高一数学下期末考试题附答案
高一下期末数学试卷含答案解析

故选B.
3.在正项等比数列{an}中,若a2=2,a4﹣a3=4,则公比为( )
A.2B.1C. D.
【考点】等比数列的通项公式.
【分析】利用等比数列的通项公式及其性质即可得出,
【解答】解:设正项等比数列{an}的公比为q>0,
∵a2=2,a4﹣a3=4,∴ =2q2﹣2q=4,
22.已知A(﹣1,0),B(1,0),圆C:x2﹣2kx+y2+2y﹣3k2+15=0.
(Ⅰ)若过B点至少能作一条直线与圆C相切,求k的取值范围.
(Ⅱ)当k= 时,圆C上存在两点P1,P2满足∠APiB=90°(i=1,2),求|P1P2|的长.
-学年河北省沧州市高一(下)期末数学试卷
参考答案与试题解析
化为q2﹣q﹣2=0,解得q=2.
故选;A.
4.若a>b,则下列不等式成立的是( )
A.a2>b2B. C.lga>lgbD.
【考点】不等关系与不等式.
【分析】利用不等式的性质和指数函数的单调性就看得出.
【解答】解:∵a>b,∴2a>2b>0,∴ ,
故D正确.
故选D.
5.若直线l∥平面α,直线m⊂α,则l与m的位置关系是( )
A. B. C. D.3
【考点】由三视图求面积、体积.
【分析】由三视图知该几何体是一个长方体截去一个三棱锥所得的组合体,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.
【解答】解:由三视图知几何体是一个长方体截去一个三棱锥所得的组合体,
且长方体长、宽、高分别是1、1、3,
三棱锥的底面是等腰直角三角形、直角边是1,三棱锥的高是1,
A.2B.1C. D.
2023-2024学年湖北省五市州高一数学(下)期末考试卷附答案解析

2023-2024学年湖北省五市州高一数学(下)期末考试卷全卷满分150分.考试用时120分钟.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知3i z =+,则1iz=+()A .42i-B .42i +C .2i-D .2i +2.当()0,2πx ∈时,曲线2cos y x =+与直线13y x =的交点个数为()A .2B .3C .4D .53.已知()2,0a = ,()1,1b = ,则a 在b 上的投影向量为()A .)B .()1,1C .()2,1D .()2,24.已知1z ,2z ∈C ,则下列说法正确的是()A .若3z ∈C ,1323z z z z =,则12z z =B .若12z z =,则12=z zC .若1212z z z z +=-,则120z z ⋅=D .1212z z z z +=-5.如图所示,角x (π0,2x ⎛⎫∈ ⎪⎝⎭)的顶点为坐标原点,始边与x 轴的非负半轴重合,其终边与单位圆的交点为P ,分别过点A 作x 轴的垂线,过点B 作y 轴的垂线交角x 的终边于T ,S ,根据三角函数的定义,tan x AT =.现在定义余切函数cot y x =,满足1cot tan x x=,则下列表示正确的是()A .cot x OT =B .cot x PS =C .cot x OS =D .cot x BS=6.已知单位向量a ,b互相垂直,若存在实数t ,使得()1a t b +- 与()1t a b -+ 的夹角为60 ,则t =()AB .1-CD .1-7.1cos 20cos 40cos 202︒-︒︒=()A .14-B .14C .12-D .128.已知函数()sin sin 2f x x x =+,下面关于函数()f x 的图象与性质描述正确的是()A .函数()f x 的图象关于y 轴对称B .函数()f x 的最小正周期为πC .方程()0f x =在[]π,π-上有5个不同的实根D .()f x ≤恒成立二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.某同学统计了某校高一男生的身高数据(单位:cm ),并整理得到下表身高[)155160,[)160165,[)165170,[)170175,[)175,180频数60120180240100根据表中数据,下列说法正确的是()A .该校高一年级男生身高的中位数小于170cmB .该校高一年级男生身高的众数和中位数相同C .该校高一年级男生身高的极差介于15cm 至25cm 之间D .该校高一年级男生身高的平均数介于170cm 到175cm 之间10.阻尼器是一种以提供阻力达到减震效果的专业工程装置,其提供阻力的运动过程可近似为单摆运动.若某阻尼器离开平衡位置的位移y (单位:m )和时间x (单位:s )满足函数关系:()sin y A x ωϕ=+(0A >,0ω>,π2ϕ<),某同学通过“五点法”计算了一个周期内的部分数据如下(其中a ,b ,c ,d 为未知数),则下列有关函数()y f x =的描述正确的是()A .函数()f x 的图象关于点,03⎛⎫⎪⎝⎭对称B .函数()f x 的图象可由函数sin y A x ω=的图象向右平移13个单位得到C .函数()f x 的图象上相邻的最高点与最低点之间的距离为4D .函数()f x的图象与函数ππ23y x ⎛⎫=+ ⎪⎝⎭的图象重合11.在棱长为2的正方体1111ABCD A B C D -中,Q 是1CC 的中点,下列说法正确的是()A .若P 是线段1AC 上的动点,则三棱锥P BQD -的体积为定值B .三棱锥1A BQD -C .若AQ 与平面AC ,平面1AD ,平面1AB 所成的角分别为i θ(1,2,3i =),则321cos 2i i θ==∑D .若平面ABQ 与正方体各个面所在的平面所成的二面角分别为()1,,6i i θ= ,则612sin 4i i θ==∑三、填空题:本大题共3小题,每小题5分,共15分.12.已知()tan 1αβ+=,()tan 2αβ-=,则tan 2α=.13.在ABC 中,π2A =,3BC BA CA CB ⋅=⋅,则ABC 中最小角的余弦值为.14.设x ∈R ,m ∈Z ,若1122x m -<-≤,则称m 为离实数x 最近的整数,记作{}x ,即{}x m =,如{}2.42-=-.另外,定义[]x 表示不超过x 的最大整数,如[]2.63-=-.令()f x x x =⎡⎤-⎣⎦,(){}g x x x =-,当[]2024,2024x ∈-时,如果存在i x (1,2,,i n =⋅⋅⋅)满足()()i i f x g x =,那么112025ni i x ==∑.四、解答题:本大题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.已知ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,且b 最大,πsin cos 2cos sin 3A C B C ⎛⎫-=+ ⎪⎝⎭.(1)求B ;(2)若AC 边上的高为4,求ABC 面积的最小值.16.已知函数()224sin cos sin 3cos 1f x x x x x =-+-.(1)求函数()f x 的最值与单调递增区间;(2)若方程()()()2220f x a f x a -++=在[]0,π上恰有4个不同的实数根,求a 的值.17.在三棱锥-P ABC 中,AC CB ⊥,AB BP ⊥,CB CP CA ==,12BP AP =.点C 在平面PAB 上的射影D 恰好在PA 上.(1)若E 为线段BP 的中点,求证:BP ⊥平面CDE ;(2)求二面角C AB P --的余弦值.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)19.在直三棱柱111ABC A B C -中,AB BC ⊥,2AB =,123BC AA ==,点M 是平面ABC 上的动点.(1)若点M 在线段BC 上(不包括端点),设α为异面直线AC 与1B M 所成角,求cos α的取值范围;(2)若点M 在线段AC 上,求112A M MC +的最小值;(3)若点M 在线段BA 上,作MN 平行AC 交BC 于点N ,Q 是1BB 上一点,满足2MB BQ +=.设MB x =,记三棱锥Q MBN -的体积为()V x .我们知道,函数()y f x =的图象关于坐标原点成中心对称图形的充要条件是函数()y f x =为奇函数,有同学发现可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数.据此,判断函数()y V x =在定义域内是否存在0x ,使得函数()y V x =在()00,x 上的图象是中心对称图形,若存在,求0x 及对称中心;若不存在,说明理由.1.C【分析】根据复数的除法法则计算.【详解】由题意23i (3i)(1i)33i i i 2i 1i 1i (1i)(1i)2z ++--+-====-+++-,故选:C .2.A【分析】结合函数图象,函数的单调性得出结论.【详解】作出函数2cos y x =+和13y x =的图象,记()2cos f x x =+,1()3g x x =,函数2cos y x =+在[0,π]上递减,在[π,2π]上递增,π(π)1(π)3f g =<=,(0)3(0)0f g =>=,2π(2π)3(2π)3f g =>=,结合图象知在(0,2π)上有两个交点,故选:A .3.B【分析】根据投影向量的定义及向量的坐标运算求解.【详解】由已知b = 21012a b ⋅=⨯+⨯=,a 在b上的投影向量为(1,1)(1,1)a b b bb⋅⋅== ,故选:B .4.B【分析】根据复数的运算及复数、复数的模的概念判断各选项.【详解】选项A ,取1320,1,2z z z ===,满足1323z z z z =,但12z z =不成立,A 错;选项B ,设2i(,R)z a b a b =+∈,12i b z z a ==-,则12z z ==,B 正确.选项C ,取121,i z z ==,满足1212z z z z +=-,但12i 0z z ⋅=≠,C 错;选项D ,取1212i,z 12i z =+=-,则122z z +=,12(12i)(12i)4i z z -=--+=-,D 错;故选:B .5.D【分析】利用三角形相似,即可求解.【详解】由图象可知,OBS TAO ,则OB BSAT OA=,即1BS AT OB OA ⋅=⋅=,所以11cot tan BS x AT x===.故选:D 6.D【分析】根据向量数量积的运算律和定义,列等式,即可求解.【详解】因为()()()()()222111111a t b t a b t a t a b t b⎡⎤⎡⎤⎡⎤+-⋅-+=-+-+⋅+-⎣⎦⎣⎦⎣⎦1122t t t =-+-=-,()1a t b +-=()1t a b -+=又()1a t b +-与()1t a b -+ 的夹角为60 ,所以()22211cos60t t ⎡⎤-=+-⎣⎦,即()24411t t -=+-,解得:1t =-±故选:D.7.A【分析】利用两角和与差的余弦公式,正弦的二倍角公式及诱导公式变形可得.【详解】1cos 20cos 40cos 20(cos 60cos 40)cos 202︒-︒︒=︒-︒︒[cos(5010)cos(4010)]cos 20=︒+︒-︒-︒︒(cos 50cos10sin 50sin10cos 50cos10sin 50sin10)cos 20=︒︒-︒︒-︒︒-︒︒︒2sin 50sin10cos 20=-︒︒︒2cos 20cos 40cos80=-︒︒︒2sin 20cos 20cos 40cos80sin 20-︒︒︒=︒2sin 40cos 40cos802sin 80cos80sin1602sin 204sin 204sin 20-︒︒︒-︒︒-︒===︒︒︒sin 2014sin 204-︒==-︒.故选:A .8.C【分析】根据对称性,周期性,最值举例说明ABD 错误,解方程判断C 正确.【详解】选项A ,ππ(sin()sin(π)122f -=-+-=-,πππ(sin sin π1()222f f =+=≠-,即()()f x f x -=不可能恒成立,A 错;选项B ,()()πsin π)+sin(2+2πsin sin 2f x x x x x +=+=-+,即(π)()f x f x +=不可能恒成立,B 错;选项C ,()sin 2sin cos sin (12cos )f x x x x x x =+=+,由()0f x =得sin 0x =或1cos 2x =-,[π,π]x ∈-,则由sin 0x =得π,0,πx =-,由1cos 2x =-得2π2π,33x =-,即()0f x =在[]π,π-上有5个不同的实根,C 正确;选项D ,πππ2()sin sin 14422f =++D 错.故选:C .9.AC【分析】根据统计表.结合中位数定义判断A (利用频数),再由众数定义判断B ,由极差定义判断C ,求出身高期望值判断D .【详解】选项A ,由统计表,身高小于170cm 的频数为360,身高不小于170cm 的频数为340,因此身高的中位数小于170cm ,A 正确;选项B ,由统计表身高的众数在区间[)170,175上,结合选项A 的判断知B 错误;选项C ,由统计表,身高的极差最大为18015525cm -=,最小为17516015cm -=,C 正确;选项D ,身高的平均值为601575120162518016752401725100177516893cm 60120180240100......⨯+⨯+⨯+⨯+⨯≈++++,D 错.故选:AC .10.BC【分析】根据五点法求出()f x 的解析式,然后结合正弦函数的性质,诱导公式判断各选项.【详解】由五点法知41073323b +==,从而13a =,133d =,由正弦函数性质知c =,A =2ππ131233ω==-,π1023ϕ⨯+=,π6ϕ=-,所以ππ()sin(26f x x =-,选项A,16π16π(3236f =⨯-=A 错;选项B,πππ1()3sin(()2623f x x x =-=-,其图象可由π2y x =的图象向右平移13个单位得到,B 正确;选项C ,函数()f x4=,C 正确;选项D,πππππππ()3sin()cos(2623223f x x x x =-=+-=+,D 错.故选:BC .11.ACD【分析】对于A ,连接AC 交BD 于点O ,连接OQ ,可证得1AC ∥平面BDQ ,进而进行判断,对于B ,根据线面垂直的判定定理可证得OQ ⊥平面1A BD ,设G 为等边三角形1A BD 的外心,过G 作平面1A BD 的垂线,则三棱锥1A BQD -外接球的球心在此直线上,然后求解,对于C ,取11,DD BB 的中点,M N ,连接,,,AM AN MQ NQ ,可得AQ 与平面AC ,平面1AD ,平面1AB 所成的角分别,,QAC QAM QAN ∠∠∠,然后求它们的余弦值即可,对于D ,由题意可得平面ABQM ⊥平面11BCC B ,平面ABQM ⊥平面11ADD A ,QBC ∠为二角面Q AB C --的平面角,1QBB ∠为二面角1Q AB B --的平面角,然后求出它们的正弦值判断.