2019高考模拟数学-试卷(理)

合集下载

2019年高考真题和模拟题分项汇编数学(理):专题03 导数及其应用 (含解析).docx

2019年高考真题和模拟题分项汇编数学(理):专题03 导数及其应用 (含解析).docx

专题03导数及其应用1. [2019年高考全国III 卷理数】已知曲线y = ae x +xlnx 在点(1, ae)处的切线方程为y=2x+b,贝9 A. a = e, b = —1 B. a=e, b=l C. a — e _1, b = lD. a = e"1 > b = -\【答案】D【解析】T y' = ae* + lnx+l,切线的斜率 k = y' |Y=1= ae+1 = 2,a = e _1, 将(1,1)代入 y = 2x + b,得 2 + b = l,b = -l. 故选D.【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a, b 的等式,从而求解,属于常考题 型.了2 O XTTV 2d V* V 12. [2019年高考天津理数】已知tzeR ,设函数/(%)=' _ '若关于X 的不等式/(x)>0在R 上x-alnx, x>l.恒成立,则a 的取值范围为A. [0,1]B. [0,2]C. [0,e]D. [l,e]【答案】C【解析】当兀=1时,/(1) = 1 —2a + 2a = l>0恒成立;当 x<l 时,/(%) = x 2-2ajc + 2a>0^ 2a>^-恒成立,x-1令g(x) =—7x-1(1 —兀―1)2_ (1—兀)2—2(1 —兀)+ 1 1 — X 1 — X当1 —兀=丄,即x = 0时取等号,1-X贝0g(x) = ——1-X2a= 0,则a>0.Y当 x 〉l 时,f(x) = x-a\nx>0,即a< ---------------- 11 成立,lnx当x>e 时,h'(x) >0,函数〃(x)单调递增, 当0<x<e 时,h'(x) <0,函数力(x)单调递减, 则x = e 时,〃(x)取得最小值A(e) = e,•■- a<h(x)nin =e,综上可知,a 的取值范围是[0,e ]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成 立问题.x,x<03. (2019浙江)已知a,bwR ,函数/(%) = < 1 1 2.若函数f(x)-ax-b 恰有3个零点, —X ——(Q + 1)兀 + ax, X > 0 13 2A. a<-\, b<0 C. tz>—1, Z?<0D. a>—1, Z?>0【答案】C【解析】当 x<0 时,y=f (x) -ax - b=x - ax - b= (1 - a) x - b=0,得 x= 丿丿 l-a则y=f (x) -ax-b 最多有一个零点;当 x>0 时,y=f (兀)-ax - b= -x 3—- (a+1) x^+ax - ax - b= -x 3—- (a+1) x 2 - b, —)J3 2 3 2y = x 2-(€l + l)x,当 a+lwo,即來-1 时,y>0, y=f (x) -ax-b 在[0, +oo)上单调递增, 则y =f -ax-b 最多有一个零点,不合题意;当a+l>0,即°>-1时,令y'>0得兀丘@+1, +oo),此时函数单调递增, 令WVO 得用[0, d+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y=f (x) -ax-b 恰有3个零点o 函数y=f (x) - ax - b 在(-oo, 0)上有一个零点,在[0, +oo)令〃(x)=—, lnx则 h\x)=lnx-1(In x)2 B. a<-l, b>0上有2个零点,如图:b—b>01-a (a + l)3 - j (a + l)(a + l)2- b<0解得b<0, 1 - a>0, b> -- (a+1) 3,6则a>-l, b<0.故选C・【名师点睛】本题考查函数与方程,导数的应用.当兀V0时,y=f (x) -ax - b=x - ax - b= (l-°) x~ b最多有一个零点;当空0时,y=/(x) -ax-b=^-\ (a+1) - b,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.[2019年高考全国I卷理数】曲线y = 3(x2+x)e x在点(0,0)处的切线方程为_________________ .【答案】3x-y-0【解析】y = 3(2x+l)e A + 3(x2 + x)e r = 3(x2 +3x+l)e r,所以切线的斜率k = y' |x=0=3,则曲线y = 3(x2 + x)^在点(0,0)处的切线方程为y = 3x,即3x — y = 0 .【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误•求导要“慢”, 计算要准,是解答此类问题的基本要求._ 45.[2019年高考江苏】在平面直角坐标系xOy中,P是曲线y = x + —(无>0)上的一个动点,则点P到直线x+ y = 0的距离的最小值是一▲•【答案】44 4【解析】由y = x (x〉0),得丁' = 1 ——,X X4 4设斜率为一1的直线与曲线_y = x + -(x>0)切于(x0,x0+—),x 勺由1一一 =一1得x0 = A/2(x0=-A/2舍去),x o曲线y = x + -(x>o)±,点P(V2,3A/2)到直线x+y = o的距离最小,最小值为故答案为4 .【名师点睛】本题考查曲线上任意一点到己知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.[2019年高考江苏】在平面直角坐标系中,点A在曲线y=lnr上,且该曲线在点A处的切线经过点(-e, -l)(e 为自然对数的底数),则点A的坐标是▲.【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点A(x0,y0),则y Q =lnx0.又# =丄,X则曲线y = InX在点A处的切线为y - %=丄(X —勺),即yin”。

