +c >0对于一切x >0恒成立是不可能的. 因此当a <0时,无论b 为何值,函数g (x )在定义域内不可能总为增函数.(2)函数f (x )=ax 2+bx +c 是“K 函数”,g (x )=ax 2+bx +c ·ln x (abc ≠0)不是“K 函数”.证明如下:对于二次函数f (x )=ax 2+bx +c ,k =f x 1-f x 2x 1-x 2=a x 22-x 21+b x 2-x 1x 2-x 1=a (x 2+x 1)+b =2ax 0+b .又f ′(x 0)=2ax 0+b ,故k =f ′(x 0). 故函数f (x )=ax 2+bx +c 是“K 函数”.对于函数g (x )=ax 2+bx +c ·ln x (abc ≠0)(x >0), 不妨设x 2>x 1>0,则k =g x 1-g x 2x 1-x 2=a x 21-x 22+b x 1-x 2+c ln x 1x 2x 1-x 2=2ax 0+b +c lnx 1x 2x 1-x 2.又g ′(x 0)=2ax 0+b +c x 0,若g (x )为“K 函数”,则必满足k =g ′(x 0),即有2ax 0+b +c ln x 1x 2x 1-x 2=2ax 0+b +cx 0,也即c ln x 1x 2x 1-x 2=2c x 1+x 2(c ≠0),所以lnx 1x 2x 1-x 2=2x 1+x 2.设t =x 1x 2,则0<t <1,ln t =t -1+t.①设s (t )=ln t -t -1+t,则s ′(t )=t -2t+t2>0,所以s (t )在t ∈(0,1)上为增函数,s (t )<s (1)=0,故ln t ≠t -1+t.②①与②矛盾,因此,函数g (x )=ax 2+bx +c ·ln x (abc ≠0)不是“K 函数”. 11.解:(1)以O1为坐标系的原点,O 1O 2所在直线为x 轴,建立如图所示的直角坐标系.当点A 到达最高点时,点A 绕O 1转过π6,则点C 绕O 2转过π3.此时A (0,2r ),C (92r ,32r ).∴AC =-92r 2+r -32r 2=25-23·r .(2)由题意,设大飞轮转过的角度为θ, 则小飞轮转过的角度为2θ,其中θ∈[0,2π].此时B (2r cos θ,2r sin θ),C (4r +r cos 2θ,r sin 2θ). 记点B ,C 的高度差为d ,则d =|2r sin θ-r sin 2θ|, 即d =2r |sin θ-sin θcos θ|.设f (θ)=sin θ-sin θcos θ,θ∈[0,2π], 则f ′(θ)=(1-cos θ)(2cos θ+1).令f ′(θ)=(1-cos θ)(2cos θ+1)=0,得cos θ=-12或1,则θ=2π3,4π3,0或2π.f (θ)和f ′(θ)随θ的变化情况如下表:综上所述,点B ,C 在传动过程中高度差的最大值d max =332r .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6.函数f(x)=2mcos2+1的导函数的最大值等于1,则实数m的值为________.
解析显然m≠0,所以f(x)=2mcos2+1
=m+m+1=mcosx+m+1,
因此f′(x)=-msinx,其最大值为1,故有m=±1.
答案±1
7.已知函数f(x)=x2-ax+3在(0,1)上为减函数,函数g(x)=x2-alnx在(1,2)上为增函数,则a的值等于________.
答案B
3.已知e为自然对数的底数,设函数f(x)=(ex-1)(x-1)k(k=1,2),则().
A.当k=1时,f(x)在x=1处取到极小值
B.当k=1时,f(x)在x=1处取到极大值
C.当k=2时,f(x)在x=1处取到极小值
D.当k=2时,f(x)在x=1处取到极大值
解析当k=1时,f′(x)=ex·x-1,f′(1)≠0,
解析∵函数f(x)=x2-ax+3在(0,1)上为减函数,
∴≥1,得a≥2.
又∵g′(x)=2x-,依题意g′(x)≥0在x∈(1,2)上恒成立,得2x2≥a在x∈(1,2)上恒成立,有a≤2,∴a=2.
答案2
8.(2014·绍兴模拟)若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,则ab的最大值为________.
g′(x)=2[e2x+e-2x-2b(ex+e-x)+(4b-2)]
=2(ex+e-x-2)(ex+e-x-2b+2).
①当b≤2时,g′(x)≥0,等号仅当x=0时成立,所以g(x)在(-∞,+∞)单调递增.而g(0)=0,所以对任意x>0,g(x)>0;
②当b>2时,若x满足2<ex+e-x<2b-2,即0<x<ln (b-1+)时g′(x)<0.而g(0)=0,因此当0<x<ln (b-1+)时,g(x)<0.