【详解】对于A ,连接AC 交BD 于点O ,连接OQ ,因为四边形ABCD 为正方形,所以O 为AC 的中点,因为Q 是1CC 的中点,所以OQ ∥1AC ,因为1AC ⊄平面BDQ ,OQ ⊂平面BDQ ,所以1AC ∥平面BDQ ,因为P 是线段1AC 上的动点,所以点P 到平面BDQ 的距离为定值,因为BDQ △的面积也为定值,所以三棱锥P BQD -的体积为定值,所以A 正确,对于B ,因为1CC ⊥平面ABCD ,BD ⊂平面ABCD ,所以1CC BD ⊥,因为AC BD ⊥,1AC CC C = ,1,AC CC ⊂平面1ACC ,所以BD ⊥平面1ACC ,因为1AC ⊂平面1ACC ,所以1BD AC ⊥,同理可证11A B AC ⊥,由选项A 可知OQ ∥1AC ,所以BD OQ ⊥,1A B OQ ⊥,因为1A B BD B ⋂=,1,A B BD ⊂平面1A BD ,所以OQ ⊥平面1A BD ,设G 为等边三角形1A BD 的外心,则112233AG AO ==⨯过G 作平面1A BD 的垂线,则三棱锥1A BQD -外接球的球心在此直线上,设球心为H ,连接1,A H QH ,过H 作HE OQ ⊥于E ,则111363323HE OG AO ===⨯,OQ ===设三棱锥1A BQD -外接球的半径为R ,则1A H QH R ==,设OE m =,则HG m =,因为22222211,A H AG GH HQ HE QE =+=+,所以)222222,R m R m ⎫=+=+-⎪⎪⎝⎭⎝⎭,解得m =,2R =,所以B 错误,对于C ,取11,DD BB 的中点,M N ,连接,,,AM AN MQ NQ ,则MQ ∥CD ,NQ ∥BC ,所以MQ ⊥平面1AD ,NQ ⊥平面1AB ,因为QC ⊥平面AC ,所以AQ 与平面AC ,平面1AD ,平面1AB 所成的角分别,,QAC QAM QAN ∠∠∠,因为3AM AN AQ =====,所以cos 333AC AM AN QAC QAM QAN AQ AQ AQ ∠==∠==∠==,所以222222cos 2333QAC cos QAM cos QAN ⎛⎛⎛∠+∠+∠=++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即321cos 2i i θ==∑,所以C 正确,对于D ,因为MQ ∥CD ,AB ∥CD ,所以MQ ∥AB ,所以平面ABQ 就是平面ABQM ,因为AB ⊥平面11BCC B ,AB ⊥平面11ADD A ,AB ⊂平面ABQM ,所以平面ABQM ⊥平面11BCC B ,平面ABQM ⊥平面11ADD A ,因为AB ⊥平面11BCC B ,BQ ⊂平面11BCC B ,所以AB BQ ⊥,所以QBC ∠为二角面Q AB C --的平面角,1QBB ∠为二面角1Q AB B --的平面角,sin QC QBC BQ ∠==,1sin sin BC QBB BDC BQ ∠=∠==所以平面ABQ与左右两个平面所成二面角的正弦值为πsin12=,所以226221sin 22214i i θ==⨯+⨯+⨯=∑,所以D正确,故选:ACD【点睛】关键点点睛:此题考查线面垂直,面面垂直,考查线面角,面面角,解题的关键是根据正方体的性质结合线面角和面面角的定义找出线面角和面面角,考查空间想象能力和计算能力,属于难题.12.3-【分析】由两角和的正切公式计算.【详解】tan()tan()12tan 2tan[()()]31tan()tan()112αβαβααβαβαβαβ++-+=++-===--+--⨯,故答案为:3-.13【分析】根据数量积的定义化简已知式后求解.【详解】因为π2A =,所以22cos ,cos B B A BC C C BA BA CA CB C CB B A CA ⋅===⋅= ,又3BC BA CA CB ⋅=⋅,所以223BA CA =,即BA =,因此B 最小,且cos BA B BC ===14.2024【分析】由函数()f x 与()g x 为偶函数,只需考虑[]0,2024x ∈的情形,然后设N m ∈,x m =,12m x m <≤+,112m x m +<<+分类讨论确定(1,2,,)i x i n = 的值,再求和.【详解】由题意()f x 与()g x 为偶函数,只需考虑[]0,2024x ∈的情形,设N m ∈,x m =时,由定义知{}[]m m m ==,()()0f x g x ==,12m x m <≤+时,{}[]x m x ==,()f x m x =-,()()g x x m f x =-≠,112m x m +<<+时,{}1x m =+,[]x m =,()f x m x =-,()(1)()g x x m f x =-+≠,所以i x i =(0,1,2,,2024i =⋅⋅⋅),()()1202412024111012202410122025202520252n i i x =⋅+=+++⋅⋅⋅+=⋅=∑由偶函数对称性可知,112101220242025ni i x ==⨯=∑.故答案为:2024.【点睛】方法点睛:本题考查函数新定义,关键是正确理解新定义并进行转化应用,解题方法是根据新定义对x 的值进行分类讨论,从而确定函数值并判断是否有()()f x g x =.15.(1)π2B =(2)16【分析】(1)利用两你用和与差的正弦公式对已知等式变形可求得B 角;(2)由面积建立,,a b c 的关系,利用基本不等式求得b 的最小值,得面积最小值.也可用A 角表示出边,a c ,然后利用正弦函数性质得面积的最小值.【详解】(1)因为()πsin cos 2cos sin 3B C C B C ⎛⎫+-=+ ⎪⎝⎭,所以1sin cos sin cos cos 2cos sin cos 22B C C B C B C C ⎛⎫+-=+ ⎪ ⎪⎝⎭.sin cos sin cos cos sin cos cos B C C B C C B B C +-=.()sin 1cos cos cos B C B C -.因为b 最大,所以cos 0C ≠,从而sin 1B B -=,即sin 1B B =,所以π1sin 32B ⎛⎫-= ⎪⎝⎭,即ππ36B -=或π5π36B -=(舍)从而π2B =.(2)法一:设ABC 面积为S ,1422S b b =⨯⨯=,因为π2B =,所以222b a c =+,又12S ac =,所以4b ac =,所以22222422161664a c a cb b ⎛⎫+ ⎪⎝⎭=≤=,所以8b ≥,当且仅当a c =时取等号,所以216S b =≥,ABC 面积的最小值为16.法二:由AC 边上的高为4,可得4sin A c =,即4sin c A=,同理444πsin cos sin 2a CA A ===⎛⎫- ⎪⎝⎭,116161622sin cos sin 2ABC S ac A A A===≥△,当且仅当π4A =即a c =时取等号.ABC 面积的最小值为16.16.(1)最大值-3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦,Z k ∈.(2)a =-a =【分析】(1)由三角公式化简函数为()sin()f x A x ωϕ=+形式,然后根据正弦函数的性质求解;(2)方程化为()2f x =或()f x a =,求得()2f x =在[]0,π上有三个根,因此()f x a =在[]0,π上有且仅有一个不同于π0,,π4x =的实数根,从而根据正弦函数性质可得结论.【详解】(1)由题意()()31cos 21cos 22sin 2122x x f x x +-=-+-,化简得()()π2sin 2cos 224f x x x x ⎛⎫=+=+ ⎪⎝⎭,当ππ22π42x k +=+,Z k ∈时,即ππ8x k =+,Z k ∈,()f x取得最大值当ππ22π42x k +=-,Z k ∈时,即3ππ8x k =-,Z k ∈,()f x取得最小值-;当πππ2π22π242k x k -≤+≤+,Z k ∈时,即3ππππ88k x k -≤≤+,Z k ∈,()f x 单调递增.所以()f x 的最大值-,单调递增区间为3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦,Z k ∈.(2)由题意()()()()20f x f x a --=,()2f x =或()f x a =.因为0πx ≤≤,ππ9π2444x ≤+≤当()2f x =时,所以π224x ⎛⎫+= ⎪⎝⎭,即π224x ⎛⎫+= ⎪⎝⎭,ππ244x +=或π3π244x +=或π9π244x +=,可得π0,,π4x =.所以()f x a =在[]0,π上有且仅有一个不同于π0,,π4x =的实数根.所以a =-a =17.(1)证明见解析【分析】(1)连接CD ,DE ,由CD ⊥平面PAB ,得CD BP ⊥,再由中位线定理得平行从而得BP DE ⊥,从而证得线面垂直;(2)作DF AB ⊥于F ,连接CF ,证明CFD ∠即为二面角C AB P --的平面角,然后在直角三角形中求解.【详解】(1)证明:连接CD ,DE ,CD ⊥ 平面PAB ,AP ⊂平面PAB ,BP ⊂平面PAB ,CD AP ∴⊥,CD BP ⊥,又CA CP =,D ∴为AP 中点.又E 为BP 中点,DE AB ∴∥又AB BP ⊥,BP DE ∴⊥,CD DE D = ,,CD DE ⊂平面CDE ,BP ∴⊥平面CDE .(2)作DF AB ⊥于F ,连接CF ,CD ⊥ 平面PAB ,AB ⊂平面PAB ,则CD AB ⊥,又因为CD DF D ⋂=,,CD DF ⊂平面CDF ,AB ∴⊥平面CDF ,而CF ⊂平面CDF ,AB CF ∴⊥.又CB CP CA == ,,D F ∴为,AP AB 的中点,所以DF PB ∥,又BP AB ⊥,DF AB ∴⊥.则CFD ∠即为二面角C AB P --的平面角.在Rt CDF △中,cos DFCFD CF∠=.设CB CA a ==,AC CB ⊥,则122CF AB a ==.因为12BP AP =,在Rt ABP 中,())22222BP BP AB -==,则3BP a =,126DF BP a ==,cos 3CFD ∠==.18.(1)0.016m =(2)不正确(3)78.26【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【详解】(1)根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.(2)由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.(3)由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010i i x x =-=∑,所以()()()()404011220i ii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220j ji i y yy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z z z ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.(1)64;(2)5;(3)存在,对称中心为283(,381,043x =.【分析】(1)作//MG AC 交AB 于G ,确定异面直线所成角,再利用余弦定理求解即得.(2)把矩形1ACC A 与ABC 置于同一平面,再求出点1A 到直线BC 的距离即可.(3)求出(x)V ,结合给定信息,利用奇函数建立方程求解即可.【详解】(1)在直三棱柱111ABC A B C -中,AB BC ⊥,作//MG AC 交AB 于G ,连接1B G ,则1B MG ∠为异面直线AC 与1B M 所成角或其补角,设BM x =,0x <<由BMG BCA △∽△223BG =,则3BG =3MG x =,2112B M x =+,21123x B G =+在1B MG △中,2221222412(12)3333cos 21221212213x x x x B MG x x x++-+∠===+++由023x <<21212x +>2361221x+,16cos (0,4B MG ∠∈,所以AC 与1B M 所成角余弦值的取值范围为6(0,4.(2)由AB BC ⊥,2AB =,23BC =,得30ACB ∠= ,60ABC ∠= ,将平面ABC 翻折使得与平面1AC 在同一平面上,且使矩形1ACC A 与ABC 在AC 两侧,过1A 作1A E BC '⊥于E ',交AC 于M ',则12M E M C '''=,对任意点M ,过M 作ME BC ⊥于E ,连接AE ,12ME MC =,则1111111212A C M MC E A M M '++=''''≥≥=+=+,当且仅当M 与M '重合时取等号,显然1//A M AB ',设AM a '=,4M C AC a a '=-=-,11222M E M C a '''==-,从而11132(2)222A E A M M E a a a ''''=+=+-=+,3)E C a '=-,在1Rt A E C ' 中,22211A E E C A C ''+=,即2233(2)(4)2824a a ++-=,化简得231628a +=,解得2a =,即15A E '=,所以112A M MC +的最小值为5.(3)043x =,对称中心为283(,381.由BMN △∽△BAC ,得2(2BMN BAC S x S = ,232BMN S x = ,BQ ⊥平面BMN ,2BQ x =-,21()(2)32V x x x =⋅-,整理得2()(2)6V x x x =-(02x <<),令2()(2)f x x =-,设其图象对称中心为(,)a b ,则()y f x a b =+-为奇函数,则2)(2)y x a x a b =+---32223)(3)(43)2a x a a x a a b=----为奇函数,23230)0a a a b -=⎧--=,解得238381a b ⎧=⎪⎪⎨⎪=⎪⎩,所以对称中心为2(,381,由对称性可得043x =.【点睛】关键点点睛:涉及空间图形中几条线段和最小的问题,把相关线段所在的平面图形展开并放在同一平面内,再利用两点之间线段最短解决是关键.。
