第一章有理数(概念)复习课件

合集下载

第一章 有理数

第一章          有理数

第一章有理数一、知识框架二.知识概念1.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;2)有理数的分类: ①②2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:或;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10 .有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11 有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,. 13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或(a-b)n=(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a³10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减.本章内容要求学生正确认识有理数的概念,在实际生活和学习数轴的基础上,理解正负数、相反数、绝对值的意义所在。

第一章+有理数+第8课+有理数相关概念复习课件2024-2025学年人教版数学七年级上册

第一章+有理数+第8课+有理数相关概念复习课件2024-2025学年人教版数学七年级上册

6
(4)+(+6)=__________;
12
(5)|-12|=_________;
(6)-|-12|=_________.
-12
9. 填空:
6和-6
(1)到原点的距离等于6的数有2个,分别是__________;
-7或7
(2)若|x|=7,则x=__________;
4或-4
(3)一个数的绝对值是4,则这个数是__________;
正方向
(2)数轴的三要素:①__________;②____________;③
原点
单位长度
____________.
注意:数轴的三要素缺一不可.
原点将数轴(原点除外)分成两部分,其中正方向一侧
的部分叫作数轴的正半轴,另一侧的部分叫作数轴的
负半轴。
知识点 4 相反数
符号
(1)相反数:只有________不同的两个数叫做互为相反数.
+0.04
-0.03
( 表示
圆形零件的直径,单位:mm),抽查了5个零件,超过
规定的记作正数,不足的记作负数,数据如下表(单位:
mm).
(1)哪些产品是符合要求的?
(2)在符合要求的产品中哪个质量最好?请用绝对值的
知识加以说明.
解:(1)1号,3号,4号产品是符合要求的;
(2)因为|+0.018|<|-0.021|<|+0.031|,
(4)若|a-4|+|b-3|=0,则a=_______,b=_______.
4
3
10. 比较大小,用“>”或“<”填空:


(1)15________0;
(2)-12________5;

第1章有理数(单元复习课件)(知识导图+考点梳理+数学活动+课本复习题)七年级数学上册人教版2024

第1章有理数(单元复习课件)(知识导图+考点梳理+数学活动+课本复习题)七年级数学上册人教版2024
时间
第一季度
第二季度
第三季度
第四季度
盈利/万元
-6.8
-10.7
31.5
27.8
31.5> 27.8 > -6.8 > -10.7
6. 某年我国人均水资源比上年的增幅是 -5.6%. 后续
三年各年比上年的增幅分别是 -4.0%,13.0%,-9.6%.
这些增幅中哪个最小?增幅是负数说明什么?
-9.6%最小
(1)一般地,数轴上表示数 a 的点与原点的距离叫作数 a 的绝对值,记作| a |,
读作“a的绝对值”.
(2)绝对值的性质(非负性).
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是
0.
即: ①如果a>0,那么│a│= a;
②如果a=0,那么│a│= 0;
③如果a<0,那么│a│= -a.
7. 在数轴上表示下列各数、并将这些数按从小到大的顺序排列,
再用“<”连接起来.
3,-4,0,2,-2,-1
-4
-4
-3
-2
-1
0
-2
-1
0
-4 < -2 < -1 <
1
2
3
2
3
0 < 2 < 3
4
知识梳理
4. 相反数
(1)相反数:只有符号不同的两个数,互为相反数;
(2)相反数的几何意义:
在数轴上位于原点两侧并且到原点距离相等的两个点所表示
–(–2) > –|+2|
(3)+|–3| 和 |–(+5)|; (4)–(+ ) 和 –|–
(3)+|–3| = 3, |–(+5)| = 5;

