平行四边形的性质及证明试题
平行四边形及其性质

A.△CDF≌△EBC
B.∠ECF=60°
C.△ECF 是等边三角形 D.CG⊥AE
6.已知▱ABCD 的周长为 56,AB=4,则 BC=( )
A.4
B.12
C.24
D.28
7.如图,P 为平行四边形 ABCD 内一点,过点 P 分别作 AB,AD 的平行线,交平行四边形 ABCD 的四边于 E、F、G、H 四点,若平行四边形 BHPE 面积为 6,平行四边形 GPFD 面积为 4, 则△APC 的面积为( )
平行四边形及其性质
1.如图,在▱ABCD 中,AC,BD 为对角线,BC=10,BC 边上的高为 6,则图中阴影部分的面 积为( )
A.6
B.15
C.30
D.60
2.如图,已知平行四边形 OABC 的顶点 A,C 分别在直线 x=1 和 x=4 上,点 O 是坐标原点, 则点 B 的横坐标为( )
A.3
23.如图,四边形 ABCD 为平行四边形,∠BAD 的角平分线 AE 交 CD 于点 F,交 BC 的延长线 于点 E.
(1)求证:BE=CD; (2)连接 BF,若 BF⊥AE,∠BEA=60°,AB=4,求平行四边形 ABCD 的面积.
24.如图,在▱ABCD 中,E 为 BC 的中点,连接 AE 并延长交 DC 的延长线于点 F,连接 BF, AC.求证:∠BAC=∠BFC.
17.解:∵▱AFPE、▱BGPF、▱EPHD 的面积分别为 15、6、25, ∴AB∥CE∥CD,AD∥FH∥BC,PF:PH=15:25=3:5, ∴四边形 ADHF、四边形 CDEG 是平行四边形,▱CGPH 的面积=5× =10, ∴▱ABCD 的面积=15+6+25+10=56,△ADF 的面积= ▱ADHF 的面积= (15+25)=20, △CDG 的面积= ▱CDEG 的面积= (25+10)=17.5,△BFG 的面积= ▱BGPF 的面积
(完整版)平行四边形的性质判定练习题

第一部分 平行四边形的性质练习题 例题1、平行四边形得周长为50cm ,两邻边之差为5cm,求各边长。
变题1.平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________. 变题2.四边形ABCD 是平行四边形,∠BAC=90°,AB=3,AC=4,求AD 的长。
例题2.平行四边形ABCD 中,∠A-∠B=20°,求平行四边形各内角的度数。
变题3.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=_________,∠B_________. 变题4.如图,在平行四边形ABCD 中,∠BAC=34°, ∠ACB=26°,求∠DAC 与∠D 的度数。
例题3.如图,在平行四边形ABCD 中,CE ⊥AD,CF ⊥BA 交BA 的延长线于F ,∠FBC=30°,CE=3cm,CF=5cm,求平行四边形ABCD 的周长。
变题5.如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
1、如图,四边形ABCD 是平行四边形,AB=6cm,BC=8cm ,∠B=70°,则AD=________,CD=______,∠D=_______,∠A=______,∠C=_______.2、平行四边形ABCD 的周长为40cm,两邻边AB 、AC 之比为2:3,则AB=_______,BC=________.3、平行四边形得周长为50cm ,两邻边之差为5cm,则长边是________ ,短边是__________.4、平行四边形ABCD 中,∠A-∠B=20°, 则∠A=_______ ∠B=________5、.平行四边形ABCD 中,AE 平分∠DAB, ∠DEA=20°,则∠C=____,∠B_____.6、平行四边形 ABCD 中,∠A+∠C=200°.则:∠A= _______,∠B= _________ .7、如图,平行四边形ABCD 的周长为50,其中AB=15,∠ABC=60°,求平行四边形面积。
专题04 平行四边形的性质和判定(解析版)

专题04 平行四边形的性质和判定姓名:___________考号:___________分数:___________(考试时间:100分钟 满分:120分)一、 选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知四边形ABCD ,AC 与BD 相交于点O ,如果给出条件AB ∥CD ,那么还不能判定四边形ABCD 为平行四边形,以下四种说法正确的是( )①如果再加上条件BC =AD ,那么四边形ABCD 一定是平行四边形;②如果再加上条件∠BAD =∠BCD ,那么四边形ABCD 一定是平行四边形;③如果再加上条件AO =CO ,那么四边形ABCD 一定是平行四边形;④如果再加上条件∠DBA =∠CAB ,那么四边形ABCD 一定是平行四边形.A .①④B .①③④C .②③D .②③④【答案】C【分析】根据已知,结合平行四边形的判定,逐一判断即可.【解析】解:①也可能是等腰梯形.②可得AD ∥BC ,故正确.③可判定△ABO ≌△CDO ,就有AB =CD ,故可判定为平行四边形,正确.④也可能是等腰梯形.故选:C .【点睛】本题主要考查了平行四边形的判定,准确分析判断是解题的关键.2.如图,在ABCD 中,3AB =,4=AD ,60ABC ∠=︒,过BC 的中点E 作EF AB ⊥,垂足为点F ,与DC 的延长线相交于点H ,则DEF 的面积是( )A .63B .3C .3D .623+【答案】C【分析】 根据平行四边形的性质得到AB =CD =3,AD =BC =4,求出BE 、BF 、EF ,根据相似得出CH =1,EH 3,根据三角形的面积公式求△DFH 的面积,即可求出答案.【解析】解:∵四边形ABCD 是平行四边形,∴AD =BC =4,AB ∥CD ,AB =CD =3,∵E 为BC 中点,∴BE =CE =2,∵∠B =60°,EF ⊥AB ,∴∠FEB =30°,∴BF =1,由勾股定理得:EF 3∵AB ∥CD ,∴∠B =∠ECH ,在△BFE 和△CHE 中,B ECH BE CE BEF CEH ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BFE ≌△CHE (ASA ),∴EF =EH 3,CH =BF =1,∴DH=4,∵S △DHF =12DH •FH =43∴S △DEF =12S △DHF =23, 故选:C .【点睛】本题主要考查对平行四边形的性质,平行线的性质,勾股定理,含30度角的直角三角形,三角形的面积,三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.3.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC 于E ,AB =3,AC =2,BD =4,则AE 的长为( )A 3B .32C 21D 221 【答案】D【分析】由勾股定理的逆定理可判定△BAO 是直角三角形,所以平行四边形ABCD 的面积即可求出.【解析】解:∵AC =2,BD =4,四边形ABCD 是平行四边形, ∴AO =12AC =1,BO =12BD =2, ∵AB 3∴AB 2+AO 2=BO 2,∴∠BAC =90°,∵在Rt △BAC 中,BC ()2222327AB AC +=+=S △BAC =12×AB ×AC =12×BC ×AE , 3×27AE ,∴AE=2217,故选:D.