江西省部分学校2023-2024学年高一下学期6月期末考试 数学含答案

江西省2023~2024学年高一6月期末教学质量检测数学(答案在最后)考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........4.本卷命题范围:必修第一册、第二册.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 在复平面内对应点的坐标为()1,1-,则2iz -=()A.31i 22+ B.11i 22+ C.13i 22+ D.1i+2.若一圆锥的侧面展开图的圆心角为5π6,则该圆锥的母线与底面所成角的余弦值为()A.45B.35C.512D.5133.已知0.32a -=,0.213b -⎛⎫= ⎪⎝⎭,2ln3c =,则()A .a b c>> B.b a c>> C.a c b>> D.b c a>>4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则()A.若,a b αβ⊂⊂,且a b ,则αβ∥B.若,a ααβ⊥⊥,则a β∥C.若,,a b a αβαβ⊥=⊥ ,则b α⊥D.若,a b 为异面直线,,a ααβ⊥∥,则b 不垂直于β5.已知集合{}()210R M x ax x a =-+=∈,则“14a =”是“集合M 仅有1个真子集”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件6.35cos cos cos777πππ的值为A.14B.14-C.18D.18-7.在ABC 中,点O 为ABC 的外心,3AB =,72AO BC ⋅= ,6AB AC ⋅=,则ABC 的面积为()A.B. C. D.8.掷两枚骰子,观察所得点数.设“两个点数都是偶数”为事件E ,“两个点数都是奇数”为事件F ,“两个点数之和是偶数”为事件M ,“两个点数之积是偶数”为事件N ,则()A.事件E 与事件F 互为对立事件B.事件M 与事件N 相互独立C.事件E 与事件M N ⋂互斥D.事件F 与事件M N ⋃相互独立二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.数据11.3233.84.56.37.88.610,,,,,,,,,的第80百分位数是7.8B.一组样本数据35,911x ,,,的平均数为7,则这组数据的方差是8C.用分层随机抽样时,个体数最多的层里的个体被抽到的概率最大D.若1210,,,x x x ⋅⋅⋅的标准差为2,则121031,31,,31x x x ++⋅⋅⋅+的标准差是610.下列结论正确的是()A.y =的值域为11,22⎡⎤-⎢⎥⎣⎦B.2211sin cos y x x=+的最小值为4C.若()lg lg a b a b =≠,则2+a b 的最小值为D.若0a b >>,R c ∈,则a c bc>11.如图,在正方体1111ABCD A B C D -中,AC BD O = ,E F G H ,,,分别为线段OA OB OC OD ,,,的中点,几何体1111A B C D EFGH -的体积为1123,P 为线段1BD 上一点,点P A B C D ,,,,均在球M 的表面上,则()A.1AB PC⊥B.PC PD +的最小值为3C.若P 为1BD 的中点,则球M 的表面积为9π2D.二面角1A HE A --的余弦值为1717三、填空题:本题共3小题,每小题5分,共15分.12.若函数()212xxk f x k -=+⋅为奇函数,则k =_________13.在四面体ABCD 中,2AD BC ==,AD 与BC 所成的角为60°,若E ,F 分别为棱AC ,BD 的中点,则线段EF 的长等于______.14.已知点O 是ABC 的重心,内角A ,B ,C 所对的边长分别为a ,b ,c ,且23203aOA bOB cOC ++=,则A =______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在复平面内,复数()i ,R z a b a b =+∈对应的点为(),Z a b ,连接OZ (O 为坐标原点)可得向量OZ,则称复数z 为向量OZ 的对应复数,向量OZ为复数z 的对应向量.(1)若复数12i z x =+,()()211i R z x x =+-∈的对应向量共线,求实数x 的值;(2)已知复数113i sin z x =⋅,2cos 22i cos z x x =+的对应向量分别为1OZ 和2OZ,若()12f x OZ OZ =⋅,求()f x 的最小正周期和单调递增区间.16.一中学为了解某次物理考试的成绩,随机抽取了50名学生的成绩,根据这50名学生的成绩(成绩均在[]40,100之间),将样本数据分为6组:[)40,50、[)50,60、…、[)80,90、[]90,100,绘制成频率分布直方图(如图所示).(1)求频率分布直方图中a 的值,并估计这50名学生的物理成绩的平均数(同一组中的数据以该组数据所在区间中点的值作代表);(2)在样本中,从成绩在[)40,60内的学生中,随机抽取2人,求这2人成绩都在[)50,60内的概率.17.如图,已知菱形ABCD 的边长为4,π3ABC ∠=,PA ⊥平面ABCD ,2PA =,E ,F 分别为BC ,CD 的中点,AC 交EF 于点G.(1)求证:平面PEF ⊥平面PAG ;(2)求点B 到平面PEF 的距离.18.在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos 3sin a C a C b c +=+.(1)求A ;(2)若ABC 为锐角三角形,且43b c +=,求a 的取值范围.19.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,120C =︒,将ABC 分别以AB ,BC ,AC 所在的直线为旋转轴旋转一周,得到三个旋转体1Ω,2Ω,3Ω,设1Ω,2Ω,3Ω的体积分别为1V ,2V ,3V .(1)若2a =,3b =,求1Ω的表面积S ;(2)若123V y V V =+,求y 的最大值.江西省2023~2024学年高一6月期末教学质量检测数学考生注意:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效.............,在试题卷....、草稿纸上作答无效.........4.本卷命题范围:必修第一册、第二册.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 在复平面内对应点的坐标为()1,1-,则2iz -=()A.31i 22+ B.11i 22+ C.13i 22+ D.1i+【答案】A 【解析】【分析】由题意写出复数z 的代数形式,代入所求式,运用复数的四则运算计算即得.【详解】依题意,1i z =-,则2i 2i (2i)(1i)3i 31i 1i (1i)(1i)222z ---++====+--+.故选:A.2.若一圆锥的侧面展开图的圆心角为5π6,则该圆锥的母线与底面所成角的余弦值为()A.45B.35C.512D.513【答案】C 【解析】【分析】设圆锥的底面圆半径为r ,母线长为l ,利用侧面展开图条件建立l 与r 的关系式,作出圆锥轴截面图,证明并求出线面所成角的余弦值即可.【详解】作出圆锥的轴截面图SAB ,设圆锥的底面圆半径为r ,母线长为l ,依题意可得,5π2π6l r =,即512r l =,因顶点S 在底面的射影即底面圆圆心O ,故母线SB 与底面所成的角即SBO ∠.在Rt SOB △中,5cos 12r SBO l ∠==.故选:C.3.已知0.32a -=,0.213b -⎛⎫= ⎪⎝⎭,2ln3c =,则()A.a b c >>B.b a c>> C.a c b>> D.b c a>>【答案】B 【解析】【分析】利用指数函数与对数函数的性质比较大小即可.【详解】因为2x y =在R 上递增,且0.30-<,所以0.30022-<<,即0.3021-<<,所以01a <<,因为13xy ⎛⎫= ⎪⎝⎭在R 上递减,且0.20-<,所以0.211133-⎛⎫⎛⎫>= ⎪⎪⎝⎭⎝⎭,即1b >,因为ln y x =在(0,)+∞上递增,且213<,所以2lnln103<=,即0c <,所以b a c >>.故选:B4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则()A.若,a b αβ⊂⊂,且a b ,则αβ∥B.若,a ααβ⊥⊥,则a β∥C.若,,a b a αβαβ⊥=⊥ ,则b α⊥D.若,a b 为异面直线,,a ααβ⊥∥,则b 不垂直于β【答案】D 【解析】【分析】由平面平行的判定定理可判断A 错误,由线面垂直性质可判断B 错误,利用面面垂直的性质定理可判断C 错误;由反证法可得D 正确.【详解】对于A ,由平面平行的判定定理易知当两个平面内的两条直线平行时,不能得出两平面平行,即A 错误;对于B ,若,a ααβ⊥⊥,则可得a β∥或a β⊂,故B 错误;对于C ,由面面垂直的性质知,两个平面垂直时,仅当直线在一个平面内且与交线垂直时才能确保直线与另一个平面垂直,而C 中直线b 与平面β的关系不确定,故b 与α不一定垂直,故C 错误;对于D ,若b β⊥,由条件易得a b ,与二者异面矛盾,故D 正确.故选:D .5.已知集合{}()210R M x ax x a =-+=∈,则“14a =”是“集合M 仅有1个真子集”的()A .必要不充分条件B.充分不必要条件C.充要条件D.既不充分又不必要条件【答案】B 【解析】【分析】由集合M 仅有1个真子集的条件,结合充分条件和必要条件的定义判断.【详解】集合{}210M x ax x =-+=仅有1个真子集,即集合M 只有一个元素,若0a =,方程210ax x -+=等价于10x -+=,解得1x =,满足条件;若0a ≠,方程210ax x -+=要满足140a ∆=-=,有14a =,则集合{}210M x ax x =-+=仅有1个真子集,有0a =或14a =,则14a =时满足集合M 仅有1个真子集,集合M 仅有1个真子集时不一定有14a =,所以“14a =”是“集合M 仅有1个真子集”的充分不必要条件.故选:B.6.35cos cos cos 777πππ的值为A.14B.14-C.18D.18-【答案】D 【解析】【分析】根据诱导公式以及余弦的降幂扩角公式即可容易求得.【详解】∵cos37π=-cos 47π,cos 57π=-cos 27π,∴cos7πcos 37πcos 57π=cos 7πcos 27πcos47π=248sincos cos cos 77778sin7πππππ=2244sin cos cos7778sin7ππππ=442sin cos778sin7πππ=8sin78sin7ππ=-18.故选:D.【点睛】本题考查诱导公式以及降幂扩角公式,属中档题.7.在ABC 中,点O 为ABC 的外心,3AB =,72AO BC ⋅= ,6AB AC ⋅=,则ABC 的面积为()A.B.C.D.【答案】A【解析】【分析】设D ,E 分别是AB ,AC 的中点,根据ABC 外心性质可得到212AO AC AC ⋅= ,同理可得212AO AB AB ⋅= ,解得AC ,根据向量乘法可求得sin BAC ∠,代入到1sin 2ABC S AB AC BAC=⋅∠可求得.【详解】设D ,E 分别是AB ,AC 的中点,根据ABC 外心性质可得到()21122AO AC AE EO AC AC EO AC AC ⎛⎫⋅=+⋅=+⋅= ⎪⎝⎭,同理可得212AO AB AB ⋅= ,又因72AO BC ⋅= ,可得()72AO AC AB AO AC AO AB ⋅-=⋅-⋅= ,可解得4AC =,61cos 342AB AC BAC AB AC ⋅∠===⨯ ,所以3sin 2BAC ∠=,则113sin 43222ABC S AB AC BAC =⋅∠=⨯⨯⨯= .故选:A8.掷两枚骰子,观察所得点数.设“两个点数都是偶数”为事件E ,“两个点数都是奇数”为事件F ,“两个点数之和是偶数”为事件M ,“两个点数之积是偶数”为事件N ,则()A.事件E 与事件F 互为对立事件B.事件M 与事件N 相互独立C.事件E 与事件M N ⋂互斥D.事件F 与事件M N ⋃相互独立【答案】D 【解析】【分析】用(,)x y 表示掷两枚骰子得到的点数,列出相关事件包含的样本点.对于A ,运用对立事件的定义判断;对于B ,分别计算,,M N M N 的概率,利用独立事件的概率乘法公式检验即得;对于C ,根据E 与M N ⋂的交集是否为空集判断;对于D ,与选项B 同法判断.【详解】依题意,可用(,)x y 表示掷两枚骰子得到的点数,则{(,)|,{1,2,3,4,5,6}}x y x y Ω=∈.对于A ,{(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)}E =,而{(1,1),(1,3),(1,5),(3,1),(3,3),(3,5),(5,1),(5,3),(5,5)}F =,显然事件E 与事件F 互斥但不对立,如(1,2)∈Ω,但(1,2),(1,2)E F ∉∉,故A 错误;对于B ,易得F E M =,故181(),362P M ==因N F =,故93()1()1()1364P N P N P F =-=-=-=,而MN E =,则91()()364P MN P E ===,因()()()≠P MN P M P N ,即事件M 与事件N 不独立,故B 错误;对于C ,由上分析,MN E =,故事件E 与事件M N ⋂不可能互斥,即C 错误;对于D ,由上分析,91(),364P F ==而M N =Ω ,则1()()P M N P ⋃=Ω=,因()F F M N ⋂=⋃,则1[()]()4P F P F M N ⋂==⋃,即[()()()]P P M N F P M N F ⋂⋃⋃=,故事件F 与事件M N ⋃相互独立,即D 正确.故选:D .【点睛】方法点睛:本题主要考查随机事件的关系判断,属于较难题.解题方法有:(1)判断事件,A B 对立:必须,A B A B ⋂=∅⋃=Ω同时成立;(2)判断事件,A B 相互独立:必须()()()P A B P A P B ⋂=成立;(3)判断事件,A B 互斥:只需A B ⋂=∅即可.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是()A.