人教版七年级上册数学《有理数》培优说课教学复习课件

人教版七年级上册数学《有理数》培优说课教学复习课件
我们以前学过的数,
像1,2,3……称为正整数;
2 4 1
, , ……称为正分数.
3 5 4
那么在以上这些数的前面添上“-”号后,还有小数呢?
-1,-2,-3……称为负整数;
2 4 1
, , ……称为负Байду номын сангаас数.
3 5 4
特别提示:零既不是正数,也不是负数!
分类的时候
别丢了0哦
正整数、零和负整数统称整数.
第一章 有理数
有理数
课件
学习目标
1.掌握有理数的概念.(重点)
2.会对有理数按一定的标准进行分类,培养分类能力.(难点)
引入
下表是某日《信息早报》上刊登的几支股票的涨跌情况.
代码
股票名称
昨收盘
今收盘
涨跌(%)
600828
A集团
8.83
9.71
+9.97
600829
B股份
10.43
10.65
+2.11
(2)自然数一定是整数.( √ )
(3)0一定是正整数.( × )
(4)整数一定是自然数.( × )
课堂检测
4.填空:
负整数和0
(1)有理数中,是整数而不是正数的是___________;
负整数
是负数而不是分数的是__________.
整数
正数
有理数
(2)零是_________,还是______,但不是_____,也不
链接中考
1.下列四个数中,是正整数的是( D )
A.-1
B.0
1
C.
2
D.1
2. 四个数-3, 0, 1, 2,其中负数是( A )
A. -3

第1章 有理数(单元复习课件)七年级数学上册(人教版2024)

第1章 有理数(单元复习课件)七年级数学上册(人教版2024)

7. 【2024宁波新视角操作探究题】数轴是一个非常重要的数学
工具,它使数和数轴上的点建立起对应关系,揭示了数与点
之间的内在联系,它是“数形结合”的基础.小锦在草稿纸上
画了一条数轴(如图) 进行操作探究.
操作一:
(1)折叠纸面,若使1表示的点与-1表示的点重合,则-3
表示的点与
3 表示的点重合;
易错点三 数轴上点的位置不确定而漏解
例 3.在数轴上与表示-3的点相距10个单位长度的点表示的数是
.
正解:
当与-3相距10个单位长度的点在-3的右侧时,
-3+10=7;
当与-3相距10个单位长度的点在-3的左侧时,
-3-10=-13.
故答案为7 或-13.
错解剖析:
在数轴上与-3相距10个单位长度的点有可能在-3的右侧也有可能在-3的左
的数为 -6
.

5. 【新视角结论开放题】已知数轴上点 A 表示的数是-1,点 B
在点 A 的左侧,则点 B 表示的数可能是 -4(答案不唯一)
.

6. 画出数轴,并在数轴上表示下列各数,再将这些数用
“<”连接起来.

-4,1 ,3,-(-0.5),-|-2|.

解: 如图所示.

由数轴得,-4<-|-2|<-(-0.5)<1 <3.

025,-1



(3)正有理数:

,+15%,101,3.14,0.618

(4)非正整数:
0,-2 025 ;
(5)非负数:




,0,+15%,101,3.14,0.618

第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)

第1章 有理数 人教版七年级数学上册单元复习课件(共38张PPT)

知识点四:有理数的混合运算 有理数的运算有加法、减法、乘法、除法和乘方.进行混合 运算时,运算顺序是: (1)先乘方,再乘除,最后加减; (2)同级运算,按从左到右的顺序进行; (3)如有括号,先做括号内的运算,按小括号、中括号、大 括号依次进行.
13.【例1】下面的说法正确的是( D ) A.有理数的绝对值一定比0大 B.有理数的相反数一定比0小 C.若两个数的绝对值相等,则这两个数相等 D.互为相反数的两个数的绝对值相等
20.【例8】(创新题)观察下列所给的式子,解答下列问题: 1+3=22; 1+3+5=32; 1+3+5+7=42; 1+3+5+7+9=52;…. (1)1+3+5+7+…+29= 225 ; (2)1+3+5+…+(2n-1)= n2 ;(n为正整数) (3)21+23+25+…+57+59= 800 .
16.【例4】(创新题)若x为有理数,式子2 023-|x+2|存在最
大值,则这个最大值是( B )
A.2 022
B.2 023
C.2 024
D.2 025
小结:直接利用绝对值的性质得出|x+2|的最小值为0.
小结:明确有理数混合运算的计算方法,并合理运用运算律.
18.【例6】(全国视野)(2022泸州改编)若(a-2)2+|b+3|=0, 求ab的值. 解:由题意得a-2=0,b+3=0, 可得a=2,b=-3, 所以ab=2×(-3)=-6.
(3)相反数:只有符号不同的两个数叫做互为相反数,0的相 反数是0. 互为相反数的两个数到原点的距离相等.
(4)绝对值:一个数在数轴上对应的点到原点的距离叫做这 个数的绝对值. 一个正数的绝对值是它本身;一个负数的绝对值是它的相反 数;0的绝对值是0. (5)倒数:乘积是1的两个数互为倒数.

