实验二 MATLAB数值运算
MATLAB数值分析实验二(复合梯形、辛普森和龙贝格求积,以及二重积分计算等)

佛山科学技术学院实验报告课程名称_______________ 数值分析________________________实验项目_______________ 数值积分____________________专业班级机械工程姓名余红杰学号2111505010 指导教师陈剑成绩日期月日一、实验目的b1、理解如何在计算机上使用数值方法计算定积分 a f ""X的近似值;2、学会复合梯形、复合Simpson和龙贝格求积分公式的编程与应用。
3、探索二重积分.11 f (x, y)dxdy在矩形区域D = {( x, y) | a _ x _ b, c _ y _ d}的数值D积分方法。
二、实验要求(1)按照题目要求完成实验内容;(2)写出相应的Matlab程序;(3)给出实验结果(可以用表格展示实验结果);(4)分析和讨论实验结果并提出可能的优化实验。
(5)写出实验报告。
三、实验步骤1、用不同数值方法计算积xln xdx =-- 0 9(1)取不同的步长h,分别用复合梯形及复合辛普森求积计算积分,给出误差中关于h的函数,并与积分精确值比较两公式的精度。
(2)用龙贝格求积计算完成问题(1 )。
2、给出一种求矩形区域上二重积分的复化求积方法,然后计算二重积分..e"y dxdy,其中积分区域D二{0乞x岂1,0岂y乞1}。
1.%lnt_t.m复化梯形:function F = Int_t(x1,x2,n)%复化梯形求积公式% x1,x2为积分起点和中点%分为n个区间,没选用步长可以防止区间数为非整数。
%样点矩阵及其函数值:x = lin space(x1,x2 ,n+1);y = f(x);m = len gth(x);%本题中用Matlab计算端点位置函数值为NaN,故化为零: y(1) = 0;y(m) = 0;%算岀区间长度,步长h:h = (x2 -x1)/n;a = [1 2*o nes(1,m-2) 1];%计算估计的积分值:F = h/2*sum(a.*y);%f.mfun cti on y = f(x)y = sqrt(x).*log(x);%run 11.mclc,clear;%分为10个区间,步长0.1的积分值:F = In t_t(0,1,10);F10 = F%分为100个区间F = In t_t(0,1,100);F100 = F%误差计算W10 = abs((-4/9)-F10);W100 = abs((-4/9)-F100);W = [W10 W100]%复化辛普森:%l nt_s.mfun cti on F = In t_s(x1,x2 ,n)%复化梯形求积公式% x1,x2区间,分为n个区间。
MATLAB实验报告(1-4)

信号与系统MATLAB第一次实验报告一、实验目的1.熟悉MATLAB软件并会简单的使用运算和简单二维图的绘制。
2.学会运用MATLAB表示常用连续时间信号的方法3.观察并熟悉一些信号的波形和特性。
4.学会运用MATLAB进行连续信号时移、反折和尺度变换。
5.学会运用MATLAB进行连续时间微分、积分运算。
6.学会运用MATLAB进行连续信号相加、相乘运算。
7.学会运用MATLAB进行连续信号的奇偶分解。
二、实验任务将实验书中的例题和解析看懂,并在MATLAB软件中练习例题,最终将作业完成。
三、实验内容1.MATLAB软件基本运算入门。
1). MATLAB软件的数值计算:算数运算向量运算:1.向量元素要用”[ ]”括起来,元素之间可用空格、逗号分隔生成行向量,用分号分隔生成列向量。
2.x=x0:step:xn.其中x0位初始值,step表示步长或者增量,xn 为结束值。
矩阵运算:1.矩阵”[ ]”括起来;矩阵每一行的各个元素必须用”,”或者空格分开;矩阵的不同行之间必须用分号”;”或者ENTER分开。
2.矩阵的加法或者减法运算是将矩阵的对应元素分别进行加法或者减法的运算。
3.常用的点运算包括”.*”、”./”、”.\”、”.^”等等。
举例:计算一个函数并绘制出在对应区间上对应的值。