数据11.3233.84.56.37.88.610,,,,,,,,,的第80百分位数是7.8B.一组样本数据35,911x ,,,的平均数为7,则这组数据的方差是8C.用分层随机抽样时,个体数最多的层里的个体被抽到的概率最大D.若1210,,,x x x ⋅⋅⋅的标准差为2,则121031,31,,31x x x ++⋅⋅⋅+的标准差是6【答案】BD 【解析】【分析】利用各特征数据的计算方法进行计算即可.【详解】对于A ,因为共10个数据11.3233.84.56.37.88.610,,,,,,,,,,所以1080%8⨯=,则8个数据8.6第80百分位数为7.88.68.22+=,故A 错误;对于B ,一组样本数据35,911x ,,,的平均数为7,可知7x =,则这组数据的方差为()()()()()222222113757779711740855s ⎡⎤=-+-+-+-+-=⨯=⎣⎦,故B 正确;对于C ,由于分层抽样,每一层的抽样比是相同的,都等于总的抽样比,故C 错误;对于D ,由于1210,,,x x x ⋅⋅⋅的标准差为2,则它的方差为4,而121031,31,,31x x x ++⋅⋅⋅+的方差为23436⨯=,则它的标准差是6,故D 正确;故选:BD.10.下列结论正确的是()A.y =的值域为11,22⎡⎤-⎢⎥⎣⎦B.2211sin cos y x x=+的最小值为4C.若()lg lg a b a b =≠,则2+a b 的最小值为D.若0a b >>,R c ∈,则a c bc >【答案】ABC 【解析】【分析】对于A ,先求得函数定义域[1,1]-,判断其奇偶性,求函数在[0,1]上的值域,即得在[1,1]-上的值域;对于B ,利用常值代换法运用基本不等式即可求解;对于C ,先由条件推得1ab =,再运用基本不等式即可;对于D ,举反例即可排除.【详解】对于A ,由y =有意义可得,210x -≥,即11x -≤≤,函数定义域关于原点对称.由()()f x f x -=-=-,知函数为奇函数,当01x ≤≤时,y ==设2[0,1]t x =∈,则()g t =因[0,1]t ∈时,21110(244t ≤--+≤,即得10()2g t ≤≤,又函数y =为奇函数,故得其值域为11,22⎡⎤-⎢⎥⎣⎦,即A 正确;对于B ,因22sin cos 1x x +=,故2222221111()(sin cos )sin cos sin cos y x x x x x x=+=++2222sin cos 224cos sin x x x x =++≥+,当且仅当221sin cos 2x x ==时等号成立,即当221sin cos 2x x ==时,2211sin cos y x x=+的最小值为4,故B 正确;对于C ,由lg lg =a b 可得lg lg a b =或lg lg a b =-,即a b =或1a b=,因a b ¹,故1ab =,因0,0a b >>,则2a b +≥=当且仅当2a b ==即2+a b 的最小值为,故C 正确;对于D ,因R c ∈,不妨取0c =,则0a c bc ==,故D 错误.故选:ABC.11.如图,在正方体1111ABCD A B C D -中,AC BD O = ,E F G H ,,,分别为线段OA OB OC OD ,,,的中点,几何体1111A B C D EFGH -的体积为1123,P 为线段1BD 上一点,点P A B C D ,,,,均在球M 的表面上,则()A.1AB PC⊥B.PC PD +的最小值为C.若P 为1BD 的中点,则球M 的表面积为9π2D.二面角1A HE A --的余弦值为17【答案】ABD 【解析】【分析】利用正方体的性质,结合台体体积公式可求得正方体边长,再利用线面垂直证明线线垂直,利用侧面展开图思想求线段和的最小值,利用外接球的截面性质来求其半径,利用二面角的平面角来求解二面角的余弦值.【详解】由正方体性质可得:几何体1111A B C D EFGH -是正四棱台,设正方体的边长为a ,则其体积为:23211711234343a a a a ⎛++=⋅= ⎝,解得4a =,因为在正方体1111ABCD A B C D -中,有11AB A B ⊥,BC ⊥平面11ABB A ,又因为1AB ⊂平面11ABB A ,所以1BC AB ⊥,又因为1BC A B B ⋂=,1BC A B ⊂,平面11BCD A ,所以1AB ⊥平面11BCD A ,而PC ⊂平面11BCD A ,所以1AB PC ⊥,故A 正确;把直角三角形1BDD 与直角三角形1BCD 展开成一个平面图形,则PC PD CD +≥,而114,BC DD BD CD ====,由勾股定理可得:CD ==,故B 正确;当P 为1BD 的中点,此时四棱锥P ABCD -是正四棱锥,其外接球的球心M 一定在OP 上,又由于OA =2OP =,设MP MA R ==,则由勾股定理得:()2282R R =+-,解得:3R =,此时球M 的表面积为:24π336π⋅=,故C 错误;取AD 中点为Q ,取11A D 中点为T ,连结OQ EH G = ,再连接TG ,由,,AD OQ AD QT OQ QT Q ⊥⊥= ,OQ QT ⊂,平面OQT ,所以AD ⊥平面OQT ,又因为//EH AD ,所以EH ⊥平面OQT ,又因,GQ GT ⊂平面OQT ,所以,,EH GQ EH GT ⊥⊥即二面角1A HE A --的平面角就是QGT ∠,由正方体边长为4,可知1,4QG QT ==,所以16117GT =+=即17cos 1717QGT ∠==,故D 正确;故选:ABD.【点睛】关键点点睛:本题D 选项的关键是利用二面角的定义找到其平面角,再求出相关线段,利用余弦函数定义即可得到答案.三、填空题:本题共3小题,每小题5分,共15分.12.若函数()212xxk f x k -=+⋅为奇函数,则k =_________【答案】1±##1或1-##1-或1【解析】【分析】利用奇函数()()f x f x =--求解即可.【详解】因为函数()212xxk f x k -=+⋅为奇函数,所以由()()f x f x =--可得221212122x x xx xxk k k k k k-----⋅=-=+⋅+⋅+,即2222212x x k k -=-⋅,整理得()()221120xk -+=,解得1k =±,经检验,当()1212x xf x -=+或()1212xx f x --=-时,满足()()f x f x =--,故答案为:1±13.在四面体ABCD 中,2AD BC ==,AD 与BC 所成的角为60°,若E ,F 分别为棱AC ,BD 的中点,则线段EF 的长等于______.【答案】1【解析】【分析】设G 为CD 中点,分别连接EG ,FG ,构造新的EFG 根据余弦定理可得到EF 的长.【详解】设G 为CD 中点,分别连接EG ,FG ,则EG 是ACD 的中位线,可得11,2EG AD EG AD == ,同理可得11,2FG BC FG BC == ,因为AD 与BC 所成的角为60°所以EGF ∠等于60°或120°,当60EGF ∠=︒在EFG 中根据余弦定理得1EF ===,当120EGF ∠=︒同理可得E F故答案为:114.已知点O 是ABC 的重心,内角A ,B ,C 所对的边长分别为a ,b ,c ,且203aOA bOB cOC ++=,则A =______.【答案】π6【解析】【分析】利用重心的向量性质0OA OB OC ++=,即可得到边的关系,再利用余弦定理即可求角.【详解】由点O 是ABC 的重心,可知:0OA OB OC ++=,又23203aOA bOB cOC ++=,可设2323a b c k ===,则3,,22k a b k c ===,再由余弦定理得:2222223222cos 2232k k b c a A bc ⎛⎫⎛⎫+- ⎪ ⎪+-==,又因为()0,πA ∈,所以π6A =,故答案为:π.6四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在复平面内,复数()i ,R z a b a b =+∈对应的点为(),Z a b ,连接OZ (O 为坐标原点)可得向量OZ,则称复数z 为向量OZ 的对应复数,向量OZ为复数z 的对应向量.(1)若复数12i z x =+,()()211i R z x x =+-∈的对应向量共线,求实数x 的值;(2)已知复数11sin z x =⋅,2cos 22i cos z x x =+的对应向量分别为1OZ 和2OZ,若()12f x OZ OZ =⋅,求()f x 的最小正周期和单调递增区间.【答案】(1)2或1-(2)π;ππ[π,π]Z 6,3k k k -++∈【解析】【分析】(1)写出两复数对应的向量12,OZ OZ的坐标,,利用向量共线的坐标表示式计算即得;(2)利用三角恒等变换将函数()f x 化成正弦型函数,求得最小正周期,将π26x +看成整体角,利用正弦函数的递增区间即可求得.【小问1详解】依题意,复数12i z x =+,()()211i R z x x =+-∈的对应向量分别为12(,2),(1,1)OZ x OZ x ==-,由12//OZ OZ可得,(1)2x x -=,解得,2x =或=1x -;【小问2详解】依题意,12),(cos 2,2cos )OZ x OZ x x ==,则()12πcos 2cos cos 222sin(2)6f x OZ OZ x x x x x x =⋅=+==+ ,故()f x 的最小正周期为2ππ2T ==;由Z 262πππ2π22π,k x k k -+≤+≤+∈解得,ππππ,Z 36k x k k -+≤≤+∈,即()f x 的单调递增区间为ππ[π,π]Z 6,3k k k -++∈.16.一中学为了解某次物理考试的成绩,随机抽取了50名学生的成绩,根据这50名学生的成绩(成绩均在[]40,100之间),将样本数据分为6组:[)40,50、[)50,60、…、[)80,90、[]90,100,绘制成频率分布直方图(如图所示).(1)求频率分布直方图中a 的值,并估计这50名学生的物理成绩的平均数(同一组中的数据以该组数据所在区间中点的值作代表);(2)在样本中,从成绩在[)40,60内的学生中,随机抽取2人,求这2人成绩都在[)50,60内的概率.【答案】(1)0.006a =;76.2(2)310【解析】【分析】(1)利用频率分布直方图中各组频率之和等于1求出a 的值,再根据平均数计算公式计算即可;(2)先计算出[)40,60内的人数,分别表示出随机试验和事件所含的样本点,利用古典概型概率公式计算即得.【小问1详解】由频率分布直方图可得,(0.0040.0180.02220.028)101a +++⨯+⨯=,解得,0.006a =;这50名学生的物理成绩的平均数为:0.04450.06550.22650.28750.22850.189576.2⨯+⨯+⨯+⨯+⨯+⨯=;【小问2详解】由频率分布直方图可知,成绩在[)40,60内的学生有50(0.040.06)5⨯+=人,其中[40,50)内有2人,设为,a b ,[50,60)内有3人,设为,,x y z ,“从成绩在[)40,60内的学生中随机抽取2人”对应的样本空间为:{,,,,,,,,,}ab ax ay az bx by bz xy xz yz Ω=,而事件A =“2人成绩都在[)50,60内”={,,}xy xz yz ,由古典概型概率公式可得,3()10P A =.即这2人成绩都在[)50,60内的概率为310.17.如图,已知菱形ABCD 的边长为4,π3ABC ∠=,PA ⊥平面ABCD ,2PA =,E ,F 分别为BC ,CD 的中点,AC 交EF 于点G .(1)求证:平面PEF ⊥平面PAG ;(2)求点B 到平面PEF 的距离.【答案】(1)证明见解析(2)13【解析】【分析】(1)先证明EF ⊥平面PAG ,再根据面面垂直的判定定理即可得证;(2)由体积相等P BEF B PEF V V --=,分别计算BEF S 和PEF S △,代入计算即得.【小问1详解】因E ,F 分别为BC ,CD 的中点,则//EF BD ,又四边形ABCD 是菱形,则BD AC ⊥,故EFAC ⊥,因PA ⊥平面ABCD ,EF ⊂平面ABCD ,故PA EF ⊥,又,,PA AC A PA AC ⋂=⊂平面PAG ,故EF ⊥平面PAG ,因EF ⊂平面PEF ,故平面PEF ⊥平面PAG .【小问2详解】如图,连接,,,PB BF AE AF ,设点B 到平面PEF 的距离为d .在菱形ABCD 中,π3ABC ∠=,则4,43AC BD ==,BEF △的面积为111143232442BEFBFC BCD S S S ===⨯⨯⨯= 因3432AE AF ===,则222(23)4PE PF ==+=,1232EF BD ==故PEF !的面积为221234(3)392PEF S =⨯-= 由P BEF B PEF V V --=可得,11323933d =⨯,解得21313d =,即点B 到平面PEF 的距离为21313.18.在ABC 中,角,,A B C 的对边分别为,,a b c ,且cos 3sin a C a C b c +=+.(1)求A ;(2)若ABC 为锐角三角形,且43b c +=,求a 的取值范围.【答案】(1)π3A =(2))23,4⎡⎣.【解析】【分析】(13cos 1A A -=,再利用辅助角公式可得π3A =;(2)利用正弦定理可得23πsin 6a B =⎛⎫+ ⎪⎝⎭,再由ππ62B <<并利用三角函数单调性可求得a 的取值范围.【小问1详解】因为cos 3sin a C a C b c +=+,由正弦定理得()sin cos 3sin sin sin sin sin sin A C A C B C A C C +=+=++,sin cos cos sin sin A C A C C =++,sin cos sin sin A C A C C -=,因为()0,πC ∈,所以sin 0C ≠,cos 1A A -=,即π2sin 16A ⎛⎫-= ⎪⎝⎭,所以π1sin 62A ⎛⎫-= ⎪⎝⎭,因为()0,πA ∈,所以ππ5π666A -<-<,即ππ66A -=,可得π3A =.【小问2详解】由正弦定理得sin sin sin a b c A B C==,即sin sin sin a b c A B C+=+,且π,3A b c =+=所以()sin 66232πππsin sin 31sin sin sin 36622b c Aa B CB B B B +====+⎛⎫⎛⎫⎛⎫+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.