人教版数学七年级上册(新) 单元复习课件:第一章《有理数》(共15张PPT)

人教版数学七年级上册(新) 单元复习课件:第一章《有理数》(共15张PPT)

2 7 5
㈠正数与负数 1、正数与负数的概念: ①正数:大于0的数。 ②负数:小于0的数。带“-”号的数并不都是负数 ③0既不是正数,也不是负数。 2、正数与负数的意义:在实际中表示意义相反的量。
知识要点
(1)相反意义的量包含两个要素:一是它们的意义要相反;二 是它们都具有数量。如前进8m与前进5m,上升与下降不是相反 意义的量;因为前者意义相同,后者缺少数量。 (2)与一个量成相反意义的量不止一个,如与上升2m成相反意 义的量就很多,如:下降1m,下降0.2m,…… (3)在同一问题中,用正、负数表示具有相反意义的量。对于 两个具有相反意义的量,把哪一种意义规定为正,带有任意性, 不过习惯上把向东、上升、盈利、运进、增加、收入等规定为正, 把它们的相反量规定为负的。
负数的绝对值是它的相反数; 0的绝对值是0. ③互为相反数的两个数的绝对值相等。 即︱a︱=︱-a︱且︱a-b︱=︱b-a︱ ④利用绝对值比较大小:两个负数,绝对值大的反而小。其步骤 如下:第一步分别求出两个负数的绝对值,第二步比较这两个绝 对值的大小,第三步根据性质比较。
6、倒数: 1 ①乘积是1的两个数叫作互为倒数。a的倒数是 a (a≠0),0没 有倒数。 ②如果a与b互为倒数,那么ab=1. 例:求下列各数的倒数:2,-2.5,-5 7、实数比大小: ①利用数轴:数轴上两个点表示的数,右边的总比左边的大; 正数大于0,负数小于0,正数大于负数。 ②利用绝对值比较负数大小:两个负数大小,绝对值大的反而小.
-4 2 -2 -4 -3 –2 –1 0 1 2
4 3 4
5、绝对值: ①数轴上看,一个数的绝对值就是表示这个数的点与原点的距离 叫做a的绝对值。 a的绝对值就是数a所表示点到原点的距离。表示成︱a︱。 (︱a︱≥0,一个数的绝对值是非负数) a a

第一章有理数复习课件(概念)

第一章有理数复习课件(概念)

原点、正方向和单位长度 的直线叫数轴。 规定了__________________________
注意: 1.数轴是一条直线 2.三要素:原点、正方向、单位长度 3.“单位长度”而不是“长度单位” 4.任何有理数都可以用数轴上的点来表示, 但数轴上的点并不是都表示有理数
1.下列各图中,表示数轴的是(D)
-4
-2 2 4
-4 -3 –2 –1
0
1
2
3
4
Ⅱ.定义: 乘积是1的两个数互为倒数.
1)a的倒数是 2)0没有倒数 ; 3)若a与b互为倒数,则ab=1.
下列各数,哪两个数互为倒数? 1 1 8, ( ) ,-1,+(-8),1, 8 8
1 (a≠0); a
Ⅲ.绝对值
数a的绝对值: 数轴上表示数a的点与原点的距离。 1)数a的绝对值记作︱a︱;
③用-a表示的数一定是( D ) A.负数 B.正数 C.正数或负数 D.都不对 ④一个数的相反数是最小的正整数,那么这个数 是( A ) A .–1 B. 1 C . ±1 D. 0 3.判断 ①互为相反数的两个数在数轴上位于原点的两 旁( × ) ②在一个数前面添上“-”号,它就成了一个负 数( × ) ③ 只要符号不同,这两个数就是相反数( × )