【点睛】本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.4.如图,□ABCD中,对角线AC、BD相交于O,过点O作OE⊥AC交AD于E,若AE=4,DE=3,AB=5,则AC的长为()A.2B.2C.2D.522【答案】B【分析】根据平行四边形的性质和垂直平分线的性质得到CE=AE=4,用勾股定理逆定理证明∠CED=90°,得到△AEC是等腰直角三角形,最后求出AC的长.【解析】解:连接CE,∵四边形ABCD是平行四边形,∴AO=CO,CD=AB=5∵OE⊥AC,∴OE垂直平分AC,∴CE=AE=4,∵DE=3,∴CE2+DE2=42+32=52=CD2,∴∠CED=90°,∴∠AEC=90°,∴△AEC是等腰直角三角形,∴AC2=2故选:B.【点睛】本题考查平行四边形的性质,垂直平分线的性质,勾股定理逆定理和等腰直角三角形的性质,解题的关键是熟练掌握这些性质定理进行求解.5.如图,四边形ABCD中,AB∥CD,BC∥AD,点E、F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.∠1=∠2 B.BF=DE C.AE=CF D.∠AED=∠CFB【答案】C【分析】利用平行四边形的判定与性质以及全等三角形的判定分别得出选项A、B、D正确,选项C不正确,即可得出结论.【解析】解:∵AB∥CD,BC∥AD,∴四边形ABCD是平行四边形,∠ABE=∠CDF,∴AB=CD,当添加∠1=∠2时,由ASA判定△ABE≌△CDF,∴选项A正确;当添加BF=DE时,BE=DF,由SAS判定△ABE≌△CDF,∴选项B正确;当添加AE=CF时,由SSA不能判定△ABE≌△CDF,∴选项C不正确;当∠AED=∠CFB时,由AAS判定∠AED=∠CFB,∴选项D正确;故选:C.本题考查了平行四边形的判定与性质、全等三角形的判定等知识,熟练掌握全等三角形的判定方法是解题的关键.6.如图,▱ABCD 的对角线AC ,BD 相交于点O ,且AC +BD =18,CD =6,则△ABO 的周长是( )A .10B .15C .20D .22【答案】B【分析】 直接利用平行四边形的性质得出AO=CO ,BO=DO ,DC=AB=6,再利用已知求出AO+BO 的长,进而得出答案.【解析】∵四边形ABCD 是平行四边形,∴AO=CO ,BO=DO ,DC=AB=6,∵AC+BD=18,∴AO+BO=9,∴△ABO 的周长是:AO+BO+ AB =15.故选:B .【点睛】本题主要考查了平行四边形的性质,正确得出AO+BO 的值是解题关键.7.如图,在ABCD 中,点,E F 分别在边BC AD ,上.若从下列条件中只选择一个添加到图中的条件中:①//AE CF ;②AE CF =;③BE DF =;④BAE DCF ∠=∠.那么不能使四边形AECF 是平行四边形的条件相应序号是( )A .①B .②C .③D .④【答案】B利用平行四边形的性质,依据平行四边形的判定方法,即可得出不能使四边形AECF是平行四边形的条件.【解析】解:①∵四边形ABCD平行四边形,∴AD//BC,∴AF//EC,∵AE∥CF,∴四边形AECF是平行四边形;②∵AE=CF不能得出四边形AECF是平行四边形,∴条件②符合题意;③∵四边形ABCD平行四边形,∴AD=BC,AD∥BC,又∵BE=DF,∴AF=EC.又∵AF∥EC,∴四边形AECF是平行四边形.④∵四边形ABCD是平行四边形,∴∠B=∠D,∵∠BAE=∠DCF,∴∠AEB=∠CFD.∵AD∥BC,∴∠AEB=∠EAD.∴∠CFD=∠EAD.∴AE∥CF.∵AF∥CE,∴四边形AECF是平行四边形.综上所述,不能使四边形AECF是平行四边形的条件有1个.故选:B.【点睛】本题考查了平行四边形的性质定理和判定定理,以及平行线的判定定理;熟记平行四边形的判定方法是解决问题的关键.8.如图,▱ABCD与▱DCFE的周长相等,且∠BAD=60°,∠F=100°,则∠DAE的度数为()A.20°B.25°C.30°D.35°【答案】A【分析】由▱ABCD与▱DCFE的周长相等,可得到AD=DE即△ADE是等腰三角形,再由且∠BAD=60°,∠F=100°,即可求出∠DAE的度数.【解析】∵▱ABCD与▱DCFE的周长相等,且CD=CD,∴AD=DE,∵∠DAE=∠DEA,∵∠BAD=60°,∠F=100°,∴∠ADC=120°,∠CDE═∠F=100°,∴∠ADE=360°﹣120°﹣100°=140°,∴∠DAE=(180°﹣140°)÷2=20°,故选A.【点睛】本题考查了平行四边形的性质:平行四边形的对边相等、平行四边形的对角相等以及邻角互补和等腰三角形的判定和性质、三角形的内角和定理.9.如图,△ACE是以□ABCD的对角线AC为边的等边三角形,点C与点E关于x轴对称.若E点的坐标是(7,-33),则D点的坐标是( )A.(4,0) B.(92,0) C.(5,0) D.(112,0)【答案】C【解析】解:如图,∵点C与点E关于x轴对称,E点的坐标是(7,3,∴C的坐标为(7,3,∴CH3CE3∵△ACE是以▱ABCD的对角线AC为边的等边三角形,∴AC3∴AH=9,∵OH=7,∴AO=DH=2,∴OD=5,∴D 点的坐标是(5,0),故答案为(5,0).【点睛】本题考查了平行四边形的性质、等边三角形的性质、点关于x 轴对称的特点以及勾股定理的运用. 10.如图,P 为□ABCD 对角线BD 上一点,△ABP 的面积为S 1,△CBP 的面积为S 2,则S 1和S 2的关系为 ( )A .S 1>S 2B .S 1=S 2C .S 1<S 2D .无法判断【答案】B【解析】 分析:根据平行四边形的性质可得点A 、C 到BD 的距离相等,再根据等底等高的三角形的面积相等.解析:∵在□ABCD 中,点A 、C 到BD 的距离相等,设为h.∴S 1= S △ABP =12BP h ,S 2= S △CPB =1 2BP h . ∴S 1=S 2,故选B.点睛:本题主要考查的平行四边形的性质,关键在于理解等底等高的三角形的面积相等的性质. 11.如图,ABCD 中,点E 在边BC 上,以AE 为折痕,将ABE △向上翻折,点B 正好落在CD 上的点F 处,若FCE △的周长为7,FDA △的周长为21,则FD 的长为( )A .5B .6C .7D .8 【答案】C【分析】由题意易得AB=AF ,FE=BE ,然后根据三角形的周长及线段的等量关系进行求解即可.【解析】解:由题意得:AB=AF ,FE=BE ,四边形ABCD 是平行四边形,∴BC=AD ,AB=DC=AF ,FCE △的周长为7,FDA △的周长为21,∴FE+EC+FC=7,AD+AF+DF=21,∴BC+FC=7,AF=DC=DF+FC ,∴7-FC+DF+FC+DF=21∴DF=7.故选C .【点睛】本题主要考查折叠的性质及平行四边形的性质,熟练掌握平息四边形及折叠的性质是解题的关键. 12.如图,在ABC 中,BD 平分ABC ∠,AF BD ⊥于点E ,交BC 于点F ,点G 是AC 的中点,若10BC =,7AB =,则EG 的长为( ).A .1.5B .2C .2.5D .3.5【答案】A【分析】 根据BD 平分ABC ∠,AF BD ⊥于点E ,得到AEB FEB △≌△,从而得AE EF =,AB FB =;结合题意,计算得FC 的值;再根据点G 是AC 的中点,通过EG 是ABC 的中位线的性质,即可完成解题.