因为ABC 为锐角三角形,π2ππ0,0232B C B <<<=-<,所以ππ62B <<,所以ππ2π,633B ⎛⎫+∈ ⎪⎝⎭,即πsin ,162B ⎛⎤⎛⎫+∈ ⎥ ⎪ ⎝⎭⎝⎦.可得)a ⎡∈⎣,即a 的取值范围为)4⎡⎣.19.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,120C =︒,将ABC 分别以AB ,BC ,AC 所在的直线为旋转轴旋转一周,得到三个旋转体1Ω,2Ω,3Ω,设1Ω,2Ω,3Ω的体积分别为1V ,2V ,3V .(1)若2a =,3b =,求1Ω的表面积S ;(2)若123V y V V =+,求y 的最大值.【答案】(1)1557π19(2)6【解析】【分析】(1)作出旋转体1Ω,其表面积即两个圆锥侧面积的和,利用余弦定理求出AB ,继而求得底面圆半径1r ,代入公式计算即得;(2)由(1)类似过程求得AB 和1r ,计算出其体积1V ,作出旋转体2Ω,是由两个同底面圆的大圆锥去掉小圆锥组成的组合体,求出底面圆半径2r ,间接法求出23,V V ,代入所求式,运用换元法、基本不等式和二次函数的单调性即可求得函数最大值.【小问1详解】如图1,把ABC 以直线AB 为旋转轴旋转一周得到旋转体1Ω,它是由两个同底面圆的圆锥11,AO BO 拼成的组合体,其表面积即两个圆锥的侧面积的和.因2a =,3b =,120C =︒,由余弦定理,22212cos12094232()192AB AC BC AC BC =+-⋅=+-⨯⨯⨯-=,可得,AB =因11AO CO ⊥,设底面圆半径为1r,由11123sin12022ABC S r =⨯⨯⨯=解得,119r =,于是,13571557π()5ππ1919S r b a =⨯+=⨯=;【小问2详解】由(1)可得,222222212cos1202()2AB AC BC AC BC a b ab a b ab =+-⋅=+-⨯⨯-=++,即AB =,底面圆半径为111sin120212ab r O C ===于是,22221111ππ33V r AB=⨯=⨯⨯如图2,把ABC以直线BC为旋转轴旋转一周得到旋转体2Ω,它是由两个同底面圆的大圆锥去掉小圆锥组成的组合体.设底面圆半径为22AO r=,因120ACB∠= ,易得23602120602ACO-⨯∠==,则23sin602r b== ,于是,22222113πππ)3324V r BC a ab=⨯=⨯=,同理可得23π4V a b=,于是,2212223ππ44VyV V ab a b==++=设222a btab+=≥,当且仅当a b=时等号成立,则y==,因2t≥时,函数231()24t+-单调递增,故231(1224t+-≥,则0y<≤即a b=时,max6y=.【点睛】思路点睛:本题主要考查旋转体的表面积求法和与其体积有关的函数的最值求法,属于难题.解题思路是作出旋转体的图形,理解其组成,正确求出底面半径、高,母线长等关键量,代入公式,整理后,运用换元,利用基本不等式和函数的单调性求其最值.。
西藏自治区昌都市2024-2025学年高一数学下学期期末考试

西藏自治区昌都市2024-2025学年高一数学下学期期末考试第一单元考试范围:xxx;考试时间:100分钟;命题人:xxx学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、填空题(共9题,共18分)1、看图,写出学校场地类单词。
2、Do you want to be Robin's friend? 你想成为Robin的朋友吗?试着给Robin写封信吧!Dear Robin,I want to be your friend. I am a . I'm years old. I can .I can . But I can't . Can I be your friend? Please tell me! Thank you.3、看图,把单词补充完整。
h t f m4、按照句子顺序给图片写序号。
①They'll visit our classroom.②They'll visit the art room.③They'll go to the hall.④They'll go to the library.⑤They'll meet the teachers in the meeting room.5、The dress is.Give it to.( she )6、Look at your bedroom. Let's tidy up. (is / it / it's)7、抄写单词并翻译quiet______8、翻译句子。
他们在谈论什么?______________________________9、请你根据要求写单词.1)class(复数) ______2)clean(单三形式) ______3)don't(单三形式) ______评卷人得分二、选择题(共19题,共38分)10、What do you often do in summer?A. I often go swimming.B. I often make a snowman.11、What can you do at home? I can ________.A. cookB. cookingC. cooks12、( )A. Wild geese will fly south in autumn.B. Wild geese will fly north in autumn.C. Wild geese will fly twice in winter.13、What’s your favourite food?A. Yes, I can.B. Beef. It’s healthy.C. I have Chinese and math.E. He’s tall and strongE. He’s tall and strong14、找出不同类的单词A. cameB. liveC. met15、选正确的答语Can we have a dog,Mum?A. Yes,he can’t see.B. No.She’s deaf.C. No,we can’t.E. No,I can’t.E. No,I can’t.16、单项选择The woman is ____ .She can’t see anything.A. deafB. hungryC. blind17、单项选择You can ____ my good friend.A. areB. beC. is18、A. I go to school.B. No,I didn’t.C. What do you do at eight o’clock every weekday?E. I played the piano.E. I played the piano.19、根据句意选出对应的图片Sam’s T-shirts are clean.A.B.C.E.E.20、单项选择。
高一年级数学下学期期末试题

⾼⼀年级数学下学期期末试题 ⼤家在学习数学的时候有很多是需要多阅读的哦,今天⼩编就给⼤家来分享⼀下⾼⼀数学,欢迎⼤家来收藏哦 ⾼⼀数学下期末试题带答案 第Ⅰ卷(选择题) ⼀、选择题:本⼤题共12⼩题,每⼩题5分,共60分.在每个⼩题给出的四个选项中,有且只有⼀项符合题⽬要求. 1.某中学有⾼中⽣3500⼈,初中⽣1500⼈,为了了解学⽣的学习情况,⽤分层抽样的⽅法从该校学⽣中抽取⼀个容量为n的样本,已知从⾼中⽣中抽取70⼈,则n为A. 100B. 150C. 200D.250 2.已知变量与正相关,且由观测数据算得样本平均数为,则由该观测数据得到的回归直线⽅程可能是 A. B. C. D. 3.设集合,则 A. B. C. D. 4.已知点落在⾓的终边上,且,则的值为 A. B. C. D. 5.函数的零点所在的⼀个区间是 A. B. C. D. 6.右图是求样本平均数的程序框图,图中空⽩框应填⼊的内容是 A. B. C. D. 7.已知直线,平⾯,且,给出下列四个命题: ①若,则 ;②若,则 ; ③若,则 ;④,则 . 其中正确命题的个数是A. 0B. 1C. 2D. 3 8.光线沿直线射到直线上,被反射后的光线所在直线的⽅程为 A. B . C. D. 9.某⼏何体的三视图如图所⽰,且该⼏何体的体积是3,则正视图中的值是A. 2B.C.D. 3 10.已知P是边长为2的正三⾓形ABC的BC上的动点,则A. 有最⼤值8B. 有最⼩值2C. 是定值6D.与P点的位置有关 11.已知函数的图象的⼀部分如左图,则右图的函数图象所对应的函数解析式为 A. B. C. D. 12.函数的定义域为,其图象上任意⼀点满⾜,给出以下四个命题:①函数⼀定是偶函数;②函数可能是奇函数;③函数在上单调递增;④若函数是偶函数,则其值域为,其中正确的命题个数为A.1个B. 2个C. 3个D.4个 ⼆、填空题:本⼤题共4⼩题,每⼩题5分,共20分. 13.阅读如图所⽰的程序框图,运⾏相应的程序,输出S的值为 . 14.在如图所⽰的⽅格纸上,向量的起点和终点均在格点(⼩正⽅形的顶点)上,若与( 为⾮零实数)共线,则的值为 . 15.已知直线与圆⼼为C的圆相交于A,B两点,为等边三⾓形,则实数 . 16.已知事件“在矩形ABCD的边CD上随机取⼀点P,使的最⼤边是AB” 发⽣的概率为,则 . 三、解答题:本⼤题共6⼩题,共70分.解答应写出必要的⽂字说明或推理、验算过程. 17.(本题满分10分)已知函数 (1)求函数的定义域; (2)讨论函数的奇偶性. 18.(本题满分12分) 某实验室⼀天的温度(单位: )随时间(单位: )的变化近似满⾜函数关系: (1)求实验室这⼀天的最⼤温差; (2)若要求实验室温度不低于,则在哪段时间实验室需要降温? 19.(本题满分12分) 某产品的三个质量指标分别为,⽤综合指标评价该产品的等级.若,则该产品为⼀等品,现从⼀批该产品中,随机抽取10件产品作为样本,其质量指标列表如下: (1)利⽤上表提供的样本数据估计该批产品的⼀等品率; (2)在该样本的⼀等品中,随机抽取2件产品. ①⽤产品编号列出所有可能的结果; ②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发⽣的概率. 20.(本题满分12分)已知向量 (1)若,求证: ; (2)设,若,求的值. 21.(本题满分12分)如图,在四棱锥中,平⾯, (1)求证: ; (2)求点A到平⾯PBC的距离. 22.(本题满分12分) 已知圆上存在两点关于直线对称. (1)求实数的值; (2)若直线与圆C交于A,B两点, (O为坐标原点),求圆C的⽅程. 参考答案及评分标准 ⼀.选择题(每⼩题5分,共60分) 1-5 ABCDB 6-10 ACBDC 11-12 BA ⼆.填空题(每⼩题5分,共20分) 13. -3; 14. ; 15. ; 16. . 三.解答题(17⼩题10分,其余每⼩题12分,共70分) 17.(本⼩题满分10分) 解:(Ⅰ) ∴定义域是 .--------------------------------------3分 (Ⅱ)∵ ∵定义域关于原点对称,∴是偶函数 ----------------------10分 18.(本⼩题满分12分) 解:(Ⅰ)因为,-----3分 当时, ;当时, ; 于是在上取得最⼤值12,取得最⼩值8. 故实验室这⼀天最⾼温度为,最低温度为,最⼤温差为 .---------7分 (Ⅱ)依题意,当时实验室需要降温. 由(Ⅰ)得, 所以,即 . ⼜,因此,即, 故在10时⾄18时实验室需要降温. -------------------------12分 19.(本⼩题满分12分) 解:(Ⅰ)计算10件产品的综合指标S,如下表: 产品编号4 4 6 3 45 4 5 3 5 其中S≤4的有,,,,,,共6件, 故该样本的⼀等品率为, 从⽽可估计该批产品的⼀等品率为 . ----------------------------------6分 (Ⅱ)①在该样本的⼀等品中,随机抽取2件产品的所有可能结果为,,,,,,,,,,,,,,,共15种. ------------8分 ②在该样本的⼀等品中,综合指标S等于4的产品编号分别为,,,,则事件B发⽣的所有可能结果为,,,,,共6种。
贵州省遵义市2023-2024学年高一下学期7月期末考试 数学含答案

遵义市2023~2024学年度第二学期期末质量监测高一数学(答案在最后)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}1,2,3,4,5,6U =,{}1,2,3,4A =,{}3,4,5,6B =,则()U A B =ð()A.{}1,3,5 B.{}2,4,6 C.{}1,2,5,6 D.{}3,5,62.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若10a =,14b =,23B π=,则sin A =()A. B.514C.514-D.143.如图,向量AB a =,BD b =,DC c = ,则AC 向量可以表示为()A.a b c++r r rB.a b c+-r r rC.a b c -+r r rD.a b c--4.已知3sin 4α=,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 2α=()A.8-B.378C.9714-D.97145.某中学高一年级甲、乙两班参加了物理科的调研考试,其中甲班40人,乙班35人,甲班的平均成绩为82分,乙班的平均成绩为85分,那么甲、乙两班全部75名学生的平均成绩是多少分()A.82.4B.82.7C.83.4D.83.56.已知()1,2A ,()2,3B ,()2,5C -,则三角形ABC 的面积为()A.3B.5C.7D.87.遵义市正安县被誉为“中国吉他之乡”,正安县地标性建筑“大吉他”位于正安县吉他广场的中心,现某中学数学兴趣小组准备在吉他广场上对正安“大吉他”建筑的高度进行测量,采用了如图所示的方式来进行测量:在地面选取相距30米的C 、D 两观测点,且C 、D 与“大吉他”建筑的底部B 在同一水平面上,在C 、D 两观测点处测得“大吉他”建筑顶部A 的仰角分别为45︒,30︒,测得30CBD ∠=︒,则“大吉他”建筑AB 的估计高度为多少米()A.米B.34米C.米D.30米8.已知函数()f x 的定义域为R ,()()()2f x y f x f y +=+-,则()A.()00f = B.函数()2f x -是奇函数C.若()22f =,则()20242f =- D.函数()f x 在()0,∞+单调递减二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知复数23i z =+(i 是虚数单位),则下列正确的是()A.z =B.z 的虚部是3C.