2019年广东省深圳市高考数学二模试卷(理科)解析版

2019年广东省深圳市高考数学二模试卷(理科)解析版

2019年广东省深圳市高考数学二模试卷(理科)一、选择题(本大题共12小题,共60.0分)1. 已知集合M ={x |x >0},N ={x |x 2-4≥0},则M ∪N =( )A. (−∞,−2]∪(0,+∞)B. (−∞,−2]∪[2,+∞)C. [3,+∞)D. (0,+∞) 2. 在复平面内,复数z =i(1+i)1−2i所对应的点位于( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限3. 2019年是中国成立70周年,也是全面建成小康社会的关键之年.为了迎祖国70周年生日,全民齐心奋力建设小康社会,某校特举办“喜迎国庆,共建小康”知识竞赛活动.如图的茎叶图是参赛两组选手答题得分情况,则下列说法正确的是( )A. 甲组选手得分的平均数小于乙组选手的平均数B. 甲组选手得分的中位数大于乙组选手的中位数C. 甲组选手得分的中位数等于乙组选手的中位数D. 甲组选手得分的方差大于乙组选手的方差4. 已知等比数列{a n }满足a 1=12,且a 2a 4=4(a 3-1),则a 5=( )A. 8B. 16C. 32D. 645. 已知函数f(x)=ax 2+(1−a)x +2x 是奇函数,则曲线y =f (x )在x =1处的切线得倾斜角为( )A. π4B. 3π4C. π3D. 2π36. 在平行四边形ABCD 中,E 为CD 的中点,F 为AE 的中点,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AD ⃗⃗⃗⃗⃗⃗ =b ⃗ ,则FB⃗⃗⃗⃗⃗ =( ) A. −34a⃗ +12b ⃗ B. 12a⃗ +34b ⃗ C. 12a⃗ −34b ⃗ D. 34a⃗ −12b ⃗ 7. 如图所示,网格上小正方形的边长为1,粗实线和粗虚线画出的是某几何体的三视图,则该几何体的表面积为( ) A. (8+4√2)π B. (9+4√2)π C. (8+8√2)π D. (9+8√2)π 8. 十九世纪末,法国学者贝特朗在研究几何概型时提出了“贝特朗悖论”,即“在一个圆内任意选一条弦,这条弦的弦长长于这个圆的内接等边三角形边长的概率是多少?”贝特朗用“随机半径”、“随机端点”、“随机中点”三个合理的求解方法,但结果都不相同.该悖论的矛头直击概率概念本身,强烈地刺激了概率论基础的严格化.已知“随机端点”的方法如下:设A 为圆O 上一个定点,在圆周上随机取一点B ,连接AB ,所得弦长AB 大于圆O 的内接等边三角形边长的概率.则由“随机端点”求法所求得的概率为( )A. 15B. 14C. 13D. 129. 已知函数f(x)=ax +lnx −1有且仅有一个零点,则实数a 的取值范围为( )A. (−∞,0]∪{1}B. [0,1]C. (−∞,0]∪{2}D. [0,2]10. 设F 1,F 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点,点A ,B 分别为椭圆C 的右顶点和下顶点,且点F 1关于直线AB 的对称点为M .若MF 2⊥F 1F 2,则椭圆C 的离心率为( )A. √3−12 B. √3−13 C. √5−12D. √2211. 已知函数f(x)=√3sinωx +cosωx(ω>0)在区间[−π4,π3]上恰有一个最大值点和最小值点,则实数ω的取值范围为( )A. [83,7)B. [83,4)C. [4,203)D. (203,7)12. 如图,在四面体ABCD 中,AB =CD =2,AC =BD =√3,AD =BC =√5,E ,F 分别是AD ,BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( )A. √6B. √62C. 52D. 54二、填空题(本大题共4小题,共20.0分)13. 设实数x ,y 满足{2≤x ≤3,1≤y ≤2,x +y ≤4,则yx−1的最大值为______.14. 已知双曲线C :x 2a 2−y 2b 2=1,且圆E :(x -2)2+y 2=1的圆心是双曲线C 的右焦点.若圆E 与双曲线C的渐近线相切,则双曲线C 的方程为______.15. 精准扶贫是全国建成小康社会、实现中华民族伟大“中国梦”的重要保障.某单位拟组成4男3女共7人的扶贫工作队,派驻到3个扶贫地区A 、B 、C 进行精准扶贫工作.若每一个地区至少派驻1男1女两位工作人员,且男性甲必须派驻到A 地区,则不同的派驻方式有______种.16. 设S n 是数列{a n }的前n 项和,且a 1=3,当n ≥2时,有S n +S n -1-2S n S n -1=2na n ,则使得S 1S 2…S m ≥2019成立的正整数m 的最小值为______.三、解答题(本大题共7小题,共82.0分)17. 已知△ABC 中,AB =√2BC ,AC =2√5,点D 在边AC 上,且AD =2CD ,∠ABD =2∠CBD .(1)求∠ABC 的大小; (2)求△ABC 的面积.18. 在边长为4的正方形ABCD 中,点E 、F 分别为边AB 、AD 的中点,以CE ,CF 为折痕将△DFG 和△BCE 折起,使点B 、D 重合于点P ,连结PA ,得到如图所示的四棱锥P -AEF .(1)求证:EF ⊥PC ;(2)求直线PA 与平面PEC 所成角的正弦值.19. 某网店销售某种商品,为了解该商品的月销量y (单位:千件)与月售价x (单位:元/件)之间的关系,对近几年的月销售量y i 和月销售价x i (i =1,2,3,-..10)数据进行了统计分析,得到了下面的散点图(1)根据散点图判断,y =c +d ln x 与y =bx +a 哪一个更适宜作为月销量y 关于月销售价x 的回归方程类型?(给出判断即可,不需说明理由),并根据判断结果及表中数据,建立y 关于x 的回归方程; (2)利用(1)中的结果回答问题:已知该商品的月销售额为Z (单位:千元),当月销售量为何值时,商品的月销售额预报值最大?(月销售额=月销售量x 当月售价) 参考公式、参考数据及说明:①对一组数据(v 1,w 1),(v 2,w 2),…(v n ,w n ),其回归直线w =α+βv 的斜率和截距的最小二乘估计分别为=∑(n i=1w i −w −)(v i −v −)∑(n i=1v i −v −)2,=w−v −.②参考数据:x −y −u −∑10i=1(x i −x −)2 ∑10i=1(u i −u −)2∑10i=1(x i −x −)(y i −y −)∑10i=1(u i −u −)(y i −y −) 6.506.601.75 82.502.70-143.25-27.54表中u i =ln x i ,u −=110∑10i=1u i .③计算时,所有的小数都精确到0.01,如ln4.0≈1.40.20. 己知抛物线C :x 2=4y ,过点(2,3)的直线l 交C 于A 、B 两点,抛物线C 在点A 、B 处的切线交于点P .(l )当点A 的横坐标为4时,求点P 的坐标;(2)若Q 是抛物线C 上的动点,当|PQ |取最小值时,求点Q 的坐标及直线l 的方程.21. 