A.∀x∈R,f(x)≤f(x0)
B.-x0是f(-x)的极小值点
C.是-f(-x)的极小值点
解析A错,因为极大值未必是最大值;B错,因为函数y=f(x)与函数y=f(-x)的图象关于y轴对称,-x0应是f(-x)的极大值点;C错,函数y=f(x)与函数y=-f(x)的图象关于x轴对称,x0应为-f(x)的极小值点;D正确,函数y=f(x)与y=-f(-x)的图象关于原点对称,-x0应为y=-f(-x)的极小值点.
答案D
二、填空题
5.(2014·盐城模拟)已知f(x)=x2+2xf′(2 014)+2 014lnx,则f′(2 014)=_____.
解析因为f′(x)=x+2f′(2 014)+,
所以f′(2 014)=2 014+2f′(2 014)+,
即f′(2 014)=-(2 014+1)=-2 015.
∴f(1)不是极值,故A,B错;
当k=2时,f′(x)=(x-1)(xex+ex-2),
显然f′(1)=0,且x在1的左侧附近f′(x)<0,
x在1的右侧附近f′(x)>0,
∴f(x)在x=1处取到极小值.故选C.
答案C
4.设函数f(x)的定义域为R,x0(x0≠0)是f(x)的极大值点,以下结论一定正确的是().
综上,b的最大值为2.
11.(2014·山东卷)设函数f(x)=-k(k为常数,e=2.718 28…是自然对数的底数).
(1)当k≤0时,求函数f(x)的单调区间;
(2)若函数f(x)在(0,2)内存在两个极值点,求k的取值范围.
解(1)函数y=f(x)的定义域为(0,+∞).
10.(2014·新课标全国卷Ⅱ节选)已知函数f(x)=ex-e-x-2x.
(1)讨论f(x)的单调性;
(2)设g(x)=f(2x)-4bf(x),当x>0时,g(x)>0,求b的最大值.
解(1)f′(x)=ex+e-x-2≥0,等号仅当x=0时成立.
所以f(x)在(-∞,+∞)单调递增.
(2)g(x)=f(2x)-4bf(x)=e2x-e-2x-4b(ex-e-x)+(8b-4)x,
第3讲 导数与函数的单调性、极值与最值的基本问题
一、选择题
1.函数f(x)=x2-lnx的单调递减区间为().
A.(-1,1]B.(0,1]
C.[1,+∞)D.(0,+∞)
解析由题意知,函数的定义域为(0,+∞),又由f′(x)=x-≤0,解得0<x≤1,所以函数f(x)的单调递减区间为(0,1].
(2)由(1)知,f(x)=(x-5)2+6lnx(x>0),
f′(x)=x-5+=.
令f′(x)=0,解得x=2或3.
当0<x<2或x>3时,f′(x)>0,
故f(x)在(0,2),(3,+∞)上为增函数;
当2<x<3时,f′(x)<0,
故f(x)在(2,3)上为减函数.
由此可知f(x)在x=2处取得极大值f(2)=+6ln 2,在x=3处取得极小值f(3)=2+6ln 3.
解析依题意知f′(x)=12x2-2ax-2b,
∴f′(1)=0,即12-2a-2b=0,∴a+b=6.
又a>0,b>0,∴ab≤2=9,当且仅当a=b=3时取等号,∴ab的最大值为9.
答案9
三、解答题
9.设f(x)=a(x-5)2+6lnx,其中a∈R,曲线y=f(x)在点(1,f(1))处的切线与y轴相交于点(0,6).
(1)确定a的值;
(2)求函数f(x)的单调区间与极值.
解(1)因f(x)=a(x-5)2+6lnx,
故f′(x)=2a(x-5)+.
令x=1,得f(1)=16a,f′(1)=6-8a,
所以曲线y=f(x)在点(1,f(1))处的切线方程为
y-16a=(6-8a)(x-1),
由点(0,6)在切线上可得6-16a=8a-6,故a=.
答案B
2.已知函数y=f′(x)的图象如图所示,则函数f(x)的单调递增区间为().
A.(-∞,1)
B.(-∞,0)和(2,+∞)
C.R
D.(1,2)
解析因为函数y=x是R上的减函数,所以f′(x)>0的充要条件是0<f′(x)<1,f′(x)<0的充要条件是f′(x)>1.由图象,可知当x∈(-∞,0)∪(2,+∞)时,0<f′(x)<1,即f′(x)>0.所以函数f(x)的单调递增区间为(-∞,0)和(2,+∞).