2).MATLAB软件的符号运算:定义符号变量的语句格式为”syms 变量名”2.MATLAB软件简单二维图形绘制1).函数y=f(x)关于变量x的曲线绘制用语:>>plot(x,y)2).输出多个图像表顺序:例如m和n表示在一个窗口中显示m行n列个图像,p表示第p个区域,表达为subplot(mnp)或者subplot(m,n,p)3).表示输出表格横轴纵轴表达范围:axis([xmax,xmin,ymax,ymin])4).标上横轴纵轴的字母:xlabel(‘x’),ylabel(‘y’)5).命名图像就在subplot写在同一行或者在下一个subplot前:title(‘……’)6).输出:grid on举例1:举例2:3.matlab程序流程控制1).for循环:for循环变量=初值:增量:终值循环体End2).while循环结构:while 逻辑表达式循环体End3).If分支:(单分支表达式)if 逻辑表达式程序模块End(多分支结构的语法格式)if 逻辑表达式1程序模块1Else if 逻辑表达式2程序模块2…else 程序模块nEnd4).switch分支结构Switch 表达式Case 常量1程序模块1Case 常量2程序模块2……Otherwise 程序模块nEnd4.典型信号的MATLAB表示1).实指数信号:y=k*exp(a*t)举例:2).正弦信号:y=k*sin(w*t+phi)3).复指数信号:举例:4).抽样信号5).矩形脉冲信号:y=square(t,DUTY) (width默认为1)6).三角波脉冲信号:y=tripuls(t,width,skew)(skew的取值在-1~+1之间,若skew取值为0则对称)周期三角波信号或锯齿波:Y=sawtooth(t,width)5.单位阶跃信号的MATLAB表示6.信号的时移、反折和尺度变换:Xl=fliplr(x)实现信号的反折7.连续时间信号的微分和积分运算1).连续时间信号的微分运算:语句格式:d iff(function,’variable’,n)Function:需要进行求导运算的函数,variable:求导运算的独立变量,n:求导阶数2).连续时间信号的积分运算:语句格式:int(function,’variable’,a,b)Function:被积函数variable:积分变量a:积分下限b:积分上限(a&b默认是不定积分)8.信号的相加与相乘运算9.信号的奇偶分解四、小结这一次实验让我能够教熟悉的使用这个软件,并且能够输入简单的语句并输出相应的结果和波形图,也在一定程度上巩固了c语言的一些语法。
MATLAB实验指导书(附答案)

MATLAB基础实验指导书漳州师范学院物电系2010年10月目录实验一MATLAB环境的熟悉与基本运算 (2)实验二MATLAB数值运算 (8)实验三MATLAB语言的程序设计 (12)实验四MATLAB的图形绘制 (16)实验五采用SIMULINK的系统仿真 (20)实验六MATLAB在电路中的应用 (25)实验七MATLAB在信号与系统中的应用 (27)实验八MATLAB在控制理论中的应用 (29)实验一 MATLAB环境的熟悉与基本运算一、实验目的:1.熟悉MATLAB开发环境2.掌握矩阵、变量、表达式的各种基本运算二、实验基本知识:1.熟悉MATLAB环境:MATLAB桌面和命令窗口、命令历史窗口、帮助信息浏览器、工作空间浏览器文件和搜索路径浏览器。
2.掌握MATLAB常用命令3.MATLAB变量与运算符变量命名规则如下:(1)变量名可以由英语字母、数字和下划线组成(2)变量名应以英文字母开头(3)长度不大于31个(4)区分大小写MATLAB中设置了一些特殊的变量与常量,列于下表。
MATLAB运算符,通过下面几个表来说明MATLAB的各种常用运算符表2 MATLAB算术运算符表3 MATLAB关系运算符表4 MATLAB逻辑运算符表5 MATLAB特殊运算4.MATLAB的一维、二维数组的寻访表6 子数组访问与赋值常用的相关指令格式5.MATLAB的基本运算表7 两种运算指令形式和实质内涵的异同表6.MATLAB的常用函数表8 标准数组生成函数表9 数组操作函数三、实验内容1、学习使用help命令,例如在命令窗口输入help eye,然后根据帮助说明,学习使用指令eye(其它不会用的指令,依照此方法类推)2、学习使用clc、clear,观察command window、command history和workspace等窗口的变化结果。
3、初步程序的编写练习,新建M-file,保存(自己设定文件名,例如exerc1、exerc2、exerc3……),学习使用MATLAB的基本运算符、数组寻访指令、标准数组生成函数和数组操作函数。