已知函数f (x )=e x -ae -x -(a +1)x (a ∈R ).(其中常数e =2.71828…,是自然对数的底数).(1)求函数f (x )极值点;(2)若对于任意0<a <1,关于x 的不等式[f (x )]2<λ(e a -1-a )在区间(a -1,+∞)上存在实数解,求实数λ的取值范围.22. 在平面直角坐标系xOy 中,曲线C 1的参数方程为{y =sinαx=2cosα(α为参数).圆C 2的方程为(x -2)2+y 2=4,以原点O 为极点,x 轴正半轴为极轴建立极坐标系,射线l 的极坐标方程为θ=θ0(ρ≥0).(l )求曲线C 1和圆C 2的极坐标方程:(2)当0<θ0<π2时,射线l 与曲线C 1和圆C 2分别交于异于点O 的M 、N 两点,若|ON |=2|OM |,求△MC 2N 的面积.23. 已知函数f(x)=|x −m|+|x +1m |(m >1).(Ⅰ)当m =2时,求不等式f (x )>3的解集; (Ⅱ)证明:f(x)+1m(m−1)≥3.答案和解析1.【答案】A【解析】解:∵集合M={x|x>0},N={x|x2-4≥0}={x|x≥2或x≤-2},∴M∪N={x|x≤-2或x>0}=(-∞,-2]∪(0,+∞).故选:A.先分别求出集合M,N,再利用并集定义求解.本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题.2.【答案】C【解析】解:在复平面内,复数==--i所对应的点(-,-)位于第三象限.故选:C.利用复数的运算法则、几何意义即可得出.本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.3.【答案】D【解析】解:由茎叶图可知:①==84,==84,即=,故选项A错误,②甲组选手得分的中位数为83,乙组选手得分的中位数为84,即甲组选手得分的中位数小于乙组选手的中位数,即选项B正确,③由选项B可知,选项C错误,④因为S甲2=[(75-84)2+(82-84)2+(83-84)2+(87-84)2+(93-84)2]=,S乙2=[(77-84)2+(83-84)2+(84-84)2+(85-84)2+(91-84)2]=,即S甲2>S乙2,即选项D 正确,故选:D.先分析处理茎叶图的信息,再结合平均数、中位数、方差的概念进行运算即可得解本题考查了茎叶图及平均数、中位数、方差的运算,属中档题4.【答案】A【解析】解:等比数列{a n}满足,且a2a4=4(a3-1),则×q××q3=4(×q2-1),解得q2=4,∴a5=a1q4=×42=8,故选:A.先由题意求出公比,再根据等比数列的通项公式公式即可求出a5的值本题考查了等比数列的通项公式,考查了运算求解能力,属于基础题5.【答案】B【解析】解:函数是奇函数,可得f(-x)=-f(x),可得a=0,f(x)=x+,f′(x)=1-,即有曲线y=f(x)在x=1处的切线斜率为k=1-2=-1,可得切线的倾斜角为,故选:B.由奇函数的定义可得a=0,求得f(x)的导数,求得切线的斜率,由斜率公式可得倾斜角.本题考查函数的奇偶性和导数的运用:求切线斜率,考查化简运算能力和推理能力,属于基础题.6.【答案】D【解析】解:由题可知,═=.故选:D.由题可知,∵,可求出.本题考查了平面向量的线性运算,是基础题,解题时要认真审题,注意平面向量加法法则的合理运用7.【答案】A【解析】解:根据三视图,该几何体是由一个圆锥和一个圆柱构成,圆锥的求半径为2,高为2,圆柱的底面半径为1,高为2.所以:S==.故选:A.首先根据三视图,把几何体复原,进一步利用表面积公式求出结果.本题考查的知识要点:三视图的应用,锥体和球体的体积公式的应用.8.【答案】C【解析】解:设“弦AB的长超过圆内接正三角形边长”为事件M,以点A为一顶点,在圆中作一圆内接正三角形ACD,如所示,则要满足题意点B只能落在劣弧CD上,又圆内接正三角形ACD恰好将圆周3等分,故P(M)=,故选:C.由题意画出图形,求出满足条件的B的位置,再由测度比是弧长比得答案.本题考查几何概型的意义,关键是要找出满足条件弦AB的长度超过圆内接正三角形边长的图形测度,再代入几何概型计算公式求解,是基础题.9.【答案】A【解析】解:∵函数,∴f′(x)=+=,x>0,当a≤0时,f′(x)=>0恒成立,f(x)是增函数,x→+∞时,f(x)→+∞,f(1)=a-1<0,函数有且仅有一个零点;当a>0时,令f′(x)>0,解得:x>a,令f′(x)<0,解得:x<a,故f(x)在(0,a)递减,在(a,+∞)递增,故只需f(x)min=f(a)=lna=0,解得:a=1,综上:实数a的取值范围为(-∞,0]∪{1}.故选:A.求出函数的导数,通过讨论a的范围,求出函数的单调区间,从而确定满足条件的a的范围即可.本题考查函数的单调性,最值问题,考查导数的应用以及函数零点问题,考查利用导数研究函数极值点问题、利用导数研究函数的单调性与极值、最值问题等基础知识,考查分类讨论思想、化归与转化思想,考查运算求解能力,是中档题.10.【答案】C【解析】解:F1、F2分别是椭圆C :的左、右焦点,点A,B分别为椭圆C的右顶点和下顶点,点F1关于直线AB:bx-ay=ab的对称点M,且MF2⊥F1F2,可得MF2的方程为x=c,MF1的方程y=,可得M(c,-),MF1的中点为(0,-),代入直线bx+ay=ab,可得:ac=b2=c2-a2,e=>1,可得e2-e-1=0,解得e=.故选:C.画出图形,利用已知条件求出A的坐标,然后求解MF1的中点,代入直线方程,即可求解椭圆的离心率.本题考查椭圆的简单性质的应用,是基本知识的考查.11.【答案】B【解析】解:函数,=2sin(ωx+).令:,所以:f(x)=2sint,在区间上恰有一个最大值点和最小值点,则:函数y=2sint恰有一个最大值点和一个最小值点在区间[],则:,解得:,即:.故选:B.首先利用三角函数关系式的恒等变换,把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考察学生的运算能力和转换能力,属于基础题型.12.【答案】B【解析】解:补成长,寛,高分别为,,1的长方体(如下图)由于EF⊥α,故截面为平行四边形MNKL,可得KL+KN=,设异面直线BC与AD所成的角为θ,则sinθ=sin∠HFB=sin∠LKN,算得sinθ=,∴S四边形MNKL=NK•KL•sin∠NKL≤()2=,当且仅当NK=KL时取等号.故选:B.补成长,寛,高分别为,,1的长方体,在长方体中可解决.本题考查了平面的基本性质及推论,属中档题.13.【答案】2【解析】解:由实数x,y满足作出可行域如图,联立,得A(2,2),由z=,而k DA ==2.∴目标函数的最大值为2.故答案为:2.由约束条件作出可行域,再由目标函数的几何意义,即可行域内的点与定点D(1,0)连线的斜率求解.本题考查简单的线性规划,考查数形结合的解题思想方法和数学转化思想方法,是中档题.14.【答案】x23−y2=1【解析】解:根据题意得:圆E:(x-2)2+y2=1的圆心F(2,0),半径为1,双曲线渐近线方程为y=±x,即±bx-ay=0,∵以点F为圆心,半径为1的圆与双曲线C的渐近线相切,且4=a2+b2,∴圆心F到渐近线的距离d==b=1,可得a=,所以双曲线方程为:=1.故答案为:=1.