【解析】∵BD 平分ABC ∠,AF BD ⊥于点E∴90AEB FEB ∠=∠=,ABE FBE ∠=∠∵BE BE =∴AEB FEB △≌△∴AE EF =,AB FB =∵10BC =,7AB =∴3FC BC FB BC AB =-=-=∵点G 是AC 的中点∴EG 是ABC 的中位线 ∴1 1.52EG FC == 故选:A .二、填空题(本大题共6小题,每小题3分,共18分)13.已知ABCD □的周长为56,自顶点A 作AE DC ⊥于点E ,AF BC ⊥于点F ,若6AE =,8AF =,则CE CF -=_________________.【答案】4+4-【分析】先画出符合条件的两种情况的图形,再分别求解.【解析】解:∵平行四边形ABCD 的周长为56,∴BC+CD=28,∴BC=28-CD ,∵AE ⊥DC ,AF ⊥BC ,∴BC·AF=DC·AE ,∴8(28-DC )=6DC ,解得:DC=16,∴BC=12,∴AD=BC=12,AB=DC=16,在△ABF 中,BF==在△AED 中,=如图,CE=CD-DE=16-CF=BC-BF=12-∴CE-CF=4+23;如图,CE=CD+DE=16+63,CF=BC+BF=12+83,∴CE-CF=4-23,故答案为:4+23或4-23.【点睛】本题考查了平行四边形的性质,面积法,关键是正确画出图形,题目比较好,但是有一定的难度. 14.如图,▱ABCD 的面积为32,E ,F 分别为AB 、AD 的中点,则CEF △的面积为_____.【答案】12【分析】将三角形CEF △的面积分割为平行四边形ABCD 的面积减去AEF 、DEC 和BEC △的面积,利用面积比与底(高)比来解决.【解析】解:连接AC 、DE 、BD ,如图:∵E 为AB 中点,∴11=824BCE ABC ABCD S S S ==△△平行四边形,同理可得:=8CDF S △,∵F 为AD 中点, ∴111==4248AEF AED ABD ABCD S S S S ==△△△平行四边形, ∴=3288412CEF BCE CDF AEF ABCD S S S S S ---=---=△△△△平行四边形;故答案为:12.【点睛】本题考查了平行四边形的性质及三角形的面积等知识;熟练掌握平行四边形的性质是解题关键. 15.如图,在平行四边形ABCD 中,过点C 的直线CE ⊥AB ,垂足为E ,若∠BAD =127°,则∠BCE =____.【答案】37°【分析】由平行四边形的性质得出∠B+∠BAD=180°,可得∠B 的度数,由直角三角形的两上锐角互余得出∠BCE=90°-∠B 即可.【解析】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠B+∠BAD=180°,∵∠BAD=127°∴∠B=53°,∵CE ⊥AB ,∴∠E=90°,∴∠BCE=90°-∠B=90°-53°=37°,故答案为:37°.【点睛】本题考查了平行四边形的性质、直角三角形两锐角互余.熟练掌握平行四边形的性质,求出∠B 的度数是解决问题的关键.16.如图,AC 是ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D =︒,则BAC ∠的度数是______.【答案】26︒【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠D=102°,再AD=AE=BE ,得出∠EAB=∠EBA ,∠BEC=∠BCA ,继而得到∠ACB=2∠BAC ,再根据∠BAC+∠ACB=3∠BAC=180°-∠ABC 求解即可. 【解析】解:∵四边形ABCD 是平行四边形,∴AD=BC , ∠ABC=∠D=102°,∵AD=AE=BE ,∴BC=AE=BE ,∴∠EAB=∠EBA ,∠BEC=∠BCA ,∵∠BEC=∠EAB +∠EBA=2∠EAB ,∴∠ACB=2∠BAC ,∴∠BAC+∠ACB=3∠BAC=180°-∠ABC=180°-102°=78°,∴3∠BAC=78°,即∠BAC=26°,故答案为:26°.【点睛】本题考查平行四边形的性质、三角形外角的性质、等腰三角形的性质,解题的关键是综合运用相关知识.17.如图,在Rt ABC △中,90A ︒∠=,2AB =,点D 是BC 边的中点,点E 在AC 边上,若45DEC ︒∠=,那么DE 的长是__________.【答案】2【分析】过D作DF⊥AC于F,得到AB∥DF,求得AF=CF,根据三角形中位线定理得到DF=12AB=1,根据等腰直角三角形的性质即可得到结论.【解析】解:过D作DF⊥AC于F,∴∠DFC=∠A=90°,∴AB∥DF,∵点D是BC边的中点,∴BD=DC,∴AF=CF,∴DF=12AB=1,∵∠DEC=45°,∴△DEF是等腰直角三角形,∴DE=2DF=2,故答案为:2.【点睛】本题考查了三角形的中位线定理,平行线的判定和性质,等腰直角三角形的性质,正确的作出辅助线构造等腰直角三角形是解题的关键.18.如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=8,EF=1,则BC长为__________.【答案】15【分析】由平行四边形的性质和角平分线得出∠ABF=∠AFB ,得出AF=AB=8,同理可得DE=DC=8,再由EF 的长,即可求出BC 的长.【解析】解:∵四边形ABCD 是平行四边形,∴AD ∥BC ,DC=AB=8,AD=BC ,∴∠AFB=∠FBC ,∵BF 平分∠ABC ,∴∠ABF=∠FBC ,则∠ABF=∠AFB ,∴AF=AB=8,同理可证:DE=DC=8,∵EF=AF+DE-AD=1,即8+8-AD=1,解得:AD=15;故答案为:15.三、解答题(本大题共6小题,共66分,解答应写出文字说明、演算步骤或推理过程) 19.在ABCD 中,E 、F 在BD 上,且BE DF =,点G 、H 分别在AD 、BC 上,且AG CH =,GH 与BD 交于点O ,(1)求证:EG HF =.(2)求证://EG HF .【答案】(1)见解析;(2)见解析【分析】(1)证明△DOG ≌△BOH ,得到GO=HO ,DO=BO ,从而说明四边形EGFH 是平行四边形,可得结论;(2)根据(1)中结论可直接说明.【解析】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADB=∠CBD ,∵AG=CH ,∴DG=BH ,又∠DOG=∠BOH ,∴△DOG ≌△BOH (AAS ),∴GO=HO ,DO=BO ,∵BE=DF ,∴EO=FO ,∴四边形EGFH 是平行四边形,∴EG=HF ;(2)∵四边形EGFH 是平行四边形,∴EG ∥HF .【点睛】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.20.如图,在四边形ABCD 中//AD BC ,5cm AD =,9cm BC =,M 是CD 的中点,P 是BC 边上的一动点(P 与B ,C 不重合),连接PM 并延长交AD 的延长线于Q .(1)试说明不管点P在何位置,四边形PCQD始终是平行四边形.(2)当点P在点B,C之间运动到什么位置时,四边形ABPQ是平行四边形?并说明理由.【答案】(1)见解析;(2)PC=2时【分析】(1)由“ASA”可证△PCM≌△QDM,可得DQ=PC,即可得结论;(2)得出P在B、C之间运动的位置,根据一组对边平行且相等的四边形是平行四边形得出结论.