(完整word版)含答案《MATLAB实用教程》

第二章 MATLAB 语言及应用实验项目实验一 MATLAB 数值计算三、实验内容与步骤1.创建矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=987654321a(1(2)用(3)用(42.矩阵的运算(1)利用矩阵除法解线性方程组。
⎪⎪⎩⎪⎪⎨⎧=+++=-+-=+++=+-12224732258232432143214321421x x x x x x x x x x x x x x x 将方程表示为AX=B ,计算X=A\B 。
(2)利用矩阵的基本运算求解矩阵方程。
已知矩阵A 和B 满足关系式A -1BA=6A+BA ,计算矩阵B 。
其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=7/10004/10003/1A ,Ps: format rata=[1/3 0 0;0 1/4 0;0 0 1/7];b=inv(a)*inv(inv(a)-eye(3))*6*a(3)计算矩阵的特征值和特征向量。
已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=1104152021X ,计算其特征值和特征向量。
(4)Page:322利用数学函数进行矩阵运算。
已知传递函数G(s)=1/(2s+1),计算幅频特性Lw=-20lg(1)2(2w )和相频特性Fw=-arctan(2w),w 的范围为[0.01,10],按对数均匀分布。
3.多项式的运算(1)多项式的运算。
已知表达式G(x)=(x-4)(x+5)(x 2-6x+9),展开多项式形式,并计算当x 在[0,20]内变化时G(x)的值,计算出G(x)=0的根。
Page 324(2)多项式的拟合与插值。
将多项式G(x)=x 4-5x 3-17x 2+129x-180,当x 在[0,20]多项式的值上下加上随机数的偏差构成y1,对y1进行拟合。
对G(x)和y1分别进行插值,计算在5.5处的值。
Page 325 四、思考练习题1.使用logspace 函数创建0~4π的行向量,有20个元素,查看其元素分布情况。
Ps: logspace(log10(0),log10(4*pi),20) (2) sort(c,2) %顺序排列 3.1多项式1)f(x)=2x 2+3x+5x+8用向量表示该多项式,并计算f(10)值. 2)根据多项式的根[-0.5 -3+4i -3-4i]创建多项式。
MATLAB实验

MATLAB实验一:MATLAB语言基本概念实验实验目的:1. 熟悉MATLAB语言及使用环境;2.掌握MATLAB的常用命令;3.掌握MATLAB的工作空间的使用;4.掌握MATLAB的获得帮助的途径。
5.掌握科学计算的有关方法,熟悉MATLAB语言及其在科学计算中的运用;6.掌握MATLAB的命令运行方式和M文件运行方式;7.掌握矩阵在MATLAB中的运用。
实验方案分析及设计:本次实验主要目的是了解MATLAB的使用环境,以及常用的一些命令的使用;了解矩阵在MATLAB实验中的具体运用,以及相关的一些符号命令的使用。
实验器材:电脑一台,MATLAB软件实验步骤:打开MATLAB程序,将实验内容中的题目依次输入MATLAB中,运行得到并记录结果,最后再对所得结果进行验证。
实验内容及要求:1.熟悉MATLAB的菜单和快捷键的功能2.熟悉MATLAB的命令窗口的使用3.熟悉常用指令的使用format clc clear help lookfor who whos 4.熟悉命令历史窗口的使用5. 熟悉MATLAB工作空间的功能将工作空间中的变量保存为M文件,并提取该文件中的变量6.熟悉MATLAB获取帮助的途径将所有plot开头的函数列出来,并详细给出plotfis函数的使用方法1. 输入 A=[7 1 5;2 5 6;3 1 5],B=[1 1 1; 2 2 2;3 3 3],在命令窗口中执行下列表达式,掌握其含义:A(2, 3) A(:,2) A(3,:) A(:,1:2:3)A(:,3).*B(:,2) A(:,3)*B(2,:) A*BA.*BA^2 A.^2 B/A B./AA=[7 1 5;2 5 6;3 1 5]7 1 52 5 63 1 5>> B=[1 1 1; 2 2 2;3 3 3]1 1 12 2 23 3 3>> A(2, 3)6>> A(:,2)151>> A(3,:)3 1 5>> A(:,1:2:3)7 52 63 5>> A(:,3).