根据双曲线方程表示出F坐标,以及渐近线方程,由以点F为圆心,半径为1的圆与双曲线C 的渐近线相切,得到圆心F到渐近线距离d=1,整理得到a,b,即可求解双曲线方程.此题考查了双曲线的简单性质,直线与圆相切的性质,熟练掌握双曲线的简单性质是解本题的关键.15.【答案】72【解析】解:根据题意,分2种情况讨论:①,只有甲一名男性工作人员派到A地区:需要在3名女性工作人员中任选1人,与甲一起派到A地区,将剩下的3名男性工作人员分成2组,与剩下的2名女性工作人员一起全排列,对应B、C两个地区,此时有C31×C32×A22×A22=36种派驻方法;②,甲与另外一名男性工作人员一起派到A地:需要在3名男性工作人员中任选1人,在3名女性工作人员中任选1人,与甲一起派到A地区,将剩下的2名男性工作人员与剩下的2名女性工作人员一起全排列,对应B、C两个地区,此时有C31×C31×A22×A22=36种派驻方法;则一共有36+36=72种派驻方法;故答案为:72.根据题意,分2种情况讨论:①,只有甲一名男性工作人员派到A地区:②,甲与另外一名男性工作人员一起派到A地,由加法原理计算可得答案.本题考查排列、组合的应用,涉及分类计数原理的应用,属于基础题.16.【答案】1009【解析】解:∵S n+S n-1-2S n S n-1=2na n,∴S n+S n-1-2S n S n-1=2n(S n-S n-1),∴2S n S n-1=(2n+1)S n-1-(2n-1)S n,∴.令,则b n-b n-1=2(n≥2).∴数列{b n}是以为首项,以2为公差的等差数列.∴b n=2n-1.即,得.∴S1S2…S m =.由2m+1≥2019,解得m≥1009.即正整数m的最小值为1009.故答案为:1009.把已知数列递推式变形,得到,令,则b n-b n-1=2(n≥2),可知数列{b n}是以为首项,以2为公差的等差数列,求其通项公式,得到S n,再由累积法求得S1S2…S m,求解不等式得答案.本题考查数列递推式,考查了等比关系的确定,训练了利用累积法求数列的通项公式,是中档题.17.【答案】(本题满分为12分)解:(1)∵AD=2CD,设∠ABD=2∠CBD=2θ.∴S△BDCS△ABD=CDAD=12,∵S△BDC=12BC⋅BD⋅sinθ,S△BDA =12AB⋅BD⋅sin2θ,AB =√2BC,∴解得:cosθ=√22,可得:θ=π4,∴∠ABC=∠ABD+∠CBD=3θ=3π4…8分(2)在△ABC中,由余弦定理,可得:AC2=AB2+AC2-2AB•BC•cos3θ,因为AC=2√5,AB=√2BC,可得(2√5)2=(√2BC)2+BC2-2√2BC•BC•cos3π4,解得BC=2,…10分可得S△ABC=12AB•BC•sin3θ=12×√2BC2×√22=2…12分【解析】(1)由已知设∠ABD=2∠CBD=2θ.利用三角形的面积公式可求==,结合S△BDC=,,AB=BC,可求cosθ=,解得,可求∠ABC=∠ABD+∠CBD=3θ=.(2)在△ABC中,由余弦定理可求得BC=2,根据三角形的面积公式即可计算得解.本题主要考查了三角形的面积公式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于中档题.18.【答案】解:(1)连接AC ,BD ,EF ,设EF ∩AC =O ,连接OP . ∵PC ⊥PE ,PC ⊥PF ,PE ∩PF =P ,∴PC ⊥平面PEF ,∴PC ⊥EF .∵四边形ABCD 是正方形,∴AC ⊥BD , ∵E ,F 分别是AB ,AD 的中点, ∴EF ∥BD ,∴EF ⊥AC ,又PC ∩AC =C ,∴EF ⊥平面PAC ,又PC ⊂平面PAC , ∴EF ⊥PC .(2)由(1)可知EF ⊥平面PAC ,PC ⊥平面PEF . ∵OC =34AC =3√2,PC =4,∴PO =√OC 2−PC 2=√2,∴sin ∠PCA =PO OC =13,cos ∠PCA =2√23,∴S △PAC =12×4×4√2×13=8√23.PA =√16+32−2×4×4√2×2√23=4√33, 又OE =12EF =√2,∴V E -PAC =13×8√23×√2=169,又S △PCE =12×2×4=4,设A 到平面PCE 的距离为h , 则V A -PCE =13×4×h =169,解得h =43. ∴直线PA 与平面PEC 所成角的正弦值为ℎPA =√33.【解析】(1)连接AC ,BD ,EF ,通过证明PC ⊥平面PEF 得出PC ⊥EF ,根据中位线定理得出EF ⊥AC ,故而可得EF ⊥平面PAC ,于是EF ⊥PC ;(2)根据V E-PAC =V A-PCE 计算A 到平面PCE 的距离,再计算线面角的正弦值; 本题考查了线面垂直的判定与性质,考查直线与平面所成角的计算,属于中档题. 19.【答案】解:(1)y =c +d ln x 更适合销量y 关于月销售价格x 的回归方程类型,令u =ln x ,先建立y 关于u 的线性回归方程,=−27.542.70=-10.20,=6.6+10.20×1.75=24.45,∴y 关于u 的线性回归方程为, 因此y 关于x 的回归方程为.(2)由题意得z =xy =x (24.45-10.20ln x ),则z ′=[x (24.45-10.20ln x )]′=14.25-10.20ln x , 令z ′=0得14.25-10.20ln x =0,得ln x ≈1.40, 得x ≈4.06,当x ∈(0,4.06)时,z ′>0,此时z 单调递增,当x ∈(4.06,+∞)时,z 单调递减, 故当x =4.06时,z 取得最大值,即月销售量y =10.17(千件)时,月销售额预报值最大. 【解析】(1)根据散点图得到y=c+dlnx 更适合销量y 关于月销售价格x 的回归方程类型,结合表格数据进行计算即可.(2)求出z 的表达式,求z 的导数,结合函数的单调性最值之间的关系进行判断即可. 本题主要考查回归方程的应用,结合数据进行计算,求出相应的系数是解决本题的关键.考查学生的计算能力.20.【答案】解:(1)∵点A 的横坐标为4,∴A (4,4),易知此时直线l 的方程为y =12x +2, 联立{x 2=4yy =12x +2,解得{y =1x=−2,或{y =4x=4,∴B (-2,1).由y =x 24得y ′=x2,所以k PA =2,直线PA 的方程为y =2x -4,同理可得直线PB 的方程为y =-x -1,联立;{y =−x −1y=2x−4,可得{y =−2x=1,故点P 的坐标为(1,-2). (2)设A (x 1,x 14),B (x 2,x 24),由y =x 24得y ′=x2,所以k PA =x 12,所以直线PA 的方程为y -x 124=x 12(x -x 1),即y =x12x -x 124,同理PB 的方程为y =x 22x -x 224,联立解得P (x 1+x 22,x 1x 24),依题意直线l 的斜率存在,不妨设直线l 的方程为y -3=k (x -2),由{y −2=k(x −2)x 2=4y得x 2-4kx +8k -12=0,易知△>0,因此x 1+x 2=4k ,x 1x 2=8k -12,∴P (2k ,2k -3),∴点P 在直线x -y -3=0上,当|PQ |取得最小值时,即抛物线C :x 2=4y 上的点Q 到直线x -y -3=0的距离最小. 