【解析】解:(1)∵AD∥BC,∴∠QDM=∠PCM,∵M是CD的中点,∴DM=CM,∵∠DMQ=∠CMP,DM=CM,∠QDM=∠PCM,∴△PCM≌△QDM(ASA).∴DQ=PC,∵AD∥BC,∴四边形PCQD是平行四边形,∴不管点P在何位置,四边形PCQD始终是平行四边形;(2)当四边形ABPQ是平行四边形时,PB=AQ,∵BC-CP=AD+QD,∴9-CP=5+CP,∴CP=(9-5)÷2=2.∴当PC=2时,四边形ABPQ是平行四边形.【点睛】本题考查了平行四边形的判定和性质,全等三角形判定和性质,熟练掌握平行四边形的性质和判定方法是解题的关键.21.如图,将ABCD的AD边延长至点E,使得12DE AD,连结CE,F是BC边的中点,连结FD.(1)求证:四边形CEDF 是平行四边形;(2)若3AB =,4=AD ,60A ︒∠=,求CE 的长.【答案】(1)见解析;(27【分析】(1)利用平行四边形的性质得出AD =BC ,AD ∥BC ,进而利用已知得出DE =FC ,DE ∥FC ,进而得出答案;(2)首先过点D 作DN ⊥BC 于点N ,再利用平行四边形的性质结合勾股定理得出DF 的长,进而得出答案.【解析】解:(1)证明:∵四边形ABCD 是平行四边形,∴//AD BC ,AD BC =,∴//DE FC .∵F 是BC 的中点, ∴1122FC BC AD ==, ∵12DE AD =, ∴FC DE =,∴四边形CEDF 是平行四边形;(2)过点D 作DN ⊥BC 于点N ,如图:则∠DNC=90°,∵四边形ABCD 是平行四边形,∠A=60°,∴CD=AB=3,BC=AD=4,∠BCD=∠A=60°,∠CDN=30°,∵F 是BC 边的中点,∴FC=12BC=2,NC=12DC=32,22CD CN -332∴FN=FC-NC=12, ∴DF=EC=22DN FN +=7.【点睛】此题主要考查了平行四边形的判定与性质以及勾股定理等知识,熟练应用平行四边形的判定方法是解题关键. 22.如图,已知ABC 是等边三角形,点D 在BC 边上,ADF 是以AD 为边的等边三角形,过点F 作BC 的平行线交线段AC 于点E ,连接BF ,求证:(1)AFB ADC ≅;(2)四边形BCEF 是平行四边形.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)先根据等边三角形的性质可得,,60AF AD AB AC FAD BAC ==∠=∠=︒,再根据角的和差可得FAB DAC ∠=∠,然后根据三角形全等的判定定理即可得证;(2)先根据全等三角形的性质可得60ABF C ∠=∠=︒,从而可得ABF BAC ∠=∠,再根据平行线的判定可得//BF AC ,然后根据平行四边形的判定即可得证.【解析】(1)∵ABC 和ADF 都是等边三角形,∴,,60AF AD AB AC FAD BAC C ==∠=∠=∠=︒,FAD BAD BAC BAD ∴∠-∠=∠-∠,即FAB DAC ∠=∠,在AFB △和ADC 中,AF AD FAB DAC AB AC =⎧⎪∠=∠⎨⎪=⎩,∴()AFB ADC SAS ≅;(2)∵AFB ADC ≅,∴60ABF C ∠=∠=︒,又∵60BAC ∠=︒,∴ABF BAC ∠=∠,∴//BF AC ,又∵//BC EF ,∴四边形BCEF 是平行四边形.【点睛】本题考查了等边三角形的性质、三角形全等的判定定理与性质、平行四边形的判定等知识点,熟练掌握各判定定理与性质是解题关键.23.如图,在ABCD 中,AP 、BP 分别是DAB ∠和CBA ∠的角平分线,已知5AD =.(1)求线段AB 的长;(2)延长AP ,交BC 的延长线于点Q .①请在答卷上补全图形;②若6BP =,求ABQ △的周长.【答案】(1)10;(2)①见解析;②36【分析】(1)依据平行线的性质以及角平分线的定义即可得到DP =AD =5,CP =BC =5,进而得出AB 的长;(2)①根据题意画出图形;②依据平行线的性质以及角平分线的定义即可得到AB =QB ,再根据BP 平分∠ABQ ,即可得出BP ⊥AQ ,AP =QP ,依据勾股定理得出AP 的长,进而得到△ABQ 的周长.【解析】解:(1)∵在□ABCD中,AD=5,∴BC=5,∵AB∥CD,∴∠BAP=∠DPA,∵AP平分∠BAD,∴∠BAP=∠DAP,∴∠DAP=∠DPA,∴DP=AD=5,同理可得,CP=BC=5,∴CD=10,∴AB=10;(2)①如图所示:②∵AD∥BQ,∴∠Q=∠DAP,又∵∠DAP=∠BAP,∴∠Q=∠BAP,∴AB=QB=10,又∵BP平分∠ABQ,∴BP⊥AQ,AP=QP,∴Rt△ABP中,22AB BP=8,∴AQ=16,∴△ABQ的周长为:16+10+10=36.【点睛】本题主要考查了平行四边形的性质以及勾股定理的运用,解题时注意:平行四边形的对边平行,对边相等.24.如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AC BC =.(1)如图1,过B 作BE AC ⊥于E ,若8AC =,5BE =,求OE 的长;(2)如图2,若45BDC ∠=︒,过点C 作CF CD ⊥交BD 于点F ,过点B 作BG BC ⊥且BG BC =,连接AG .求证:2AG OF =.【答案】(139-4;(2)见解析.【分析】(1)由勾股定理可求CE 的长,由平行四边形的性质可得CO 的长,即可求OE 的长;(2)延长CF 交AB 于点H ,由“SAS”可证△ABG ≌△FCB ,可得AG=BF ,由等腰三角形的性质可得AB=CD=2BH ,再证明三角形BFH 为等腰直角三角形,从而得出BF=2BH ①;在Rt △CDF 中,得出222BH ,继而得出2BH ②,结合①②可得出结论. 【解析】(1)解:∵BC=AC=8,BE=5,BE AC ⊥,∴22642539BC BE -=-=∵四边形ABCD 是平行四边形,∴AO=CO=4,∴39;(2)证明:如图,延长CF 交AB 于点H ,∵CF⊥CD,∠BDC=45°,∴∠BDC=∠DFC=45°,∴∠FBC+∠FCB=45°,CF=CD,∵BC⊥BG,∠ABD=∠BDC=45°,∴∠GBA+∠FBC=45°,∴∠ABG=∠BCF,且AB=CD=CF,BC=BG,∴△ABG≌△FCB(SAS),∴AG=BF.∵∠ABG+∠ABC=90°,∴∠BCF+∠ABC=90°,∴CH⊥AB,又AC=BC,∴BH=AH,∴AB=CD=2BH.∵AB∥CD,∴∠ABF=∠CDB=45°,∴∠HBF=∠BFH=45°,∴BH=FH,∴2BH①.在Rt△CDF中,CD=CF,∴222BH,∴222BH,∴BO=12BD=322BH,∴OF=BO-BF=22BH②,∴由①②得,BF=2OF,∴AG=2OF.【点睛】本题考查了平行四边形的性质,全等三角形判定和性质,等腰三角形的判定与性质,勾股定理以及平行线的性质等知识点,正确作出辅助线,综合运用基本性质进行推理是解题的关键.。
平行四边形的性质及判定

平行四边形的性质及判定自学检测判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()(2)平行四边形两条对角线的交点到一组对边的距离相等.()(3)平行四边形的两组对边分别平行且相等.()(4)平行四边形是轴对称图形.()知识点回顾1.平行四边形性质:(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”)(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”)( 3)如果一个四边形是平行四边形,那么这个四边形的邻角互补(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行的高相等。
