八年级数学分式15.2分式的运算15.2.2分式的加减第2课时分式的混合运算作业课件新人教版

合集下载

八年级数学上册15.2 分式的运算(有答案)

八年级数学上册15.2 分式的运算(有答案)

八年级数学(上)15.2 分式的运算知识网络重难突破知识点一分式的约分约分的定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去。

最简公式的定义:分子与分母没有公因式的分式。

分式约分步骤:1)提分子、分母公因式2)约去公因式3)观察结果,是否是最简分式或整式。

注意:1.约分前后分式的值要相等.2.约分的关键是确定分式的分子和分母的公因式.3.约分是对分子、分母的整体进行的,也就是分子的整体和分母的整体都除以同一个因式典例1(2019·西城区期中)下列各式约分正确的是( )A.B.C.D.典例2(2019·静安区期中)下列分式中,是最简分式的是()A.22222x yx xy y--+B.C.D.典例3(2020·泰安市期中)化简的结果是()A.1x-B.C.D.典例4(2019·宁阳县期中)下列运算正确的是()A.B.C.D.典例5(2019·临淄区期中)下列分式中,最简分式是( )A.615xB.236xx--C.D.22a ba b-+知识点二分式的通分通分的定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。

最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

分式通分的关键:确定最简公分母确定分式的最简公分母的方法1.因式分解2.系数:各分式分母系数的最小公倍数;3.字母:各分母的所有字母的最高次幂4.多项式:各分母所有多项式因式的最高次幂5.积约分与通分的相同点:典例1(2019·绵阳市期末)分式的最简公分母是()A.B.C.D.典例2(2019·郓城县期末)分式,,的最简公分母是( )A .(a²-2ab+b²)(a²-b²)(a²+2ab+b²)B .(a+b )²(a -b )²C .(a+b )²(a -b )²(a²-b²)D . 44a b -典例3(2019·市中区期末)下列各题所求的最简公分母,错误的是 ( ) A .的最简公分母是6x 2 B .的最简公分母是6a 2b 2cC .的最简公分母是x 2-9D .的最简公分母是mn (x+y )·(x -y )典例4 (2018·五莲县期末)把分式-xx y,,的分母化为x 2-y 2后,各分式的分子之和是( ) A .x 2+y 2+2 B .x 2+y 2-x +y +2 C .x 2+2xy -y 2+2D .x 2-2xy +y 2+2 典例5(2018·聊城市期末)把、、通分过程中,不正确的是( )A .最简公分母是(x -2)(x +3)2B .C .D .知识点三 分式的四则运算与分式的乘方1)分式的乘除法法则:用分子的积作为积的分子,分母的积作为积的分母。

八年级数学上册第十五章分式15.2分式的运算15.2.2分式的加减15.2.2.2分式的混合运算教案新版新人教版2

八年级数学上册第十五章分式15.2分式的运算15.2.2分式的加减15.2.2.2分式的混合运算教案新版新人教版2

第2课时分式混合运算
◇教学目标◇
【知识与技能】
明确分式混合运算的顺序.
【过程与方法】
经历探索分式混合运算步骤的过程,能熟练地进行分式的混合运算.【情感、态度与价值观】
结合已有的数学经验解决新问题,获得成就感和克服困难的方法和勇气.
◇教学重难点◇
【教学重点】
分式混合运算的顺序.
【教学难点】
分式的混合运算.
◇教学过程◇
一、情境导入
我们学习了分式的加减乘除、乘方运算,你能解决下面的问题吗?
化简:.
二、合作探究
探究点1分式乘除混合运算
典例1化简:.
[解析]原式=-=-.
探究点2分式混合运算
第 1 页共 2 页
典例2先化简,再求值:,其中x=5.
[解析]原式=
=
=-(x-2)
=-x+2.
当x=5时,原式=-5+2=-3.
探究点3化简求值
典例3先化简,再求值:.其中x的值从不等式组的整数解中选取.
[解析]由不等式组可解得-1<x≤2.
∵x是整数,
∴x=0或1或2.
∴原式==(x+2)·,
当x=0时,原式=0.
当x=2时,原式=.
当x=1时,原式=.
三、板书设计
分式混合运算
分式混合运算
◇教学反思◇
本节是一节习题课,内容是分式的混合运算,要把握运算顺序.不少学生在分式运算中出错,就是因为不重视审题,题没看完就动笔计算,或者受题中部分算式的特殊结构的影响而不遵循运算顺序,如化简,就常出现乱约分而不遵循运算顺序的典型错误,要同学通过练习、板演充分暴露问题所在,纠正,最后总结出容易忽视和出错的地方,提醒自己.
第 2 页共 2 页。