若i z t +是实数,则0=t D.复数z 的共轭复数为23iz =-+10.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是()A.若A 与B 相互独立,则()12P A B = B.若()14P AB =,则事件A 与B 相互独立C.若A 与B 互斥,则()12P A B =D.若B 发生时A 一定发生,则()14P AB =11.将函数sin 1y x =+图象上所有的点向左平移π3个单位,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()y f x =的图象,则下列关于()y f x =说法正确的是()A.()f x 的最小正周期为1B.()f x 在5ππ,1212⎡⎤-⎢⎥⎣⎦上为增函数C.对于任意x ∈R 都有()223f x f x ⎛⎫++-= ⎪⎝⎭D.若方程()1102f x ωω⎛⎫=> ⎪⎝⎭在[)0,2上有且仅有4个根,则117,63ω⎡⎤∈⎢⎥⎣⎦三、填空题:本题共3小题,每小题5分,共15分.12.已知角的终边经过点1(2P ,则tan α的值为____________.13.若函数()sin()f x A x ωϕ=+0,0,||2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则函数()y f x =的解析式为_______.14.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,如图是一个正八边形的窗花,从窗花图中抽象出的几何图形是一个正八边形,正八边形ABCDEFGH 的边长为4,P 是正八边形ABCDEFGH 内的动点(含边界),则AP AB ⋅的取值范围为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,4a =- ,()2,1b =-r(1)求5877a b -;(2)若向量()2,c m = ,向量ma c + 与向量a mb +共线,求m 的值.16.2024年5月3日,搭载嫦娥六号探测器的长征五号遥八运载火箭,在中国文昌航天发射场成功发射,这是我国航天器继嫦娥五号之后,第二次实现月球轨道交会对接,为普及探月知识,某校开展了“探月科普知识竞赛”活动,现从参加该竞赛的学生中随机抽取了80名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“探月达人”,将数据整理后绘制成如图所示的频率分布直方图.(1)估计参加这次竞赛的学生成绩的75%分位数;(2)若在抽取的80名学生中,从成绩在[)70,80,[)80,90,[]90,100中采用分层抽样的方法随机抽取6人,再从这6人中选择2人,求被选中的2人均为“探月达人”的概率.17.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos sin sin 2A BC a b a cπ⎛⎫-- ⎪⎝⎭=+-(1)求角B ;(2)若点D 在AC 上,BD 为ABC ∠的角平分线,3BD =,求2a c +的最小值.18.已知函数()()π14sin cos R 6f x x x x ⎛⎫=-++∈ ⎪⎝⎭(1)求函数()f x 的最小值,以及()f x 取得最小值时x 的集合;(2)已知ππ2βα<<<,π82125f αβ-⎛⎫-= ⎪⎝⎭,π102613f β⎛⎫+=- ⎪⎝⎭,求cos α的值.19.若函数()f x 在定义域区间[],a b 上连续,对任意1x ,[]2,x a b ∈恒有()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭,则称函数()f x 是区间[],a b 上的上凸函数,若恒有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 是区间[],a b 上的下凸函数,当且仅当12x x =时等号成立,这个性质称为函数的凹凸性.上述不等式可以推广到取函数定义域中的任意n 个点,即若()f x 是上凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n nf x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭,若()f x 是下凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭,当且仅当12n x x x === 时等号成立.应用以上知识解决下列问题:(1)判断函数()()21R f x x x =+∈在定义域上是上凸函数还是下凸函数(说明理由);(2)证明()sin h x x =,()0,πx ∈上是上凸函数;(3)若A 、B 、C 、()0,πD ∈,且πA B C D +++=,求sin sin sin sin A B C D +++的最大值.遵义市2023~2024学年度第二学期期末质量监测高一数学一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合{}1,2,3,4,5,6U =,{}1,2,3,4A =,{}3,4,5,6B =,则()U A B =ð()A.{}1,3,5 B.{}2,4,6 C.{}1,2,5,6 D.{}3,5,6【答案】C 【解析】【分析】根据交集和补集含义即可得到答案.【详解】由题意得{}3,4A B = ,则(){}1,2,5,6U A B = ð.故选:C.2.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,若10a =,14b =,23B π=,则sin A =()A.5314-B.514C.514-D.14【答案】D 【解析】【分析】根据正弦定理即可得到答案.【详解】根据正弦定理有sin sin a b A B =,即10sin 2A =sin 14A =.故选:D.3.如图,向量AB a =,BD b =,DC c = ,则AC 向量可以表示为()A.a b c ++r r rB.a b c+-r r rC.a b c-+r r rD.a b c--【答案】A【解析】【分析】利用图形结合向量线性运算即可.【详解】AC AD DC A a b c B BD DC =+=++++=.故选:A.4.已知3sin 4α=,且π0,2α⎛⎫∈ ⎪⎝⎭,则sin 2α=()A. B.8C.14-D.14【答案】B 【解析】【分析】首先求出cos 4α=,再利用二倍角正弦公式即可.【详解】因为π0,2α⎛⎫∈ ⎪⎝⎭,3sin 4α=,则cos 4α==,则3sin 22sin cos 24ααα==⨯⨯.故选:B.5.某中学高一年级甲、乙两班参加了物理科的调研考试,其中甲班40人,乙班35人,甲班的平均成绩为82分,乙班的平均成绩为85分,那么甲、乙两班全部75名学生的平均成绩是多少分()A.82.4B.82.7C.83.4D.83.5【答案】C 【解析】【分析】根据平均数计算公式直接求解即可.【详解】全班75名学生的平均成绩4035828583.47575x =⨯+⨯=.故选:C .6.已知()1,2A ,()2,3B ,()2,5C -,则三角形ABC 的面积为()A.3B.5C.7D.8【答案】A 【解析】【分析】根据两点间的距离判定三角形为直角三角形,求解即可.【详解】||AB == ,||BC ===,||AC ===222||||AC AB BC ∴+=,所以三角形ABC 为直角三角形,1=2S ∴⨯,故选:A .7.遵义市正安县被誉为“中国吉他之乡”,正安县地标性建筑“大吉他”位于正安县吉他广场的中心,现某中学数学兴趣小组准备在吉他广场上对正安“大吉他”建筑的高度进行测量,采用了如图所示的方式来进行测量:在地面选取相距30米的C 、D 两观测点,且C 、D 与“大吉他”建筑的底部B 在同一水平面上,在C 、D 两观测点处测得“大吉他”建筑顶部A 的仰角分别为45︒,30︒,测得30CBD ∠=︒,则“大吉他”建筑AB 的估计高度为多少米()A.米 B.34米C.米D.30米【答案】D 【解析】【分析】根据仰角可得BC AB h ==,BD ==,在三角形BCD 利用余弦定理即可求解.【详解】设教学楼的高度为h ,在直角三角形ABC 中,因为45ACB ∠= ,所以BC AB h ==,在直角三角形ABD 中,因为30ADB ∠= ,所以tan 30ABBD= ,所以BD ==,在BCD △中,由余弦定理可得2222cos CD BC BD BC BD CBD =+-⋅∠,代入数值可得)22233022h h =+-⨯,解得30h =或30h =-(舍),故选:D.8.已知函数()f x 的定义域为R ,()()()2f x y f x f y +=+-,则()A.()00f = B.函数()2f x -是奇函数C.若()22f =,则()20242f =- D.函数()f x 在()0,∞+单调递减【答案】B 【解析】【分析】对A ,赋值法令0x y ==求解;对B ,赋值法结合奇函数的定义判断;对C ,令2y =求得函数的周期求解;对D ,利用单调性定义结合赋值法求解判断.【详解】对于A ,令0x y ==,可得()()()0002f f f =+-,解得()02f =,故A 错误;对于B ,令y x =-,可得()()()02f f x f x =+--,又()02f =,则()()()222f x f x f x ⎡⎤--=-+=--⎣⎦,所以函数()2f x -是奇函数,故B 正确;对于C ,令2y =,得()()()()222f x f x f f x +=+-=,则()f x 是周期函数,周期为2,所以()()202402f f ==,故C 错误;对于D ,令1x x =,21y x x =-,且210x x >>,则()()()1211212f x x x f x f x x +-=+--,即()()()21212f x f x f x x -=--,而0x >时,()f x 与2大小不定,故D 错误.故选:B.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知复数23i z =+(i 是虚数单位),则下列正确的是()A.z =B.z 的虚部是3C.若i z t +是实数,则0=tD.复数z 的共轭复数为23iz =-+【答案】AB 【解析】【分析】对A ,根据复数的模的计算公式即可判断;对B ,根据复数虚部的定义即可判断;对C ,根据复数的分类可判断;对D ,根据共轭复数的定义即可判断.【详解】对于A ,z ==A 正确;对于B ,复数23i z =+的虚部为3,故B 正确;对于C ,因为()i 23i z t t +=++是实数,则30t +=,即3t =-,故C 错误;对于D ,复数23i z =+的共轭复数为23i z =-,故D 错误.故选:AB.10.已知事件A 、B 发生的概率分别为()13P A =,()14P B =,则下列说法正确的是()A.若A 与B 相互独立,则()12P A B = B.若()14P AB =,则事件A 与B 相互独立C.若A 与B 互斥,则()12P A B = D.若B 发生时A 一定发生,则()14P AB =【答案】ABD 【解析】【分析】根据互斥事件和独立事件的概率公式逐项判断.【详解】对于A ,若A 与B 相互独立,则()()()1113412P AB P A P B ==⨯=,所以()()()()111134122P A B P A P B P AB ⋃=+-=+-=,故A 对;对于B ,因为()13P A =,()14P B =,则()()131144P B P B =-=-=,因为()()()131344P A P B P AB =⨯==,所以事件A 与B 相互独立,故B 对;对于C ,若A 与B 互斥,则()()()1173412P A B P A P B ⋃=+=+=,故C 错;对于D ,若B 发生时A 一定发生,则B A ⊆,则()()14P AB P B ==,故D 对.故选:ABD11.将函数sin 1y x =+图象上所有的点向左平移π3个单位,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()y f x =的图象,则下列关于()y f x =说法正确的是()A.()f x 的最小正周期为1B.()f x 在5ππ,1212⎡⎤-⎢⎥⎣⎦上为增函数C.对于任意x ∈R 都有()223f x f x ⎛⎫++-= ⎪⎝⎭D.若方程()1102f x ωω⎛⎫=> ⎪⎝⎭在[)0,2上有且仅有4个根,则117,63ω⎡⎤∈⎢⎥⎣⎦【答案】AC 【解析】【分析】根据图象变换得到()f x 的解析式,进而可判断A ,B ,C 选项;对D ,题意转化为πsin π03x ω⎛⎫+= ⎪⎝⎭在[)0,2上有且仅有4个根,根据正弦函数的性质求解判断.【详解】把函数sin 1y x =+图象上所有的点向左平移π3个单位,可得πsin 13y x ⎛⎫=++ ⎪⎝⎭,再把所得各点的横坐标缩短为原来的12π(纵坐标不变)得到函数()πsin 2π13f x x ⎛⎫=++ ⎪⎝⎭,对于A ,周期2π12πT ==,故A 正确;对于B ,令πππ2π2π2π232k x k -+≤+≤+,Z k ∈,即511212k x k -++≤≤,Z k ∈,所以函数()f x 的单调递增区间为51,1212k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈,故B 错误;对于C ,()22ππsin 2π1sin 2π13333f x f x x x ⎡⎤⎛⎫⎛⎫⎛⎫++-=++++-++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦5ππsin 2πsin 2π233x x ⎛⎫⎛⎫=+--+ ⎪ ⎪⎝⎭⎝⎭ππsin 2π2πsin 2π233x x ⎡⎤⎛⎫⎛⎫=-+--+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ππsin 2πsin 2π2233x x ⎛⎫⎛⎫=---+= ⎪ ⎪⎝⎭⎝⎭.故C 正确;对于D ,根据题意方程112f x ω⎛⎫= ⎪⎝⎭即πsin π03x ω⎛⎫+= ⎪⎝⎭在[)0,2上有且仅有4个根,ππππ2π333x ωω∴≤+<+,由正弦函数性质得π4π2π5π3ω<+≤,解得11763ω<≤,故D 错误.故选:AC.三、填空题:本题共3小题,每小题5分,共15分.12.