(平行线间的高距离处处相等)(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”[1])(6)连接任意四边形各边的中点所得图形是平行四边形。
(推论)(7)平行四边形的面积等于底和高的积。
(可视为矩形).(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.(10)平行四边形不是轴对称图形,但平行四边形是中心对称图形。
矩形和菱形是轴对称图形。
注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
(13)平行四边形对角线把平行四边形面积分成四等份。
(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
(15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。
8.2平行四边形性质和判定的四种常见题型

证明:∵BE 平分∠ABC,∴∠CBE=∠EBA. ∵四边形 ABCD 是平行四边形,∴AD∥BC, ∴∠DAB+∠ABC=180°. ∵∠DAE=∠BAE,∴∠BAE+∠EBA=90°. ∴∠AEB=90°.∴AB2=AE2+BE2.
证明:∵四边形 ABCD 是平行四边形, ∴AD∥BC,AD=BC. ∴∠EAG=∠FCH,∠AEG=∠CBE. ∵E,F 分别为 AD,BC 的中点,
∴AE=DE=12AD,BF=CF=12BC. ∴AE=CF,DE=BF.又 DE∥BF, ∴四边形 DEBF 是平行四边形.∴BE∥FD. ∴∠CBE=∠CFH.∴∠AEG=∠CFH.
3.(中考·扬州)如图,将▱ ABCD 沿过点 A 的直线 l 折叠,使点 D 落到 AB 边上的点 D′处,折痕 l 交 CD 边于点 E,连接 BE.
(1)求证:四边形 BCED′是平行四边形; 证明:∵四边形 ABCD 是平行四边形, ∴AB∥DC,AB=DC. 根据折叠的性质,得∠DAE=∠D′AE,∠DEA=∠D′EA, ∠D=∠AD′E.
∠EAG=∠FCH, 在△AEG 和△CFH 中,AE=CF,
∠AEG=∠CFH, ∴△AEG≌△CFH(ASA).∴AG=CH.
2.(中考·毕节)如图,将▱ ABCD 的 AD 边延长至点 E,使 DE= 12AD,连接 CE,F 是 BC 边的中点,连接 FD.
(1)求证:四边形. 证明:∵D,E 移动的速度相同,时间也相同,∴BD=CE. ∵DG∥AE,∴∠DGB=∠ACB. ∵AB=AC,∴∠B=∠ACB.∴∠B=∠DGB. ∴BD=GD=CE. 又∵DG∥CE,∴四边形 CDGE 是平行四边形.
平行四边形性质练习题

平行四边形性质练习题平行四边形性质练习题平行四边形是初中数学中一个重要的几何概念,它具有一些独特的性质和特点。
在本文中,我们将通过一些练习题来加深对平行四边形性质的理解和应用。
练习题1:已知ABCD是一个平行四边形,AC的延长线与BD的延长线交于点E,证明AE与BC平行。
解析:我们可以通过证明三角形ABE与三角形CDE相似来证明AE与BC平行。
首先,由于ABCD是一个平行四边形,所以AB与CD平行,即∠ABE与∠CDE是对应角,且∠AEB与∠CED是共顶角,因此∠ABE≌∠CDE。
又因为∠AEB与∠CED互为对应角,所以∠AEB≌∠CED。
根据相似三角形的性质,我们可以得出三角形ABE与三角形CDE相似。
因此,我们可以得出AE与BC平行的结论。
练习题2:已知ABCD是一个平行四边形,E是AD的中点,F是BC的中点,连接EF并延长交于点G,证明AG与BC平行。
解析:我们可以通过证明三角形AGE与三角形BFC相似来证明AG与BC平行。
首先,由于ABCD是一个平行四边形,所以AB与CD平行,即∠AGE与∠BFC是对应角,且∠AEG与∠BFC是共顶角,因此∠AGE≌∠BFC。
又因为∠AEG与∠BFC互为对应角,所以∠AEG≌∠BFC。
根据相似三角形的性质,我们可以得出三角形AGE与三角形BFC相似。
因此,我们可以得出AG与BC平行的结论。
练习题3:已知ABCD是一个平行四边形,E是AD的中点,F是BC的中点,连接EF并延长交于点G,证明AG=2GF。
解析:根据题意,我们可以得出AE=ED,BF=FC。
由于E是AD的中点,所以AE=ED=1/2AD;同理,由于F是BC的中点,所以BF=FC=1/2BC。
根据平行四边形的性质,我们可以得出AD=BC。
因此,AE=1/2AD=1/2BC=BF。
根据三角形的等边性质,我们可以得出三角形AGE与三角形BFC是等边三角形。
因此,AG=AE+EG=BF+FC=2BF=2GF。
利用平行四边形的性质解(证)题

利用平行四边形的性质解(证)题平行四边形具有:对边平行、对角相等、对边相等、对角线互相平分等性质,因此这些性质为我们提供了证线段平行、相等,角相等,两线段互相平分的新方法,在证明这些问题时,可证他们所在的四边形是平行四边形.下面举例说明平行四边形的性质在解(证)题中的应用。
一、求角度例1.平行四边形ABCD 中, ∠A-∠B=025,则∠A=_____;∠B=______; ∠C=_____;∠D=_____.分析:设∠B 为x ,则∠A 为025+x.∵ABCD 是平行四边形,∴∠A+∠B=0180即x+025+x=0180.∴x=05.77∴∠A=05.102,∠B=05.77.由于平行四边形对角相等,所以∠C=05.102, ∠D=05.77.评注:(1)在解决求平行四边形的内角的度数问题时,应注意抓住两个等量关系:①平行四边形对角相等②平行四边形邻角互补(2)当题目未明确等价角的度数,而是给了两个角的关系时,应注意运用方程来求解.二、求线段长例2.如图1,在□ABCD 中,如果AB =5,AD =9,∠ABC 的平分线交AD 于点E ,交CD 的延长线于点F ,则DF =_______.分析:观察图形,容易看出DF =CF -CD.又,CD =AB =5,那么要求DF 的长,应先确定CF 的长.解:在□ABCD 中,F因为AB ∥CF ,所以∠ABE =∠F.因为BE 平分∠B =∠ABC ,所以∠CBF =∠ABE =∠F.所以CF =BC =AD =9.所以DF =CF -CD =4.评注:本题的解答过程中,运用了平行四边形的对边平行和对边相等的性质.三、求周长例3.已知:如图2,在□ABCD 中,BE ⊥CD ,BF ⊥AD , ∠EDF=030, BE=8,BF=14,求□ABCD 的周长.分析:平行四边形的周长是相邻两边长度之和的2倍,因而只要利用平行四边形的性质求出相邻两边的长,问题即可解决.解:∵ABCD 是平行四边形,∴CD ∥AB.∵∠CDF=030, ∴∠A=∠CDF=030.∵BF ⊥AD ,BF=14,∴AB=2BF=28.∵∠A=∠C(平行四边形的对角相等)∴∠C =030.∵BE ⊥CD ,BE=8,∴BC=2BE=16.∴平行四边形ABCD 的周长为:2(AB+BC)=2(28+16)=88.评注:在平行四边形的解题过程中,要善于联系以往学习的有关知识,如此题用到了在直角三角形中,030角所对的直角边是斜边的一半的知识.