15.2.2.2分式的混合运算

15.2.2.2分式的混合运算
15.2.2分式的运算
分式的混合运算
实数的混合运算顺序: 1、先乘方,再乘除,最后加减。 2、同级运算则从左到右依次计算。 3、有括号的先算括号里面的,从小括 号到中括号,最后再去大括号。
例1: 2a 1 a b b .a b b 4
2
1、先乘方,再乘除,最后加减。 2、同级运算则从左到右依次计算。 3、有括号的先算括号里面的,从小括 号到中括号,最后再去大括号。
1 1 1 (1) a(a 1) (a 1)(a 2) (a x 1)(a x)
1 1 2 4 1024 2048 (2) 2 4 1024 2048 1 a 1 a 1 a 1 a 1 a 1 a
200220032 (3) 20022002 2 20022004 2 2
1、先乘方,再乘除,最后加减。 2、同级运算则从左到右依次计算。 3、有括号的先算括号里面的,从小括 号到中括号,最后再去大括号。
分式的混合运算:关键是要正 确的使用相应的运算法则和运算顺 序;正确的使用运算律,尽量简化 运算过程;结果必须化为最简分式 。 混合运算的特点:是整式运算、 因式分解、分式运算的综合运用, 综合性强。
1 x 11 2 x 1 x 1
x2 x 1 x4 2( 2 2 ) x 2x x 4x 4 x
1 1 mn 3 m n 2m m n 2m
学 以 致 用
2 2 x y x y 4 x y x 3x x y 3x
化简求值题型
2013年重庆中考题
a 2 6ab 9b2 21、先化简,再求值: a 2 2ab

5b2 1 a 2b a 2b a

15.2.2分式的加减(第2课时)

15.2.2分式的加减(第2课时)

分式混合运算例题与练习
x+ 2 x-1 x- 4 解: (2) 2 - 2 . x x - 2 x x - 4 x+ 4
x+ 2 x-1 x = 2 x x- 2) (x- 2) x- 4 ( x+ 2) ( (x- 2) ( x x-1) x = 2 2 x x- 2) ( x x- 2) x- 4 ( x 2 - 4-x 2 +x x 1 = = . 2 2 x- 4 (x- 2) ( x x- 2)
x2 x2 x x
4 x
4.解:
4a 8a a 1 a 1 (a 2)( a 1) a 1 a 1
2
4a(a 2) 4a (a 2)(a 1) (a 1)(a 1)
4a (a 1)(a 1) (a 1) 4a
a 2 a 1 a = 4a a 2 4a
1 a2
……
x3 5 2.解: ( x 2) 2x 4 x 2 x 3 5 ( x 2)( x 2) 2x 4 x2 x3 x2 2 2x 4 9 x 1 2( 3 x )
a c ac b d bd 1、分式的乘除: a c a d ad b d b c bc
a n a 2、分式的乘方:( ) n b b a c ac b b b 3、分式的加减法则: a c ad bc ad bc b d bd bd bd
布置作业
教科书习题15.2第6题.
5 2 m- 4 ( 1) m+ 2+ 2-m 3-m ; x+ 2 x-1 x- 4 (2) x 2 - 2 x - x 2 - 4 x+ 4 x .