已知角的终边经过点1(2P ,则tan α的值为____________.【答案】【解析】【详解】试题分析:.考点:三角函数的定义13.若函数()sin()f x A x ωϕ=+0,0,||2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则函数()y f x =的解析式为_______.【答案】1()2sin(24f x x π=+【解析】【分析】根据函数()f x 的图象求得2,4A T π==,得到1()2sin()2f x x ϕ=+,再由(22f π=和题设条件,求得4πϕ=,即可求得函数的解析式.【详解】由函数()f x 的图象可得72,()422A T πππ==--=,所以22142T ππωπ===,即1()2sin()2f x x ϕ=+,又由()22f π=,即1sin()122πϕ⨯+=,可得2,42k k Z ππϕπ+=+∈,即2,4k k Z πϕπ=+∈,又因为||2ϕπ<,所以4πϕ=,所以1()2sin()24f x x π=+.故答案为:1()2sin(24f x x π=+.14.窗花是贴在窗纸或窗户玻璃上的剪纸,是中国古老的传统民间艺术之一,如图是一个正八边形的窗花,从窗花图中抽象出的几何图形是一个正八边形,正八边形ABCDEFGH 的边长为4,P 是正八边形ABCDEFGH 内的动点(含边界),则AP AB ⋅的取值范围为________.【答案】⎡-+⎣【解析】【分析】建立平面直角坐标系,得到向量的坐标,用向量的数量积坐标运算即可求解.【详解】以A 为坐标原点,,AB AF 所在直线分别为轴,建立平面直角坐标系,则()()0,0,4,0A B 过H 作AF的垂线,垂足为N ,正八边形ABCDEFGH 中,边长为4,所以()821801358HAB ︒︒-⨯∠==,所以AN HN =,所以222AN HN HA AN +=⇒=,所以4AF =+,设(),P x y ,则()()4,0,,AB AP x y == ,所以4AP AB x ⋅=,因为P 是正八边形ABCDEFGH 内的动点(含边界),所以x 的范围为4x -≤≤+所以416x -≤≤+故答案为:⎡-+⎣.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知向量()1,4a =- ,()2,1b =-r(1)求5877a b -;(2)若向量()2,c m = ,向量ma c + 与向量a mb +共线,求m 的值.【答案】(1)5(2)1-或89【解析】【分析】(1)根据向量的坐标运算,向量模的公式运算得解;(2)根据向量的坐标运算求得ma c + 和a mb +坐标,再由向量共线即可计算出m 的值.【小问1详解】因为()1,4a =- ,()2,1b =-r,所以()5858582,43,4777777a b ⎛⎫-=--⨯⨯+=- ⎪⎝⎭r r ,所以58577a b -==r r .【小问2详解】因为()2,5ma c m m +=-+r r ,()21,4a mb m m +=--+r r,又ma c + 与a mb +共线,所以()()()24521m m m m -+-+=-,所以2980m m +-=,解得1m =-或89.所以m 的值为1-或89.16.2024年5月3日,搭载嫦娥六号探测器的长征五号遥八运载火箭,在中国文昌航天发射场成功发射,这是我国航天器继嫦娥五号之后,第二次实现月球轨道交会对接,为普及探月知识,某校开展了“探月科普知识竞赛”活动,现从参加该竞赛的学生中随机抽取了80名,统计他们的成绩(满分100分),其中成绩不低于80分的学生被评为“探月达人”,将数据整理后绘制成如图所示的频率分布直方图.(1)估计参加这次竞赛的学生成绩的75%分位数;(2)若在抽取的80名学生中,从成绩在[)70,80,[)80,90,[]90,100中采用分层抽样的方法随机抽取6人,再从这6人中选择2人,求被选中的2人均为“探月达人”的概率.【答案】(1)82.5;(2)15.【解析】【分析】(1)根据给定的频率分布直方图,结合75%分位数的意义列式计算即得.(2)求出抽取的6人中,“探月达人”人数,再利用列举法求出概率.【小问1详解】由频率分布直方图知,成绩在[40,50),[50,60),[60,70),[70,80),[80,90)内的频率依次为:0.05,0.15,0.2,0.3,0.2,则成绩在80分以下的频率为0.7,成绩在90分以下频率为0.9,因此参加这次竞赛的学生成绩的75百分位数为(80,90)x ∈,由(80)0.020.05x -⨯=,解得82.5x =,所以参加这次竞赛的学生成绩的75百分位数为82.5.【小问2详解】由于0.30.20.163,62,610.30.20.10.30.20.10.30.20.1⨯=⨯=⨯=++++++,则6人中,成绩在[70,80),[80,90),[90,100]内的学生分别为3人,2人,1人,其中有3人为“探月达人”,设为a ,b ,c ,有3人不是“探月达人”,设为,,d e f ,则从6人中选择2人作为学生代表,有,,,,,,,,,,,,,,ab ac ad ae af bc bd be bf cd ce cf de df ef ,共15种,其中2人均为“探月达人”为,,ab ac bc ,共3种,所以被选中的2人均为“探月达人”的概率为31155=.17.已知在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos sin sin 2A BC a b a cπ⎛⎫-- ⎪⎝⎭=+-(1)求角B ;(2)若点D 在AC 上,BD 为ABC ∠的角平分线,BD =,求2a c +的最小值.【答案】(1)π3B =(2)6+【解析】【分析】(1)利用正弦定理进行角换边,再结合余弦定理即可得到答案;(2)根据面积法得1112a c +=,再利用乘“1”法即可得到最小值.【小问1详解】因为sin sin sin C A Ba b a c-=+-,所以由正弦定理可得c a ba b a c-=+-,即222a c b ac +-=,又因为222cos 2a c b B ac+-=,则1cos 2B =,因为(0,π)B ∈,所以π3B =.【小问2详解】因为ABD CBD ABC S S S += 所以1π1π1πsin sin sin 262623AB BD BC BD AB BC ⨯+⨯=⨯,因为BD =,所以c BD a BD ⨯+⨯=,所以2()c a ac ⨯+=,即1112a c +=,所以22242(2)66c a a c a c a c a c ⎛⎫+=++=++≥+⎪⎝⎭,当且仅当22a c ==+时,2a c +取得最小值6+.18.已知函数()()π14sin cos R 6f x x x x ⎛⎫=-++∈ ⎪⎝⎭(1)求函数()f x 的最小值,以及()f x 取得最小值时x 的集合;(2)已知ππ2βα<<<,π82125f αβ-⎛⎫-= ⎪⎝⎭,π102613f β⎛⎫+=- ⎪⎝⎭,求cos α的值.【答案】(1)最小值为2-,x 的集合为,|ππZ 3x x k k ⎧⎫⎨⎬⎩⎭=-+∈(2)6365-【解析】【分析】(1)利用三角恒等变换得π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,则得到其最小值和此时所对应的x 的集合;(2)首先求出4sin()5αβ-=,再计算出3cos()5αβ-=,5cos 13β=-,12sin 13β=,最后化简为繁,利用两角和的余弦公式即可得到答案.【小问1详解】21()14sin cos cos 1cos 2cos 22f x x x x x x x ⎛⎫=-++=-++ ⎪ ⎪⎝⎭π121cos 22sin 26x x x ⎛⎫=-+++=+ ⎪⎝⎭当ππ22π,Z 62x k k +=-+∈,即ππ,Z 3x k k =-+∈时,()f x 取得最小值2-,此时x 的集合为,|ππZ 3x x k k ⎧⎫⎨⎬⎩⎭=-+∈.【小问2详解】πππ82sin 22sin()21221265f αβαβαβ⎛⎫--⎛⎫⎛⎫-=-+=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则4sin()5αβ-=,因为ππ2β<<,所以ππ2β-<-<-,又因为ππ2α<<,所以ππ22αβ-<-<,所以3cos()5αβ-=,因为πππ102sin 22sin 2cos 26266213f βπβββ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+==- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以5cos 13β=-,因为ππ2β<<,所以12sin 13β==,cos cos[()]cos()cos sin()sin ααββαββαββ=-+=---354126351351365⎛⎫=⨯--⨯=- ⎪⎝⎭.19.若函数()f x 在定义域区间[],a b 上连续,对任意1x ,[]2,x a b ∈恒有()()121222f x f x x x f ++⎛⎫≥⎪⎝⎭,则称函数()f x 是区间[],a b 上的上凸函数,若恒有()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 是区间[],a b 上的下凸函数,当且仅当12x x =时等号成立,这个性质称为函数的凹凸性.上述不等式可以推广到取函数定义域中的任意n 个点,即若()f x 是上凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≥⎪⎝⎭,若()f x 是下凸函数,则对任意1x ,2x ,…,[],n x a b ∈恒有()()()1212n n f x f x f x x x x f n n ++++++⎛⎫≤⎪⎝⎭,当且仅当12n x x x === 时等号成立.应用以上知识解决下列问题:(1)判断函数()()21R f x x x =+∈在定义域上是上凸函数还是下凸函数(说明理由);(2)证明()sin h x x =,()0,πx ∈上是上凸函数;(3)若A 、B 、C 、()0,πD ∈,且πA B C D +++=,求sin sin sin sin A B C D +++的最大值.【答案】(1)下凸函数,理由见解析(2)证明见解析(3)【解析】【分析】(1)作差()()121222f x f x x x f ++⎛⎫-⎪⎝⎭,化简即可证明;(2)任意取12,(0,π)x x ∈,作差()()12122112sin sin cos cos 222222h x h x x x x x x x h ++⎛⎫⎛⎫⎛⎫-=-- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,再分析其符号即可;(3)根据(2)中结论得sin sin sin sin sin 44A B C D A B C D ++++++⎛⎫≤ ⎪⎝⎭,代入计算即可得到答案.【小问1详解】下凸函数,理由如下:任意取12,R x x ∈,因为()()()()22221212*********22424f x f x x x x x x x x x f ++-+++⎛⎫-=+-=- ⎪⎝⎭即()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,当且仅当12x x =时等号成立,故2()1(R)f x x x =+∈是下凸函数.【小问2详解】任意取12,(0,π)x x ∈,不妨设12x x ≤,()()12121212sin sin sin 2222h x h x x x x x x x h ++++⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭12121122sincos cos sin sin cos sin cos 22222222x x x x x x x x=+--2112sin sin cos cos 2222x x x x ⎛⎫⎛⎫=-- ⎪⎪⎝⎭⎝⎭,由于12π0222x x <≤<,根据sin y x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,cos y x =在π0,2⎛⎫⎪⎝⎭上单调递减,则2112sin sin ,cos cos 2222x x x x ≥≥,所以()()121222h x h x x x h ++⎛⎫≥⎪⎝⎭,即函数()h x 是上凸函数.【小问3详解】当(0,,π,),A B C D ∈,且πA B C D +++=,由(2)知()sin ,(0,π)h x x x =∈是上凸函数,所以sin sin sin sin πsin sin 4442A B C D A B C D++++++⎛⎫≤==⎪⎝⎭,故πsin sin sin sin 4sin 4sin 244A B C D A B C D +++⎛⎫+++≤== ⎪⎝⎭所以当且仅当π4A B C D ====时等号成立,即sin sin sin sin A B C D +++的最大值为.【点睛】关键点点睛:本题第二问的关键是作差因式分解得()()12122112sin sin cos cos 222222h x h x x x x x x x h ++⎛⎫⎛⎫⎛⎫-==- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,再分析其正负即可.。
2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷(含答案)

2023-2024学年度河北省唐山市高一年级第二学期末考试数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知复数z=3−i,则z的虚部为( )A. −1B. 1C. −iD. 32.某学校高一、高二、高三年级学生人数之比为3:2:2,利用分层抽样的方法抽取容量为35的样本,则从高一年级抽取学生人数为( )A. 7B. 10C. 15D. 203.已知圆锥的高为2,其底面圆的半径为1,则圆锥的侧面积为( )A. πB. 2πC. 5πD. (5+1)π4.若一组数据的平均数为5,方差为2,将每一个数都乘以2,再减去1,得到一组新数据,则新数据的平均数和方差分别为( )A. 9,3B. 9,8C. 9,7D. 10,85.已知A,B是两个随机事件且概率均大于0,则下列说法正确的为( )A. 若A与B互斥,则A与B对立B. 若A与B相互独立,则A与B互斥C. 若A与B互斥,则A与B相互独立D. 若A与B相互独立,则A与B相互独立6.设m,n是两条不同的直线,α,β是两个不同的平面,则( )A. 若m⊥n,n//α,则m⊥αB. 若m⊥α,n//α,则m⊥nC. 若m⊥α,α⊥β,则m//βD. 若m⊥n,n⊥β,则m//β7.在正四面体ABCD中,E是棱BD的中点,则异面直线CE与AB所成角的余弦值为( )A. −56B. 56C. −36D. 368.已知锐角△ABC的面积为43,B=π3,则边AB的取值范围是( )A. (2,22)B. [22,4]C. (22,42)D. [22,42]二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