设Q (x 0,x 024),Q 到直线x -y -3=0的距离d =|x 0−x 024−3|√2=|(x 02−1)2+1|√2=√2+(x 02−1)2√2,所以当x 0=2时,d 取最小值√2,此时Q (2,1),易知过点Q 且垂直于x -y -3=0的直线方程为y =-x +3,由{x −y −3=0y=−x+3解得P (3,0),k =32,所以直线l 的方程为y =32x , 综上,点Q 的坐标为(2,1),直线l 的方程为y =32x . 【解析】(1)通过导数的几何意义求得PA,PB的斜率,再求得PA,PB的方程,再联立解得P的坐标:(2)设出A,B的坐标后利用导数的几何意义求得PA,PB的方程,联立解得P的坐标,得点P 在定直线x-y-3=0上,∴点P在直线x-y-3=0上,当|PQ|取得最小值时,即抛物线C:x2=4y上的点Q到直线x-y-3=0的距离最小.再利用点到直线距离公式求出Q到直线x-y-3=0 的距离及其最小值的条件,可得Q的坐标,从而可得直线l的方程.本题考查了直线与抛物线的综合,属难题.21.【答案】解:(1)∵函数f(x)=e x-ae-x-(a+1)x(a∈R).∴f′(x)=e x+ae-x-(a+1)=(e x−1)(e x−a)e x,①当a≤0时,x(-∞,0) 0(0,+∞)f′(x)- 0+f(x)↓极小值↑∴函数f(x)的极小值点为x=0,无极大值点.②当0<a<1时,x(-∞,ln a) ln a(ln a,0) 0(0,+∞)f′(x)+ 0- 0+f(x)↑极大值↓极小值↑∴函数f(x)的极大值点为x=ln a,极小值点为x=0.③当a=1时,f′(x)=(e x−1)2e x≥0,∴函数f(x)单调递增,即f(x)无极值点.④当a>1时,x(-∞,0) 0(0,ln a) ln a(ln a,+∞)f′(x)+ 0- 0+f(x)↑极大值↓极小值↑∴函数f(x)的极大值点为x=0,极小值点为x=ln a.综上:当a≤0时,函数f(x)的极小值点为x=0,无极大值点.当0<a<1时,函数f(x)的极大值点为x=ln a,极小值点为x=0.当a=1时,函数f(x)无极值点.当a>1时,函数f(x)的极大值点为x=0,极小值点为x=ln a.(2)e x≥1+x,当且仅当x=0时取等号,∵当0<a<1时,ln a<a-1<0,∴当0<a<1时,e a-1>1+a-1=a,∴ln a<a-1<0,令g(a)=ln a-a+1,则g′(a)=1a−1,当0<a<1时,g′(a)>0,∴g(a)<g(1)=0,即a-1>ln a,∵a-1<0,∴ln a<a-1<0,∴由(1)知0<a<1时,f(x)在区间(a-1,0)上递减,在(0,+∞)上递增,∴f(x)在区间(a-1,+∞)上的最小值为f(0)=1-a,∵关于x的不等式[f(x)]2<λ(e a-1-a)在区间(a-1,+∞)上存在实数解,∴只需当0<a<1时,关于a的不等式(1-a)2<λ(e a-1-a)恒成立,∴当0<a<1时,e a-1-a>0,∴只需当0<a<1时,不等式λ>(1−a)2e a−1−a恒成立即可,令函数F(x)=(1−x)2e x−1−x,0≤x<1,则F′(x)=(1−x)2e x−1−x,∵0≤x<1,∴F′(x)=(x−1)(3ex−1−x−1)(e x−1−x)2,令函数μ(x)=(3-x)e x-1在点T(1,2)处的切线方程为y-2=x-1,即y=x+1,如图所示,由题意得(3-x)e x-1≥x+1,当且仅当x=1时,取等号,∴当0<x<1时,G(x)>0,∴当0<x<1时,F′(x)<0,∴F(x)<F(0)=e,即F(x)<e,∴当0<a<1时,不等式λ>(1−a)2e a−ea恒成立,只需λ≥e.综上,实数λ的取值范围是[e,+∞).【解析】(1)求出f′(x)=e x+ae-x-(a+1)=,根据a≤0,0<a<1,a=1,a>1,进行分类讨论,利用导数性质能求出函数f(x)的极值点.(2)令g(a)=lna-a+1,则,当0<a<1时,g′(a)>0,a-1>lna,f(x)在区间(a-1,+∞)上的最小值为f(0)=1-a,只需当0<a<1时,关于a的不等式(1-a)2<λ(e a-1-a)恒成立,只需当0<a<1时,不等式恒成立即可,令函数F(x)=,0≤x<1,则F′(x)=,求出F′(x)=,利用导数性质能求出实数λ的取值范围.本题考查利用导数研究函数极值点问题,利用导数研究函数的单调性与极值、最值问题,运用分类讨论思想、数形结合思想求解,是难题.22.【答案】解:(1)由{y=sinαx=2cosα,得C1的普通方程为x24+y2=1,把x=ρcosθ,y=ρsinθ代入,得(ρcosθ)24+(ρsinθ)2=1,即ρ2=4cos2θ+4sin2θ=41+3sin2θ,所以C1的极坐标方程为ρ2=41+3sin2θ,由(x-2)2+y2=4,把x=ρcosθ,y=ρsinθ代入,得ρ=4cosθ,所以C2的极坐标方程为ρ=4cosθ.(2)把θ=θ0代入ρ2=41+3sin 2θ,得ρM 2=41+3sin 2θ0,把θ=θ0代入ρcosθ,得ρN 2=4cosθ0,则|ON |=2|OM |,得ρN =2ρM ,则ρN 2=4ρM 2,即(4cosθ0)2=161+3sin 2θ0,解得sin 2θ0=23,cos 2θ0=13,又0<θ0<π2,所以ρM =√41+3sin 2θ0=2√33,ρN =4cosθ0=4√33,所以△MC 2N 的面积S MC 2N =S △OC 2N -S△OC 2M =12|OC 2|(ρN -ρM )sinθ0=12×2×2√33×√63=2√23.【解析】(1)由,得C 1的普通方程为+y 2=1;把x=ρcosθ,y=ρsinθ代入,得+(ρsinθ)2=1,再化简可得;(2)利用极径的几何意义和三角形的面积公式可得. 本题考查了简单曲线的极坐标方程,属中档题. 23.【答案】解:(Ⅰ)当m =2时,f (x )=|x -2|+|x +12|;①当x ≤-12时,原不等式等价于(2-x )-(x +12)>3,解得x <−34; ②当-12<x <2时,原不等式等价于52>3,不等式无解; ③当x ≥2时,原不等式等价于(x -2)+(x +12)>3,解得x >94, 综上,不等式f (x )>3的解集为(-∞,-34)∪(94,+∞). (Ⅱ)证明:由题f (x )=|x -m |+|x +1m |, ∵m >0,∴|m +1m |=m +1m ,所以f (x )≥m +1m ,当且仅当x ∈[-1m ,m ]时等号成立, ∴f (x )+1m(m−1)≥m +1m +1m(m−1)=m +1m−1=(m -1)+1m−1+1, ∵m >1,m -1>0,∴(m -1)+1m−1+1≥2√(m −1)⋅1m−1+1=3,∴f (x )+1m(m−1)≥3.当m =2,且x ∈[-12,2]时等号成立. 【解析】(Ⅰ)分3段去绝对值解不等数组,在相并; (Ⅱ)由题f (x )=|x-m|+|x+|,∵m >0,∴|m+|=m+,所以f (x )≥m+,当且仅当x ∈[-,m]时等号成立,再利用基本不等式可证. 本题考查了绝对值不等式的解法,属中档题.。