*B(:,2)51215>> A(:,3)*B(2,:)10 10 1012 12 1210 10 10>> A*B24 24 2430 30 3020 20 20>> A.*B7 1 54 10 129 3 15>> A^266 17 6642 33 7038 13 46>> A.^249 1 254 25 369 1 25>> B/A0.1842 0.2105 -0.23680.3684 0.4211 -0.47370.5526 0.6316 -0.7105>> B./A0.1429 1.0000 0.20001.0000 0.4000 0.33331.0000 3.0000 0.60002.输入 C=1:2:20,则 C (i )表示什么?其中 i=1,2,3, (10)1到19差为2,i 代表公差3. 试用 help 命令理解下面程序各指令的含义:cleart =0:0.001:2*pi;subplot(2,2,1);polar(t, 1+cos(t))subplot(2,2,2);plot(cos(t).^3,sin(t).^3)subplot(2,2,3);polar(t,abs(sin(t).*cos(t)))subplot(2,2,4);polar(t,(cos(2*t)).^0.5)4计算矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡897473535与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡638976242之和。
控制系统仿真 实验二

实验二Matlab的数值运算及绘图1.试验目的(1)学习Matlab语言的基本矩阵运算;(2)学习Matlab语言的点运算;(3)学习多项式运算;(4)学习Matlab语言的各种二维绘图;2.试验内容在下面的试验操作中,认真记录每项操作的作用和目的;(1)基本矩阵运算1)创建数值矩阵。
键入a=[1 2 3;4 5 6;7 8 9];观察aa(3,2)a(:,1)键入t=0:10u=0:0.1:10观察矩阵变量t,u的值。
键入a(:,3)=[2;3;4]a观察矩阵a的变化。
键入b=[1 1+2i ;3+4i 3]观察复数矩阵。
2)创建特殊矩阵;键入a=ones(3,3)b=zeros(2,2)c=eye(4)观察特殊矩阵。
3)练习矩阵运算;键入a=[0 1 0;0 0 1;-6 -11 -6]; b=[1 2;3 4;5 6];c=[1 1 0;0 1 1];作矩阵乘运算v1=c*av2=a*bv3=c*a*bv4=b*cv5=c*b矩阵乘方运算a^2a^(1/2)矩阵加减运算a1=a+b*ca2=c*b-a(1:2,1:2)a3=a(1:2,2:3)+c*b矩阵右除(矩阵右除为四则运算的除运算,必须满足矩阵维数的要求)ar=c/a矩阵左除(矩阵左除等价于逆乘运算a\c=a-1*c,a-1为矩阵a的逆运算)al=a\b4)练习矩阵特征运算完成以下矩阵特征运算。
a'inv(a)rank(a)det(a)eig(a)(2)Matlab语言的点运算1)练习点乘与点除。
a1=[1 2;3 4]a2=0.2*a1观察[a1 a2][a1.*a2 a1./a2]2)由点运算完成标量函数运算与作图。
正、余弦函数的点运算。
t=0:2*pi/180:2*pi;y1=sin(t);y2=cos(t);y=y1.*y2;plot(t,[y' y1' y2']);(3)多项式运算1)建立多项式向量;ap=[1 3 3 1];b=[-1 -2 -3];bp=poly(b)2)练习多项式乘与求根。
数学实验 第2章 MATLAB数值运算

软
件
篇
数学实验
软
例2.5 向量的点积和叉积运算.
>> A = [4 -2 1];
>> B = [1 -1 3];
>> C=dot(A,B)
%向量A和B的点积
C=
9
>> D = cross(A,B) %向量A和B的叉积
D=
-5 -11 -2
件
篇
澡身浴德 修业及时
澡身浴德 修业及时
2.2 矩阵及其运算
① x(n)
表示向量中的第n个元素
② x(n1:n2)
表示向量中的第n1至n2个元素
例2.3 向量元素的引用、修改和扩展.