四、求线段的取值范围例4.如图3,□ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12, BD =10, AB =m ,那么m 的取值范围是( )(A )10<m <12 (B )2<m <22 (C )1<m <11 (D )5<m <6.图2分析:要求m 的取值范围,应考虑与AB 有关的三角形的三边之间的不等关系.结合题中条件,应考虑△OAB 三边之间的不等关系.解:在平行四边形ABCD 中,因为对角线AC 和BD 相交于点O ,所以OA =12AC =6,OB =12BD =5. 因为OA -OB <AB <OA +OB ,所以1<m <11.评注:本题的解答过程中,运用了平行四边形的对角线互相平分的性质.五、证明线段相等例5.如图4,已知AD 为△ABC 的中线,E 为AC 上一点,连结BE 交AD 于F ,且AE =FE .则BF =AC .说明理由分析:延长AD 到N ,使DN =AD ,构造出平行四边形ABNC .证明:延长AD 到N ,使DN =AD ,连结BN 、CN ,则四边形ABNC 为平行四边形.∴BN =AC ,BN ∥AC ,∴∠1=∠4.∵AE =FE ,∴∠1=∠2.∵∠2=∠3,∠1=∠4,∴∠3=∠4.∴BN =BF ,∴BF =AC .评注:当题目中有三角形中线时,常利用加倍中线构造平行四边形,然后再应用平行四边形的知识证题,用这种方法比利用加倍中线构造全等三角形要方便、简捷.图4O A CB图3六、证明线段的不等关系例6.如图5,已知△ABC 中,AB=AC ,D 是AB 上的一点,E 是AC 延长线上的一点,且DB=CE ,试说明DE>BC .解析:因为DE 、BC 不在同一三角形中,其大小不好比较,把DE 沿着AB 平移到BF ,连结CF 、EF ,则可得四边形BDEF 为平行四边形,从而得出∠BFE=∠BDE ,EF=BD=CE ,∠CFE=∠FCE ,又因为∠BCF=∠BCE-∠FCE ,∠BFC=∠BFE-∠CFE ,而由∠ABC=∠ACB ,因∠ABC+∠CBF+∠BDE=∠BCE+∠ACB ,由此可得∠BCE>∠BDE ,所以∠BCF>∠BFC ,依据三角形的边角之间的不等关系可得:BF>BC ,即DE>BC .评注:本题借助构造平行四边形并利用平行四边形的性质将欲比较的线段放在同一三角形中,再通过三角形三边之间的不等关系简洁的使问题得证.七、求面积例7.如图6,□ABCD 中,点E 在AC 上,AE=2EC ,点F 在AB 上,BF=2AF.如果△BEF 的面积为2,求平行四边形ABCD 的面积.分析:根据等高的两个三角形面积的比等于它们的底的比,求出△AEF 的面积和△BEF 的面积,再根据平行四边形的对角线把平行四边形分成两个面积相等的两个三角形,从而求出平行四边形的面积.解:∵四边形ABCD 是平行四边形,AC 是对角线∴ABC S S ∆=2平行四边形∵点F 在AB 上,BF=2AF ,∴△BEA 和△BEF 是过E 点的高相等的两个三角形,BEF BEA S S ∆∆=23 图6 D FE C B A图5同理BEF BEA ABC S S S ∆∆∆==4923因此)(平行四边形2924922cm S S ABC =⨯⨯==∆. 评注:本题考查面积问题中的面积变换,面积变换具有下列的特征:等底或同底且高相等的两个三角形的面积相等;等底或等高的两个三角形的面积比等于它们的高或底的比;此题将平行四边形的面积与三角形的面积进行了整合.。
专题训练(3) 平行四边形的性质与判定的四种运用

专题训练(三) 平行四边形的性质与判定的四种运用► 类型一 平行四边形与全等三角形1.用两个全等三角形最多能拼成________个不同的平行四边形.2.如图3-ZT -1,在平行四边形ABCD 中,分别以BC ,AD 为边作等边三角形BCM 和等边三角形AND ,MN 与AC 交于点O .求证:OM =ON .图3-ZT -13.如图3-ZT -2,△ABC 中,分别以AB ,AC 为边向三角形外作△ABD 和△ACE ,使AD =AB ,AE =AC ,∠BAD =∠CAE =90°.AH ⊥BC ,H 为垂足,点F 在HA 的延长线上,且AF =BC .求证:四边形AEFD 是平行四边形.图3-ZT -2► 类型二 平行四边形与等腰三角形4.如图3-ZT -3所示,在▱ABCD 中,AC 的垂直平分线交AD 于点E ,且△CDE 的周长为8,则▱ABCD 的周长是( )A .10B .12C .14D .16图3-ZT -35.如图3-ZT -4,在平行四边形ABCD 中,AB >AD ,按以下步骤作图:以点A 为圆心,小于AD 的长为半径画弧,与AB ,AD 分别交于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是( )A .AG 平分∠DAB B .AD =DHC .DH =BCD .CH =DH图3-ZT-46.如图3-ZT-5,平行四边形ABCD和平行四边形DCFE的周长相等,∠B+∠F=220°,则∠DAE的度数为________.图3-ZT-57.在▱ABCD中,AD=8,AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,且EF=2,则AB的长为________.8.如图3-ZT-6所示,如果▱ABCD的一内角∠BAD的平分线交BC于点E,且AE =BE,求▱ABCD各内角的度数.图3-ZT-69.如图3-ZT-7,BD是△ABC的角平分线,点E,F分别在BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积.图3-ZT-7►类型三平行四边形中的中点问题10.如图3-ZT-8所示,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA长的取值范围是()图3-ZT-8A.2 cm<OA<5 cmB.2 cm<OA<8 cmC.1 cm<OA<4 cmD.3 cm<OA<8 cm11.已知:如图3-ZT-9,四边形ABCD中,AC=7,BD=8,E,F,G,H分别是边AB,BC,CD,DA的中点,则四边形EFGH的周长是________.图3-ZT-912.如图3-ZT-10所示,▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD=__________.图3-ZT-1013.如图3-ZT-11,AC,BD是四边形ABCD的对角线,E,F分别是AD,BC的中点,M,N分别是BD,CA的中点,求证:EF,MN互相平分.图3-ZT-1114.如图3-ZT-12所示,在▱ABCD中,M是BC的中点,且AM=9,BD=12,AD =10,求▱ABCD的面积.图3-ZT-12►类型四平行四边形中数学思想的运用15.整体思想如图3-ZT-13,在平行四边形ABCD中,对角线AC与BD交于点O,△AOB与△AOD的周长之和为11.4 cm,两对角线的长度之和为7 cm,则这个平行四边形的周长为________cm.图3-ZT-1316.转化思想——分散向集中转化如图3-ZT-14,等边三角形ABC的边长为7 cm,M为△ABC内任一点,MD∥AC,ME∥AB,MF∥BC,则MD+ME+MF=________.图3-ZT-1417.