2019年高考理科数学(全国1卷)答案详解(附试卷)

2019年高考理科数学(全国1卷)答案详解(附试卷)

P 20 5 64 16
PS:其实可以对题目进行抽象:即有 A、B 两种字母,填 6 个位置,求恰有 3 个 A 的概率.这样更
容易求解.
【答案】A
第 2 页 共 18 页
7.(平面向量)已知非零向量 a,b 满足 | a | 2 | b | ,且 (a b) b ,则 a 与 b 的夹角为
头顶至肚脐的长度小于 68.07cm,所以身高小于 68.07+68.07÷0.618=178.21cm. 所以选答案 B.
【答案】B
5.(函数)函数
f
(x)

sin x x cos x x2
在[, ] 的图像大致为
A.
B.
C.
D.
【解析】∵
f (x)
sin x x cos x x2
A. (x+1)2 y 2 1 B. (x 1)2 y2 1 C. x2 ( y 1)2 1 D. x2 ( y+1)2 1
【解析】由题意得 z i x ( y 1)i ,∵ z i =1 ,∴ x2 ( y 1)2 1 ,即 x2 ( y 1)2 1
【答案】D
6.(概率统计)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的 6 个爻 组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦 恰有 3 个阳爻的概率是
5
A.
16
11
B.
32
21
C.
32
11
D.
16
【解析】所有重卦的个数为 26 64 ,恰有 3 个阳爻的个数为 C36C33 20 ,因此恰有 3 个阳爻的概率为

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)(解析版)