有理数的另一种分类
正有理数 正整数
有 理 数
正分数
负整数 负分数
0 负有理数
说明:①分类的标准不同,结果也不同;②分类 的结果应无遗漏、无重复;③零是整数,但零既 不是正数,也不是负数.
1.零是整数吗?自然数一定是整数吗?自 然数一定是正整数吗?整数一定是自然数 吗? 零是整数;自然数一定是整数;自 然数不一定是正整数,因为零也是 自然数;整数不一定是自然数,因 为负整数不是自然数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变式: 已知│x│=2,│y│=3,且│x-y│=y -x, 求x+y的值
五、有理数的大小比较
有理数大小的比较方法有两种: (1)利用数轴比较:在数轴上表示的两个数, 右 边的数总比 左 边的数大。 (2)利用法则比较: 负 ① 正 数都大于零, 数都小于零 , 正 数大于一切 负 数; ②两个正数比较大小,绝对值 大 的 数 大 ; 两个负数比较大小,绝对值 大 的数 反而 小 。
题目3:数轴上的一个点在点-1.5的右侧, 相距5个单位长度,求这个点所表示的数。
三、相反数的概念
如果两个数只有 符号 不同,那么我们就称 其中一个数是另一个数的相反数,也称这两 个数 互为相反数 。 特别地,零的相反数是 零 。在数轴上, 表示互为相反数(零除外)的两个点,分别 位于 原点 的两侧,且与原点的距离 相等 。
5、相反数等于它本身的数是( 0 ),
绝对值等于它本身的数是( 正数和零 ),
绝对值等于它的相反数的数是( 负数和零
);
6、绝对值不大于2的整数是 ( ), 2,1,0,-1, -2
绝对点A距离为2的点所表示的 数为4,则点A所表示的数为 2或6 . 8、数轴上表示互为相反数的两个点之间的距 +3.5和-3.5 离为7,则这两数为 ___ _. 9、已知,有理数a,b在数轴上的位置如图所示, 那么a, b, -a, -b的大小关系是 -a>b>-b>a ________________.
例:如图,图中数轴的单位长度为1。请回答 下列问题: ①如果点A、B表示的数是互为相反数,那么点 C表示什么数,是多少? -1
②如果点D、B表示的数是互为相反数,那么 点C表示的数是正数还是负数,图中表示的5 个点中,哪一个点表示的数绝对值最小,是 1 正数 点C 多少?
2
-1
0
0
四、绝对值
在数轴上,一个数所表示的数到原点的 距离叫做 该数的绝对值。绝对值是本身的是 正数和零 , 相反数是它本身的数为 零 , 倒数和它本身相 等的数是 1和-1 ,绝对值最小的数是 零 。
例题:在数轴上表示数4,-2,1,0,-2.5,
并比较它们的大小,将它们按从小到大的顺序 用“<”连接. 说说你是如何比较的? 解: -2.5 <-2< 0< 1< 4
-2.5 -2 0 1 4
-3 -2 -1 0 1 2 3 4
数形结合
数缺形时少直观,形缺数时难入微。 数轴比较法:在数轴上表示的两个数,右边 ——华罗庚 的数总比左边的数大。
a -b 0
b
-a
1、如果火车向东开出400千米记作+400千米,那 -4000 么火车向西开出4000千米,记作______; 3 2、3的相反数是 -3 ,3的绝对值等于 _____ , ±3 绝对值等于3的数是_________ ; 3、最大的负整数是 -1,最小的正整数是 1 4、比较下列数的大小,并说明理由. 1 -10 1>-10 .
题目4:求下列各数的绝对值 -1.5, ,0,-8,+8,-100,+93 题目5: 求绝对值等于1.2,6,7.2,9.9的数
例题:已知︱a -3 ︱ + ︱b 求3a+2b的值。
1 -2
︱=0,
反思:非负数具有以下三个性质:
(1)若干个非负数的和仍是非负数;
(2)若干个非负数的和为0,则每个非负数都是0 (3)非负数的最小值是0
复习目标 (一)知识目标: 理解五个重要概念: 有理数、数轴、相反数、绝对值、倒数。 (二 )能力目标: 初步领会有理数大小的比较方法. (三)重点和难点 重点是五个重要概念的理解. 难点是绝对值的应用。
一、有理数的分类方法
1.按整数、分数的关系分类 2.按正数、负数与零的关系分类
注:0既不是正数也不是负数
例题:把下列各数填入到相应的圈内:
-1.21221 ,29 , -2.8 , , 30 , -7 -0.759 ,0 , +3.14 ,78 7
正分数
非负整数
负数
整数
有理数
二、数轴的概念
数轴是一条具有 原点 直线 、 单位长度 正方向的 和
题目2:在数轴上表示下列各数: (1)0.5,- ,0,-4, ,-0.5,1,4 (2)250,-150,-100,100,150,-50
相关文档
最新文档