分类讨论思想如图3-ZT-15,直线a和b平行,直线a上有一个定点M和一个动点P,点P从点M开始以2 cm/s的速度向点A的方向运动;直线b上有两个定点E和N,EN=12 cm,动点Q以4 cm/s的速度从点E向点N的方向运动,则经过几秒后,以点P,Q,M,N为顶点的四边形是平行四边形?图3-ZT-15详解详析1.[答案] 32.证明:在平行四边形ABCD 中,AD ∥BC ,AD =BC , ∴∠OAD =∠OCB .∵在等边三角形BCM 和等边三角形AND 中, ∠NAD =∠MCB =60°,AN =AD ,BC =MC , ∴∠NAO =∠MCO ,AN =MC . 又∵∠AON =∠COM , ∴△AON ≌△COM ,∴OM =ON .3.证明:∵∠BAD =90°,点F 在HA 的延长线上, ∴∠DAF +∠BAH =90°.∵AH ⊥BC ,∴∠ABC +∠BAH =90°, ∴∠DAF =∠ABC .又∵AD =BA ,AF =BC , ∴△DAF ≌△ABC (SAS), ∴DF =AC ,∠ADF =∠BAC . ∵AE =AC ,∴AE =DF .∵∠DAE +∠BAC =180°, ∴∠DAE +∠ADF =180°, ∴AE ∥DF ,∴四边形AEFD 是平行四边形. 4.[答案] D5.[解析] D 根据作图可知,AG 平分∠DAB ,故A 正确;再由平行线的性质知∠BAH =∠DHA ,故∠DAH =∠DHA ,所以AD =DH ,再由AD =BC ,得DH =BC .所以应选D.6.[答案] 20° 7.[答案] 3或5[解析] 易知BE =AB =DC =FC .(1)如图①,当AE ,DF 在▱ABCD 内部没有交点时,AB =12×(AD -EF )=3;(2)如图②,当AE ,DF 在▱ABCD 内部相交时,AB =12×(AD +EF )=5.8.解:∵四边形ABCD 是平行四边形, ∴∠BAD =∠C ,∠B =∠D ,AD ∥BC , ∴∠BAD +∠B =180°,∠DAE =∠BEA . 又∵AE 平分∠BAD ,∴∠BAE =∠DAE , ∴∠BAE =∠BEA ,∴AB =BE .又∵AE =BE ,∴AB =BE =AE ,∴∠B =60°, ∴∠D =60°,∠BAD =∠C =120°.[点评] 当平行四边形中有角平分线、线段垂直平分线或特殊角(30°,60°角等)时,通常可以得到等腰三角形,反之亦然.9.解:(1)证明:∵DE ∥AB ,EF ∥AC ,∴∠ABD =∠BDE ,四边形ADEF 是平行四边形,∴AF =DE .∵BD 是△ABC 的角平分线, ∴∠ABD =∠DBE ,∴∠DBE =∠BDE ,∴BE =DE ,∴BE =AF .(2)如图,过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H . ∵∠ABC =60°,BD 是∠ABC 的平分线, ∴∠ABD =∠EBD =30°, ∴DG =12BD =12×6=3.∵BE =DE ,∴BH =DH =12BD =3,∴EH =3,DE =2 3,∴四边形ADEF 的面积=DE ·DG =6 3.10.[答案] C 11.[答案] 15[解析] ∵EF 是△ABC 的中位线,∴EF 平行且等于12AC ,同理,HG 平行且等于12AC ,∴EF 平行且等于HG ,∴四边形EFGH 是平行四边形, ∴四边形EFGH 的周长=2(EF +FG )=2×(12×7+12×8)=15.12.[答案] 2 213.证明:如图,连接EM ,MF ∵FN 是△ABC 的中位线, ∴FN 平行且等于12AB ,同理,EM 平行且等于12AB ,∴FN 平行且等于EM ,∴四边形EMFN 是平行四边形, ∴EF ,MN 互相平分.14.解:如图,延长BC 至点E ,使CE =CM ,连接DE . ∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC ,∴AD ∥ME .又∵M 是BC 的中点,∴BC =2CM =2CE =2BM , ∴AD =ME =10,BE =15,∴四边形AMED 是平行四边形,∴DE =AM =9.∵BD 2+DE 2=122+92=225=152=BE 2,∴BD ⊥DE ,∴▱ABCD 的面积=2(△BDE 的面积-△DCE 的面积)=2×(12×9×12-12×9×12×13)=72.[点评] 在平行四边形的对角线互相平分这一性质中,体现出了线段中点的特点,有中点时就有可能有三角形的中线、中位线、线段垂直平分线等,需灵活处理,积累经验.15.[答案] 8.8[解析] △AOB 的周长等于AO +BO +AB ,而△AOD 的周长等于AO +DO +AD ,即两个三角形的周长之和为AB +AD +AC +BD .因为AC 与BD 的长度之和等于7 cm ,所以AB 与AD 的长度之和等于4.4 cm ,因此平行四边形的周长为8.8 cm.16.[答案] 7 cm[解析] 过点D 作DQ ∥MF ,延长FM 交AB 于点P ,易证△ADQ 和△DPM 为等边三角形, 故MD =PD ,MF =DQ =AD ,ME =BP ,所以MD +ME +MF 可转化为边AB 的长,等于7 cm. 17.解:设运动时间为t s ,则MP =2t cm ,QN =(12-4t )cm(t <3)或QN =(4t -12)cm(t >3). 当t <3时,如图①,因为MP ∥QN ,所以当MP =QN 时,四边形PQNM 为平行四边形, 即2t =12-4t ,解得t =2;当t >3时,如图②,因为MP ∥QN ,所以当MP =QN 时,四边形PNQM 为平行四边形, 即2t =4t -12,解得t =6.所以经过2 s或6 s后,以点P,Q,M,N为顶点的四边形为平行四边形.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行四边形的性质及证明试题一◆知能点分类训练知能点1 平行四边形的判定方法1.能够判定四边形ABCD是平行四边形的题设是().A.AB∥CD,AD=BC B.∠A=∠B,∠C=∠D C.AB=CD,AD=BC D.AB=AD,CB=CD2.具备下列条件的四边形中,不能确定是平行四边形的为().A.相邻的角互补 B.两组对角分别相等C.一组对边平行,另一组对边相等 D.对角线交点是两对角线中点3.如图1-1所示,四边形ABCD的对角线AC和BD相交于点O,下列判断正确的是().A.若AO=OC,则ABCD是平行四边形; B.若AC=BD,则ABCD是平行四边形;C.若AO=BO,CO=DO,则ABCD是平行四边形; D.若AO=OC,BO=OD,则ABCD是平行四边形图1-1 图1-24.如图1-2所示,对四边形ABCD是平行四边形的下列判断,正确的打“∨”,错误的打“×”.(1)因为AD∥BC,AB=CD,所以ABCD是平行四边形.()(2)因为AB∥CD,AD=BC,所以ABCD是平行四边形.()(3)因为AD∥BC,AD=BC,所以ABCD是平行四边形.()(4)因为AB∥CD,AD∥BC,所以ABCD是平行四边形.()(5)因为AB=CD,AD=BC,所以ABCD是平行四边形.()(6)因为AD=CD,AB=AC,所以ABCD是平行四边形.()5.已知AD∥BC,要使四边形ABCD为平行四边形,需要增加条件________.6.如图1-3所示,∠1=∠2,∠3=∠4,问四边形ABCD是不是平行四边形.图1-37.如图1-4所示,在四边形ABCD中,AB=CD,BC=AD,E,F为对角线AC上的点,且AE=CF,求证:BE=DF.