>> x=1:2:5
x=
1
3
5
件
篇
数学实验
软
>> x(2)=6
%修改第2个元素为6
x=
1
6
>> x(5)=7
%增加第5个分量,第4个分量没有赋值,自动设为0
x=
1
6
5
0
7
>> x([1,end])
2
.
= ( , , . . . , )
或
1 2
.
.
叫做 n 维向量,向量的第 i 个分量称为 .
件
篇
数学实验
软
2.1.1 向量的创建
MATLAB中向量可以由以下方法创建:
(1)元素输入法
在命令行窗口中直接输入,向量元素用“[ ]”括起来,元素之间用空格、逗号或分
号分隔.用空格和逗号分隔生成行向量,用分号分隔生成列向量.
2 matlab的数值运算

下次运行matlab时即可用load指
令调用已生成的mat文件。
load —— load data —— load data a b ——
即可恢复保 存过的所有 变量
mat文件是标准的二进制文件,
还可以ASCII码形式保存。
三、矩阵运算
1. 矩阵加、减(+,-)运算
规则:
相加、减的两矩阵必须有相同的行和 列两矩阵对应元素相加减。 允许参与运算的两矩阵之一是标量。 标量与矩阵的所有元素分别进行加 减操作。
二、数据的保存与获取
把matlab工作空间中一些有用的数 据长久保存下来的方法是生成mat数 据文件。 save —— 将工作空间中所有的变 量存到matlab.mat文件中。 默认文件名
save data——将工作空间中所
有的变量存到data.mat文件中。
save data a b ——将工作空间 中a和b变量存到data.mat文件中。
3.conv,convs多项式乘运算
例:a(x)=x2+2x+3; b(x)=4x2+5x+6; c = (x2+2x+3)(4x2+5x+6) a=[1 2 3];b=[4 5 6]; c=conv(a,b)=conv([1 2 3],[4 5 6]) c = 4.00 13.00 28.00 27.00 18.00 p=poly2str(c,'x') p = 4 x^4 + 13 x^3 + 28 x^2 + 27 x + 18
直接修改 可用键找到所要修改的矩阵,用键 移动到要修改的矩阵元素上即可修改。 指令修改 可以用A(,)= 来修改。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通信与信息工程学院
MATLAB语言程序设计
实验报告
班级:电信1303
姓名:王洪武
学号:1307050320
实验名称:MATLAB数值计算
成绩:
评语:
通信与信息工程学院
二〇一五年
题目 MATLAB数值计算
1.实验目的
(1)理解MATLAB变量、表达式及语句。
(2)掌握MATLAB数组、矩阵创建、寻访、赋值
(3)掌握常见的几种标准数组。
(4)掌握数组、矩阵算术运算、逻辑运算及关系运算。
(5)掌握部分MATLAB数值运算函数。
2.实验内容
1、生成一个4阶幻方矩阵H,(1)求H的转置;(2)将H旋转90度;(3)对H实行左右翻转;(4)对H实行上下翻转;(5)H(1,2);(6)H(:,3);(7)H(:,2:3);(8) H(1:3;2:4)
>> H=magic(4)
H = 16 2 3 13
5 11 10 8
9 7 6 12
4 14 1
5 1
>> H.'