人教版八年级数学上册说课稿15.2分式的运算

人教版八年级数学上册说课稿15.2分式的运算

人教版八年级数学上册说课稿15.2 分式的运算一. 教材分析本次说课的内容是人教版八年级数学上册的15.2分式的运算。

这部分内容是学生在学习了分式的概念、分式的性质和分式的化简等知识的基础上进行学习的,是进一步培养学生对分式的理解和运用能力的重要环节。

在这部分内容中,学生需要掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。

二. 学情分析学生在学习这部分内容时,已经具备了分式的基本知识,对分式的概念和性质有一定的理解。

但学生在进行分式的运算时,还存在着对运算规则理解不深,运算步骤不清晰等问题。

因此,在教学过程中,需要引导学生深入理解分式运算的规则,明确运算的步骤,提高学生的运算能力。

三. 说教学目标1.知识与技能目标:学生能够掌握分式的加减乘除运算规则,能够熟练地进行分式的运算。

2.过程与方法目标:通过学生的自主学习和合作交流,培养学生对分式运算的理解和运用能力。

3.情感态度与价值观目标:培养学生对数学学习的兴趣,提高学生对数学学习的自信心。

四. 说教学重难点1.教学重点:分式的加减乘除运算规则的掌握和运用。

2.教学难点:分式运算步骤的清晰和运算规则的灵活运用。

五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作法进行教学。

2.教学手段:利用多媒体课件进行教学,引导学生通过观察、思考、讨论和总结,深入理解分式的运算规则。

六. 说教学过程1.导入新课:通过一个实际问题,引导学生进入分式的运算学习。

2.自主学习:学生通过自主学习,掌握分式的加减乘除运算规则。

3.合作交流:学生分组进行合作交流,通过讨论和总结,明确分式运算的步骤。

4.案例分析:通过分析典型案例,引导学生理解和掌握分式运算的规则。

5.练习巩固:学生进行练习,巩固所学的内容。

6.总结提升:教师引导学生进行总结提升,明确分式运算的重点和难点。

七. 说板书设计板书设计要清晰、简洁,能够突出教学的重点和难点。

在板书中,可以将分式的加减乘除运算规则用图示的方式进行展示,让学生一目了然。

15.2.2 分式的加减

15.2.2 分式的加减
4p 4 p2 9 q2
我们的收获
(1)分式加减运算的方法思路:
异分母 相加减
通分 转化为
同分母 分母不变 分子(整式)
相加减 转化为
相加减
(2)分子相加减时,如果分子是一个多项式,要将分子 看成一个整体,先用括号括起来,再运算,可减少出现符号 错误。
(3)分式加减运算的结果要约分,化为最 简分式(或整式)。
甲工程队完成一项工程需n天,乙工程队要比甲 队多用3天才能完成这项工程,两队共同工作一 天完成这项工程的几分之几?
甲工程队一天完成这项工程的 1 ,
n
乙工程队一天完成这项工程的 1 , n3
两队共同工作一天完成这项工程的
(1 1 ) n n3
.
2009年、2010年、2011年某地的森林面积
3x 3y (x y)(x y)
3 x y
2 1 1 .
2 p 3q 2 p 3q
2原式
2 p 3q

2 p 3q
(2 p 3q)(2 p 3q) (2 p 3q)(2 p 3q)
2 p 3q 2 p 3q (2 p 3q)(2 p 3q)
1 1 ?, 1 1 ?.
x 2x
x 2x
同分母分式相加减 , 分母不变,把分子相加减.
ab ab cc c
ab ab cc c
异分母分式相加 减 ,先通分,变为同分 母的分式,再加减.
a c ad bc ad bc. b d bd bd bd
a c ad bc ad bc. b d bd bd bd
下列运算对吗?如不对,请改正.
(1) 5 2 10 ( × )

15.2.2分式的加减(2)混合运算(教案)

15.2.2分式的加减(2)混合运算(教案)
-合并同类项的技巧:找出同类项并合并;举例:
(1)讲解分式加减混合运算的法则时,通过具体例题强调加法交换律和结合律在分式运算中的应用,如:
$\frac{a}{b} + \frac{c}{d} = \frac{c}{d} + \frac{a}{b} = \frac{a \cdot d + c \cdot b}{b \cdot d}$
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式混合运算相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如计算不同商品打折后的总价。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“分式混合运算在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
五、教学反思
在今天的教学中,我重点关注了分式混合运算的概念和实际应用。通过引入日常生活中的例子,我试图让学生认识到数学知识在解决实际问题中的重要性。课堂上,我注意到学生们在理解合并同类项和通分的过程中遇到了一些挑战,这让我意识到这些概念需要更多的解释和练习。
我尝试通过具体的案例分析和逐步解题来帮助学生理解难点,但我也发现,对于一些学生来说,这些概念仍然难以消化。在今后的教学中,我需要寻找更多直观和生动的方法来解释这些难点,比如使用实物或动画来展示分式的通分过程,让学生能够更直观地理解。
$\frac{1}{a} + \frac{1}{b} = \frac{b}{ab} + \frac{a}{ab} = \frac{a+b}{ab}$
难点在于如何确定最简公分母,如$a$和$b$的最小公倍数$ab$。

精ppt分式的混合运算

精ppt分式的混合运算
精ppt分式的混合运算(PPT优秀课件 )
解:原式=-xx-+22
(2)a+a 1·(a+2a1)2-(a-1 1-a+1 1). 解:原式=4a2a-2-4a1-2
精ppt分式的混合运算(PPT优秀课件 )
精ppt分式的混合运算(PPT优秀课件 )
12.(2016·巴中)先化简:x2-x2+2xx+1÷(x-2 1-1x),然后再从-2<x≤2 的 范围内选取一个合适的 x 的整数值代入求值.
(2)(3ba)2·3a+1 b-ba÷b3; 解:原式=-3ab3+a b2
精ppt分式的混合运算(PPT优秀课件 )
精ppt分式的混合运算(PPT优秀课件 )
(3)(2016·成都)(a+a 2+a2-1 4)÷aa- +12; 解:原式=aa--12
(4)(2016·重庆)x2x+2+4x2+x 4÷(2x-4+xx2). 解:原式=x-1 2
精ppt分式的混合运算(PPT优秀课件 )
精ppt分式的混合运算(PPT优秀课件 ) 精ppt分式的混合运算(PPT优秀课件 )
精ppt分式的混合运算(PPT优秀课件 )
9.(2016·北京)如果 a+b=2,那么代数(a-ba2)·a-a b的值是( A )
A.2
B.-2
1 C.2
D.-12
10.李明同学从家到学校的速度是 a 千米/小时,沿原路从学校返回家的速
2ab 度是 b 千米/小时,则李明同学来回的平均速度是 a+b
(用含 a,b 的式子表示)
千米/小时.
精ppt分式的混合运算(PPT优秀课件 )
精ppt分式的混合运算(PPT优秀课件 )
11.(习题 6 变式)计算: (1)(2016·聊城)(xx2+-84-x-2 2)÷x2-x-4x4+4;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档