图1-48.如图1-5所示,D为△ABC的边AB上一点,DF交AC于点E,且AE=CE,FC∥AB.求证:CD=AF.图1-59.如图1-6所示,已知四边形ABCD是平行四边形,在AB的延长线上截取BE=•AB,BF=BD,连接CE,DF,相交于点M.求证:CD=CM.图1-610.如图1-7所示,在四边形ABCD中,DC∥AB,以AD,AC为边作□ACED,延长DC•交EB于F,求证:EF=FB.图1-7知能点2 三角形的中位□线11.如图1-8所示,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连接AE,分别交BC,BD于点F,G,连接AC交BD于点O,连接OF,求证:AB=2OF.图1-812.如图1-9所示,在ABCD中,EF∥AB且交BC于点E,交AD于点F,连接AE,BF•交于点M,连接CF,DE交于点N,求证:MN∥AD且MN=12 AD.图1-913.如图1-10所示,DE是△ABC的中位线,BC=8,则DE=_______.图1-10 图1-1114.如图1-11所示,在□ABCD中,对角线AC,BD交于点O,OE∥BC交CD•于E,•若OE=3cm,则AD的长为().A.3cm B.6cm C.9cm D.12cm15.如图1-12所示,在四边形ABCD中,E,F,G,H分别是AB,BC,CD,AD的中点,•则四边形EFGH是平行四边形吗?为什么?图1-1216.如图1-13所示,在△ABC中,AC=6cm,BC=8cm,AB=10cm,D,E,F分别是AB,BC,CA的中点,求△DEF 的面积.图1-13◆规律方法应用17.如图1-14所示,A,B两点被池塘隔开,在A,B外选一点C,连接AC和BC,•并分别找出AC和BC的中点M,N,如果测得MN=20m,那么A,B两点间的距离是多少?图1-1418.如图1-15所示,在□ABCD中,AB=2AD,∠A=60°,E,F分别为AB,CD的中点,EF=1cm,那么对角线BD的长度是多少?你是怎样得到的?图1-1519.如图1-16所示,在△ABC中,E为AB的中点,CD平分∠ACB,AD⊥CD于点D.•试说明:(1)D E∥BC.(2)DE=12(BC-AC).图1-16◆开放探索创新20.如图1-17所示,在△ABC中,∠BAC=90°,AD⊥BC于D,BE平分∠ABC交AD•于E,EF∥BC交AC于F,那么AE与CF相等吗?请验证你的结论.图1-17◆中考真题实战21.(长沙)如图1-18所示,在四边形ABCD中,AB∥CD,要使四边形ABCD•为平行四边形,则应添加的条件是________.(添加一个即可)图1-18图1-1922.(呼和浩特)如图1-19所示,已知E,F,G,H是四边形ABCD各边的中点,•则S四边形EFGH:S四边形ABCD的值是_________.23.(南京)已知如图1-20所示,在ABCD中,E,F分别是AB,CD的中点.求证:(1) △AFD≌△CEB.(2)四边形AECF是平行四边形.图1-20平行四边形的性质及证明试题二一.解答题(共30小题)1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.(2011•昭通)如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.(2011•徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.(2011•铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.(2010•恩施州)如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.(2009•永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.(2009•来宾)在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.(2006•黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.(2006•巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.(2002•三明)如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED 的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.(2010•厦门)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.(2010•滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明。
24.(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB 边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.(2005•贵阳)在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C 运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.平行四边形的性质及证明试题三【知识盘点】1.平行四边形的两组对边分别_________.2.夹在两平行线的平行线段_______,夹在两平行线间_______相等.3.在ABCD中,若AB=3cm,AD=4cm,则它的周长为________cm.4.已知ABCD的周长为26,若AB=5,则BC=________.5.在ABCD中,若AB:BC=2:3,周长为30cm,则AB=______cm,BC=______cm.【基础过关】6.在ABCD中,若∠A=30°,AB边上的高为8,则BC=()A.83 B.82 C.8 D.167.在ABCD中,∠A的平分线交BC于点E,若CD=10,AD=16,则EC为()A.10 B.16 C.6 D.138.如图1所示,在ABCD中,若∠A=45°,AD=6,则AB与CD之间的距离为()A.6 B.3 C.2 D.3图一图二图三9.如图2所示,在ABCD中,已知AC=3cm,若△ABC的周长为8cm,则平行四边形的周长为()A.5cm B.10cm C.16cm D.11cm10.如图3所示,已知在ABCD中,AB=6,BC=4,若∠B=45°,则ABCD的面积为()A.8 B.122 C.162 D.24【应用拓展】11.如图4所示,已知点E,F在ABCD的对角线BD上,且BE=D F.求证:(1)△ABE≌△CDF;(2)AE∥CF.图四12.如图5所示,分别过△ABC的顶点A,B,C作对边BC,A C,A B的平行线,交点分别为EF,D.(1)请找出图中所有的平行四边形;(2)求证:BC与DE的数量关系.图五【综合提高】13.如图6所示,在ABCD中,∠ABC=60°,且AB=BC,∠MAN=60°.请探索BM,DN与AB的数量关系,并证明你的结论.图六平行四边形的性质及证明试题四一、你能填对吗1.用边长分别为2cm,3cm,4cm的两个全等三角形拼成四边形,共能拼成_________个四边形,______________个为平行四边形。