ans =16 5 9 4
2 11 7 14
3 10 6 15
13 8 12 1
>> rot90(H)
ans =13 8 12 1 3 10 6 15 2 11 7 14 16 5 9 4 >> fliplr(H)
ans =13 3 2 16 8 10 11 5 12 6 7 9 1 15 14 4 >> flipud(H)
ans =4 14 15 1 9 7 6 12 5 11 10 8 16 2 3 13 >> H(1,2)
ans = 2
>> H(:,3)
ans =3
10
6
15
>> H(:,2:3)
ans =2 3
11 10
7 6
14 15
>> H(1:3,2:4)
ans =2 3 13
11 10 8
7 6 12
2、分别用ones()、eye()、rand()、magic()、pascal()生成5个4*4矩阵,完成如下运算:
>> A=ones(4,4)
A = 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
>> B=eye(4)
B = 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
>> >> rand('state',0) >> C=rand(4)
C = 0.9501 0.8913 0.8214 0.9218 0.2311 0.7621 0.4447 0.7382 0.6068 0.4565 0.6154 0.1763 0.4860 0.0185 0.7919 0.4057 >> D=magic(4)
D = 16 2 3 13 5 11 10 8 9 7 6 12 4 14 15 1 >> E=pascal(4)
E = 1 1 1 1 1 2 3 4 1 3 6 10 1 4 10 20 (1)求下面矩阵)]([111E D C B A
F ---+=; >> F=inv(A)*[B+inv(C)*(inv(D)*E)] F =NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN
(2)找出magic()中大于5小于10的数(调用find()函数);>> D(find(D>5&D<10))
ans =9
7
6
8
(3)判断F是否能被3整除(调用rem()函数);
>> rem(F,3)==0
ans =
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
3、已知
145
231
213
A
-⎛⎫
⎪
= ⎪
⎪
⎝⎭
,求(1)A的逆;
>> inv(A)
ans =
-0.1818 0.1591 0.2500 0.0909 0.2955 -0.2500
0.0909 -0.2045 0.2500
(2)A的行列式;
>> det(A)
ans =
-44
(3)A的所有特征向量和特征值;
>> [V,D]=eig(A)
V =
-0.9345 0.6508 0.0586
0.2517 0.5369 -0.7621
0.2517 0.5369 0.6448
D =
-3.4244 0 0
0 6.4244 0
0 0 2.0000
>> eig(A)
ans =
-3.4244
6.4244
2.0000
4、已知多项式32
=-+,试求:(1)p(x)的根;(2)计算
()23
p x x x
p(1.5),p(-2),p(5)的值。
>> p=[2,-1,0,3];
>> roots(p)
ans =
0.7500 + 0.9682i
0.7500 - 0.9682i
-1.0000
>> x=1.5; polyval(p,x)
ans =
7.5000
>> x=-2; polyval(p,x)
ans =
-17
>> x=5; polyval(p,x)
ans =
228
5、用多种方法计算B
Ax 矩阵方程的解,其中A=[1 2 3;4 5 6;7 8 9];B=[15 –3 –7]’;
>> A=[1 2 3;4 5 6;7 8 9]
A = 1 2 3
4 5 6
7 8 9
>> B=[15;-3;-7]
B = 15
-3
-7
方法一:
>> X=inv(A)*B
X =1.0e+017 *
-0.6305
1.2610
-0.6305
方法二:
>> X=A\B
X = 1.0e+017 *
-0.6305
1.2610
-0.6305
方法三:
>> [L,U]=lu(A)
L = 0.1429 1.0000 0
0.5714 0.5000 1.0000
1.0000 0 0
U = 7.0000 8.0000 9.0000
0 0.8571 1.7143
0 0 0.0000
>> X=U\(L\B)
X =1.0e+017 *
-0.6305
1.2610
-0.6305
3.思考题
(1)数组算术运算与矩阵算术运算有何异同;
最基本的区别说是运算加不加点的问题,一维数组相当于向量,二维数组相当于矩阵.所以矩阵是数组的子集,数组运算是指数组对应元素之间的运算,也称点运算.矩阵的乘法、乘方和除法有特殊的数学含义,并不是数组对应元素的运算,所以数组乘法、乘方和除法的运算符前特别加了一个点。
矩阵是一个二维数组,所以矩阵的加、减、数乘等运算与数组运算是一致的。
对于乘法、乘方和除法等三种运算,矩阵运算与数组运算的运算符及含义都不同:矩阵运算按线性变换定义,使用通常符号;数组运算按对应元素运算定义,使用点运算符.
(2)两个矩阵相乘以及求一个矩阵的逆分别有何前提条件;
两个矩阵相乘:要求前一个的列数等于后一个的行数。
如果有一个是标量的话,另一个也没有任何要求。
矩阵的逆:矩阵要是方阵,是非奇异的。