2019年四川省成都市高考数学一诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知集合A={x|x>﹣2},B={x|x≥1},则A∪B=()A.{x|x>﹣2}B.{x|﹣2<x≤1}C.{x|x≤﹣2}D.{x|x≥1}2.(5分)复数(i为虚数单位)在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)一个三棱锥的正视图和侧视图如图所示(均为直角三角形),则该三棱锥的体积为()A.4B.8C.16D.244.(5分)设实数x,y满足约束条件,则z=3x+y的最小值为()A.1B.2C.3D.65.(5分)执行如图所示的程序框图,则输出的n值是()A.5B.7C.9D.116.(5分)设S n为等差数列{a n}的前n项和,且2+a5=a6+a3,则S7=()A.28B.14C.7D.27.(5分)下列判断正确的是()A.“x<﹣2”是“ln(x+3)<0”的充分不必要条件B.函数的最小值为2C.当α,β∈R时,命题“若α=β,则sinα=sinβ”的逆否命题为真命题D.命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”8.(5分)已知函数f(x)=3x+2cos x,若,b=f(2),c=f(log27),则a,b,c的大小关系是()A.a<b<c B.c<a<b C.b<a<c D.b<c<a9.(5分)在各棱长均相等的直三棱柱ABC﹣A1B1C1中,已知M是棱BB1的中点,N是棱AC的中点,则异面直线A1M与BN所成角的正切值为()A.B.1C.D.10.(5分)齐王有上等,中等,下等马各一匹;田忌也有上等,中等,下等马各一匹.田忌的上等马优于齐王的中等马,劣于齐王的上等马;田忌的中等马优于齐王的下等马,劣于齐王的中等马;田忌的下等马劣于齐王的下等马.现从双方的马匹中随机各选一匹进行一场比赛,若有优势的马一定获胜,则齐王的马获胜的概率为()A.B.C.D.11.(5分)已知定义在R上的函数f(x)的图象关于直线x=a(a>0)对称,且当x≥a时,f(x)=e x﹣2a.若A,B是函数f(x)图象上的两个动点,点P(a,0),则当的最小值为0时,函数f(x)的最小值为()A.e B.e﹣1C.e D.e﹣212.(5分)设椭圆C:=1(a>b>0)的左,右顶点为A,B.P是椭圆上不同于A,B的一点,设直线AP,BP的斜率分别为m,n,则当(3﹣)+3(ln|m|+ln|n|)取得最小值时,椭圆C的离心率为()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.(5分)已知双曲线C:x2﹣y2=1的右焦点为F,则点F到双曲线C的一条渐近线的距离为.14.(5分)(2x+)4展开式的常数项是.15.(5分)设S n为数列{a n}的前n项和,且a1=4,,则a5=.16.(5分)已知G为△ABC的重心,过点G的直线与边AB,AC分别相交于点P,Q,若AP=λAB,则当△ABC与△APQ的面积之比为时,实数λ的值为.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤.17.(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,已知,.(1)求a的值;(2)若b=1,求△ABC的面积.18.(12分)如图,四棱锥P﹣ABCD的底面ABCD是边长为2的菱形,∠ABC=,P A ⊥平面ABCD,点M是棱PC的中点.(Ⅰ)证明:P A∥平面BMD;(Ⅱ)当P A=时,求直线AM与平面PBC所成角的正弦值.19.(12分)在2018年俄罗斯世界杯期间,莫斯科的部分餐厅经营了来自中国的小龙虾,这些小龙虾标有等级代码.为得到小龙虾等级代码数值x与销售单价y之间的关系,经统计得到如下数据:(Ⅰ)已知销售单价y与等级代码数值x之间存在线性相关关系,求y关于x的线性回归方程(系数精确到0.1);(Ⅱ)若莫斯科某个餐厅打算从上表的6种等级的中国小龙虾中随机选2种进行促销,记被选中的2种等级代码数值在60以下(不含60)的数量为X,求X的分布列及数学期望.参考公式:对一组数据(x1,y1),(x2,y2),…(x n,y n),其回归直线=x的斜率和截距最小二乘估计分别为:=,=.参考数据:x i y i=8440,x=25564.20.(12分)已知长度为4的线段AB的两个端点A,B分别在x轴和y轴上运动,动点P 满足=3,记动点P的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)设不经过点H(0,1)的直线y=2x+t与曲线C相交于两点M,N.若直线HM与HN的斜率之和为1,求实数t的值.21.(12分)已知函数.(Ⅰ)当a<0时,讨论函数f(x)的单调性;(Ⅱ)当a=1时,若关于x的不等式f(x)+(x+)e x﹣bx≥1恒成立,求实数b的取值范围.请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.(10分)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数).在以坐标原点O为极点,x轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C的极坐标方程是.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设点P(0,﹣1).若直线l与曲线C相交于两点A,B,求|P A|+|PB|的值.[选修4-5:不等式选讲]23.已知函数|.(Ⅰ)求不等式f(x)﹣3<0的解集;(Ⅱ)若关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,求实数m的取值范围.2019年四川省成都市高考数学一诊试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:集合A={x|x>﹣2},B={x|x≥1},则A∪B={x|x>﹣2}.故选:A.2.【解答】解:∵=,∴复数在复平面内对应的点的坐标为(1,﹣2),位于第四象限.故选:D.3.【解答】解:由三视图知几何体为三棱锥,且侧棱AO与底面OCB垂直,其直观图如图:∵其俯视图是直角三角形,直角边长为2;4;∴OA=6,∴棱锥的体积V==8.故选:B.4.【解答】解:作出实数x,y满足约束条件表示的平面区域(如图示:阴影部分):由得A(0,1),由z=3x+y得y=﹣3x+z,平移y=﹣3x,易知过点A时直线在y上截距最小,所以z=1.故选:A.5.【解答】解:执行如图所示的程序框图如下,n=1时,S==,n=3时,S=+=,n=5时,S=++=,n=7时,S=+++=,满足循环终止条件,此时n=9,则输出的n值是9.故选:C.6.【解答】解:∵2+a5=a6+a3,∴a4=2,S7==7a4=14.故选:B.7.【解答】解:“x<﹣2”推不出“ln(x+3)<0”,反正成立,所以“x<﹣2”是“ln(x+3)<0”的充分不必要条件,所以A不正确;函数的最小值为3+;所以B不正确;当α,β∈R时,命题“若α=β,则sinα=sinβ”是真命题,所以它的逆否命题为真命题;所以C正确;命题“∀x>0,2019x+2019>0”的否定是“∃x0≤0,2019x+2019≤0”不满足命题的否定形式,所以D不正确;故选:C.8.【解答】解:根据题意,函数f(x)=3x+2cos x,其导数函数f′(x)=3﹣2sin x,则有f′(x)=3﹣2sin x>0在R上恒成立,则f(x)在R上为增函数;又由2=log24<log27<3<,则b<c<a;故选:D.9.