9.已知复数z=1−2i,则( )A. |z|=5B. z+z=2C. z⋅z=5D. 1z表示的点在第一象限10.已知平行四边形ABCD的两条对角线交于点O,AE=14AC,则( )A. DE =34DA +14DCB. DE =14DA +34DCC. BE =32BO +12BCD. BE =32BO−12BC 11.在直三棱柱ABC−A 1B 1C 1中,高为ℎ,BA =BC = 3,∠ABC =90∘,下列说法正确的是( )A. V C 1−A 1ABB 1=2V A 1−ABCB. 若存在一个球与棱柱的每个面都内切,则ℎ=2 6− 3C. 若ℎ=3,则三棱锥A 1−ABC 外接球的体积为9π2D. 若ℎ=3,以A 为球心作半径为2的球,则球面与三棱柱表面的交线长度之和为23π12三、填空题:本题共3小题,每小题5分,共15分。
高一下学期期末考试数学试题(含答案)

33高一下学期期末数学试卷第Ⅰ卷(选择题 共50分)一、选择题(本大题共 10 小题,每小题 5 分,共 50 分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. 已知α是第二限角,则下列结论正确的是A .sinα•cosα>0B .sinα•tanα<0C .cosα•tanα<0D .以上都有可能( )2.化简 AB + BD - AC - CD =()A . 0B . ADC . BCD . DA3.若 P (-3,4) 为角α终边上一点,则 cos α=()A. -B. 455 C. - D. - 44 34. 若 a = 1, b = 2, 且 a , b 的夹角为120 则 a + b 的值()A .1B . 3C . 2D . 2π5. 下列函数中,最小正周期是A. y = tan 2x的偶函数为() 2B. y = cos(4x + πC. y = 2 cos 22x -1 2D. y = cos 2x6. 将函数 y = sin(3x + π 的图象向左平移π) 个单位,再将所得图象上所有点的横坐标缩短到原 6 61来的 倍(纵坐标不变),则所得图象的函数解析式为( )2A. y =sin( 3 x + 2π2 3B. y = sin(6x + π3C. y = sin 6xD. y = sin(6x +2π37. 如右图,该程序运行后的输出结果为()A .0B .3C .12D .-2))) )8. 函数 y =cos(π π-2x )的单调递增区间是4()5π 5A .[k π+ 8 ,k π+ 8 π]B .[2k π+ 8 ,2k π+ π]83 C .[k π- 8 π,k π+ π3]D .[2k π- 8 8 π,2k π+ π](以上 k ∈Z )89. 已知直线 y = x + b,b ∈[﹣2,3],则直线在 y 轴上的截距大于 1 的概率是()1 234A.B .C .D .555510. 右面是一个算法的程序.如果输入的 x 的值是 20,则输出的 y 的值是()A .100B .50C .25D .150第Ⅱ卷(非选择题 共 100 分)二、填空题(本题共 5 小题,每题 5 分,共 25 分)11.若 a = (2,3) 与b = (-4, y ) 共线,则 y =.12. 某工厂生产 A ,B ,C 三种不同型号的产品,产品数量之比依次为 2∶3∶5.现用分层抽样方法抽出一个容量为 n 的样本,样本中 A 种型号的产品有 16 件,那么此样本的容量 n =.13. 设扇形的周长为8cm ,面积为 4cm 2,则扇形的圆心角的弧度数是 .14. 若tan α= 1,则2sin α+ cos α 2 s in α- 3cos α= .15. 函数 y=Asin(ωx+φ)( A >0,ω>0,|φ|<π ) ,在同一个周期内,当 x= π时, y 有最大值 2,3当 x=0 时,y 有最小值-2,则这个函数的解析式为.三、解答题(本大题共 6 小题,满分 75 分,解答须写出文字说明、证明过程或演算步骤)16.(本小题满分 12 分)某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的 学生中抽出 60 名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1) 求第四小组的频率,并补全这个频率分布直方图; (2) 估计这次考试的及格率(60 分及以上为及格)和平均分.-α 17.(本小题满分 12 分)已知函数 f (x ) = 2sin 1 x + 2 3 cos 1x .2 2(1) 求函数 f (x ) 的最小正周期及值域; (2) 求函数 f (x ) 的单调递增区间.18.(本小题满分 12 分)已知|a |=3,|b |=2,a 与 b 的夹角为 60°,c =3a +5b ,d =m a -3b .(1) 当 m 为何值时,c 与 d 垂直? (2) 当 m 为何值时,c 与 d 共线?19.(本小题满分 12 分)设函数 f (x )=a ·b ,其中向量 a =(m ,cos2x ),b =(1+sin2x,1),x ∈R ,且⎡π ⎤ 函数 y =f (x )的图象经过点 ⎢⎣ 4 , 2⎥⎦. (1) 求实数 m 的值;(2) 求函数 f (x )的最小值及此时x 值的集合.20.(本小题满分 13 分)已知π < α< π,且sin(π-α) = 4;25sin(2π+α) tan(π-α) cos(-π-α)(1) 求 sin(3π 2 π) cos( 2+α)的值;(2) 求 sin 2α- cos 2α 5π 的值.tan(α- )421.(本小题满分 14 分)某班数学兴趣小组有男生三名,分别记为 a 1 , a 2 , a 3 ,女生两名,分别记为b 1 , b 2 ,现从中任选 2 名学生去参加校数学竞赛.(1) 写出这种选法的样本空间; (2) 求参赛学生中恰有一名男生的概率; (3) 求参赛学生中至少有一名男生的概率.) 数学参考答案及评分标准一、选择题(本大题共 10 小题,每小题 5 分,共 50 分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
智慧学堂高二入学考试
姓名 班级 学号
一、选择题(本题共12小题,每小题5分,共60分,将答案直接填在下表中) (1)0
sin 75的值等于
(A (B (C (D
(2
(A )0
cos 220 (B )0
cos80 (C )0
sin 220 (D )0
sin80 (3)化简sin()sin cos()cos x y x x y x +++等于
(A )cos(2)x y + (B ) cos y (C )sin(2)x y + (D )sin y (4)下列函数中是周期为π的奇函数的为( )
(A )x y 2
sin 21-= (B ))32sin(3π
+
=x y (C )2
tan x
y =(D ))2sin(2π+=x y (5)为了得到函数13sin 25y x π⎛⎫=- ⎪⎝⎭,x R ∈的图象,只需把函数1
3sin 2
5y x π⎛⎫=+ ⎪⎝⎭的图象上所有点
(A )向左平行移动
25π个单位长度 (B )向右平行移动25π个单位长度 (C )向左平行移动45π个单位长度 (D )向右平行移动45
π
个单位长度
(6)已知tan 2α=,tan 3β=,且α、β都是锐角,则α+β等于
(A )
4π (B )43π (C )4
π或43π (D )43π或45π
(7)已知a =(2,3),b =(x ,-6),若a ∥b ,则x 等于
(A )9 (B )4 (C )-4 (D )-9 (8)已知a 、b 是两个单位向量,下列四个命题中正确的是
(A )a 与b 相等 (B )如果a 与b 平行,那么a 与b 相等 (C )a ·b =1 (D )a 2=b 2
(9)在△ABC 中,已知AB
=(3,0),AC =(3,4),则cos B 的值为
(A )0 (B )
53 (C )5
4
(D )1 (10)已知|a |=3,|b |=4(且a 与b 不共线),若(a k +b )⊥(a k -b ),则k 的值为
(A )-
43 (B )43 (C )±43 (D )±3
4
(11)已知|a |=3,b =(1,2),且a ∥b ,则a 的坐标为
(A (B
(C )(
5,-5) (D )(5,5)或(-5,-5
) (12)已知向量a =(1,-2),b =13,
x ⎛⎫
⎪⎝⎭
,若a ·b ≥0,则实数x 的取值范围为 (A )2(0,)3
(B )2(0,]3
(C )(,0)-∞∪2[,)3+∞ (D )(,0]-∞∪2[,)3
+∞ 二、填空题(本题共4小题,每小题5分,共20分)
(13)在三角形ABC 中,已知a 、b 、c 是角A 、B 、C 的对边,且a =6,b =32,A =4
π,则角B 的大小为 . (14)已知3
cos 45
x π⎛⎫
+
= ⎪⎝
⎭,则sin 2x 的值为 . (15)若将向量)1,2(=a 绕原点按逆时针方向旋转4
π
,得到向量b ,则向量b 的 坐标是
(16)已知|a |=2,|b |=1,a 与b 的夹角为3
π,则向量2a -3b 与a +5b 的夹角大小为 . 一、选择题
二、填空题
(13) (14) (15) (16)
三、解答题(本题共6小题,满分共70分) (17)(本小题满分10分)已知12cos 13θ=-
,3,2πθπ⎛⎫∈ ⎪⎝⎭,求tan 4πθ⎛
⎫- ⎪⎝⎭
的值.
(18)(本小题满分12分)已知函数()sin y A x ωϕ=+,x R ∈(其中A >0,ω>0,
||ϕ<
2
π
)的部分图象如图所示,求这个函数的解析式.
(19)(本小题满分12分)
如图,飞机的航线和山顶在同一个铅直平面内,已知飞机的高度为海拔25000米,速度为3000米/分钟,飞行员先在点A 看到山顶C 的俯角为300,经过8分钟后到达点B ,此时看到山顶C 的俯角为600,则山顶的海拔高度为多少米.
1.414
1.732
=2.449).
(20)(本小题满分12分)
已知|a|=3,|b|=2,且3a+5b与4a-3b垂直,求a与b的夹角. (21)(本小题满分12分)
已知向量a=(
3
cos
2
x
,
3
sin
2
x
),b=(cos
2
x
,-sin
2
x
),且[0,]
2
x
π
∈.
(Ⅰ)用cos x表示a·b及|a+b|;
(Ⅱ)求函数f(x)=a·b+2|a+b|的最小值.
(22)(本小题满分12分)
已知向量a、b、c两两所成的角相等,并且|a|=1,|b|=2,|c|=3. (Ⅰ)求向量a+b+c的长度;
(Ⅱ)求a+b+c与a的夹角.
参考答案 三、选择题
四、填空题 (13)
6π (14)725 (15))2
23,22( (16)2π 五、解答题
(17)解:∵12cos 13θ=-
,且3,2π
θπ⎛⎫
∈ ⎪⎝
⎭
,∴ 5sin 13θ=-, 则 5tan 12θ=, ∴ tan 4πθ⎛⎫- ⎪⎝⎭=tan 11tan θθ-+ =51125112-+=-717. (18)解:(Ⅰ)根据题意,可知A = 且4
T
=6-2=4,所以T =16,
于是
ω=
28T ππ= 将点(2,8y x πϕ⎛⎫
=+ ⎪⎝⎭
,得 28πϕ⎛⎫=⨯+ ⎪⎝⎭, 即sin 4πϕ⎛⎫
+ ⎪⎝⎭
=1, 又||ϕ<2π,所以ϕ=4π.
从而所求的函数解析式为:8
4y x π
π⎛⎫=+
⎪⎝⎭,x R ∈
(19)解:如图,过C 作AB 的垂线,垂足为D ,
依题意,AB =3000·8=24000米, 由∠BAC =300,∠DBC =600,
则∠BCA =300,∴ BC =24000米, 在直角三角形CBD 中, CD =BC ·0
sin 60
=24000·0.866=20784米,
故山顶的海拔高度为25000-20784=4216米. (20)解:∵ 3a +5b 与4a -3b 垂直,
∴ (3a +5b )·(4a -3b )=0, 即 12|a |2+11a ·b -15|b |2=0, 由于|a |=3,|b |=2,∴ a ·b =-
4811
, 则 cos ,||||a b a b a b ⋅<>=
⋅=-811, 故a 与b 的夹角为8arccos 11⎛⎫- ⎪⎝⎭
.
(21)解:(Ⅰ)a ·b =3cos
2x cos 2x -3sin 2x sin 2
x =cos 2x =2cos 2x -1,
|a +b |2|cos x |, ∵ [0,
]2
x π
∈,∴ cos x ≥0,∴ |a +b |=2cos x .
(Ⅱ)f (x )=a ·b +2|a +b |=2cos 2x -1+4cos x =2(cos x +1)2-3, ∵ [0,
]2
x π
∈,∴ 0≤cos x ≤1, ∴ 当cos x =0时,f (x )取得最小值-1.
(22)解:(Ⅰ)设向量a 、b 、c 两两所成的角均为θ,则θ=0或θ=
23
π
, 又|a |=1,|b |=2,|c |=3. 则当θ=0时,
a ·
b =|a |·|b |cos θ=2, b ·
c =|b |·|c |cos θ=6, c ·a =|c |·|a |cos θ=3,
此时 |a +b +c |2=a 2+b 2+c 2+2a ·b +2b ·c +2c ·a =14+22=36,∴ |a +b +c |=6; 当θ=
23
π
时, a ·b =|a |·|b |cos θ=-1, b ·c =|b |·|c |cos θ=-3,
c ·a =|c |·|a |cos θ=-3
2
,
此时 |a +b +c |2=a 2+b 2+c 2+2a ·b +2b ·c +2c ·a =14-11=3,∴ |a +b +c |(Ⅱ)当θ=0,即|a +b +c |=6时,a +b +c 与a 的夹角显然为0;
当θ=
23π,即|a +b +c |= (a +b +c )·a =-3
2
,且|a +b +c |·|a |=
cos <a +b +c ,a >,∴ a +b +c 与a 的夹角为56 .。