【解答】解:高各棱长均相等的直三棱柱ABC﹣A1B1C1中,棱长为2,以A为原点,AC为y轴,AA1为z轴,建立空间直角坐标系,则A1(0,0,2),M(,1,1),B(,1,0),N(0,1,0),=(,﹣1),=(﹣,0,0),设异面直线A1M与BN所成角为θ,则cosθ===,∴tanθ=.∴异面直线A1M与BN所成角的正切值为.故选:C.10.【解答】解:设齐王上等,中等,下等马分别为A,B,C,田忌上等,中等,下等马分别为a,b,c,现从双方的马匹中随机各选一匹进行一场比赛,基本事件有:(A,a),(A,b),(A,c),(B,a),(B,b),(B,c),(C,a),(C,b),(C,c),共9种,有优势的马一定获胜,齐王的马获胜包含的基本事件有:(A,a),(A,b),(A,c),(B,b),(B,c),(C,c),共6种,∴齐王的马获胜的概率为p==.故选:C.11.【解答】解如图,显然的模不为0,故当最小值为0时,只能是图中的情况,此时,P A⊥PB,且P A,PB与函数图象相切,根据对称性,易得∠BPD=45°,设B(x0,y0),当x≥a时,f′(x)=e x﹣2a,∴∴x0=2a∵P(a,0)∴PD=a,∴BD=a,即B(2a,a),∴e2a﹣2a=a,∴a=1,∴当x≥1时,f(x)=e x﹣2,递增,故其最小值为:e﹣1,根据对称性可知,函数f(x)在R上最小值为e﹣1.故选:B.12.【解答】解:A(﹣a,0),B(a,0),设P(x0,y0),则,则m=,n=,∴mn==,∴(3﹣)+3(ln|m|+ln|n|)==,令=t>1,则f(t)=.f′(t)==,∴当t=2时,函数f(t)取得最小值f(2).∴.∴e=,故选:D.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上. 13.【解答】解:双曲线C:x2﹣y2=1的a=b=1,c=,则可设F(,0),设双曲线的一条渐近线方程为y=x,则F到渐近线的距离为d==1.故答案为:1.14.【解答】解:由通项公式得:T r+1=C(2x)4﹣r()r=24﹣r C x4﹣2r,令r=2,得展开式的常数项为:24﹣2C=24,故答案为:2415.【解答】解:S n为数列{a n}的前n项和,且a1=4,a n+1=S n,①,则:当n≥2时,a n=S n﹣1②①﹣②得:a n+1﹣a n=a n,所以:(常数),所以:数列{a n}是以4为首项,2为公比的等比数列.所以:(首项不符合通项).故:,当n=5时,.故答案为:3216.【解答】解:∵设AQ=μACG为△ABC的重心,∴==.∵P,G,Q三点共线,∴.△ABC与△APQ的面积之比为时,.∴或,故答案为:或.三、解答题:本大题共5小题,共70分.解答应写出文字说明证明过程或演算步骤. 17.【解答】解:(1)由题意可得,,由余弦定理可得,cos A=(2分)即=,(4分)∴a=(6分)(2)∵a=,b=1,由正弦定理可得,sin B===(8分)∵a>b,∴B=,(9分)C=π﹣A﹣B=(10分)∴S△ABC===(12分)18.【解答】证明:(Ⅰ)如图,连结AC,交BD于点O,连结MO,∵M,O分别为PC,AC的中点,∴P A∥MO∵P A⊄平面BMD,MO⊂平面BMD,∴P A∥平面BMD.解:(Ⅱ)如图,取线段BC的中点H,连结AH,∵ABCD为菱形,∠ABC=,∴AH⊥AD,分别以AH,AD,AP所在直线为x轴,y轴,z轴,建立空间直角坐标系,∴A(0,0,0),B(),C(),P(0,0,),M(),∴=(,),=(0,2,0),=(),设平面PBC的法向量=(x,y,z),则,取z=1,∴=(1,0,1),设直线AM与平面PBC所成角为θ,∴sinθ=|cos<>|===.∴直线AM与平面PBC所成角的正弦值为.19.【解答】解:(Ⅰ)由题意得:=(38+48+58+68+78+88)=63,=(16.8+18.8+20.8+22.8+24+25.8)=21.5,=≈0.2,=﹣=8.9,故所求回归方程是:=0.2x+8.9;(Ⅱ)由题意知X的所有可能为0,1,2,∵P(X=0)==,P(X=1)==,P(X=2)==,故X的分布列为:故E(X)=0×+1×+2×=1.20.【解答】解:(Ⅰ)设P(x,y),A(m,0),B(0,n),∵,∴(x,y﹣n)=3(m﹣x,﹣y)=(3m﹣3x,﹣3y),即,∴,∵|AB|=4,∴m2+n2=16,∴,∴曲线C的方程为:;(Ⅱ)设M(x1,y1),N(x2,y2),由,消去y得,37x2+36tx+9(t2﹣1)=0,由△=(36t)2﹣4×37×9(t2﹣1)>0,可得﹣,又直线y=2x+t不经过点H(0,1),且直线HM与HN的斜率存在,∴t≠±1,又,,∴k HM+k HN===4﹣=1,解得t=3,故t的值为3.21.【解答】解:(Ⅰ)由题意知:f′(x)=,∵当a<0,x>0时,有ax﹣e x<0,∴当x>1时,f′(x)<0,当0<x<1时,f′(x)>0,∴函数f(x)在(0,1)递增,在(1,+∞)递减;(Ⅱ)由题意当a=1时,不等式f(x)+(x+)e x﹣bx≥1恒成立,即xe x﹣lnx+(1﹣b)x≥1恒成立,即b﹣1≤e x﹣﹣恒成立,设g(x)=e x﹣﹣,则g′(x)=,设h(x)=x2e x+lnx,则h′(x)=(x2+2x)e x+,当x>0时,有h′(x)>0,故h(x)在(0,+∞)递增,且h(1)=e>0,h()=﹣ln2<0,故函数h(x)有唯一零点x0,且<x0<1,故当x∈(0,x0)时,h(x)<0,g′(x)<0,g(x)递减,当x∈(x0,+∞)时,h(x)>0,g′(x)>0,g(x)递增,即g(x0)为g(x)在定义域内的最小值,故b﹣1≤﹣﹣,∵h(x0)=0,得x0=﹣,<x0<1,…(*)令k(x)=xe x,<x<1,故方程(*)等价于k(x)=k(﹣lnx),<x<1,而k(x)=k(﹣lnx)等价于x=﹣lnx,<x<1,设函数m(x)=x+lnx,<x<1,易知m(x)单调递增,又m()=﹣ln2<0,m(1)=1>0,故x0是函数的唯一零点,即lnx0=﹣x0,=,故g(x)的最小值g(x0)=1,故实数b的取值范围是(﹣∞,2].请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分作答时,用2B 铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]22.【解答】解:(1)已知直线l的参数方程为(t为参数).转换为直角坐标方程为:.曲线C的极坐标方程是.转换为直角坐标方程为:x2+y2=2x+2y,整理得:(x﹣1)2+(y﹣1)2=2,(2)将直线l的参数方程为(t为参数),代入(x﹣1)2+(y﹣1)2=2.得到:,化简得:,所以:(t 1和t2为A、B对应的参数).故:.[选修4-5:不等式选讲]23.【解答】解:(Ⅰ)当x≥,f(x)﹣3=2x﹣1++1﹣3<0,解得x<,即有≤x <;当﹣2<x<时,f(x)﹣3=1﹣2x++1﹣3<0,解得x>﹣,即有﹣<x<;当x≤﹣2时,f(x)﹣3=1﹣2x﹣﹣1﹣3<0,解得x>﹣,即有x∈∅.综上可得原不等式的解集为(﹣,):(Ⅱ)由f(x)=,可得f(x)的值域为[,+∞),关于x的方程f(x)﹣m2﹣2m﹣=0无实数解,可得m2+2m+<,即m2+2m<0,解得﹣2<m<0,则m的范围是(﹣2,0).。

2019年北京市高考数学一模试卷(理科)(解析版)

2019年北京市高考数学一模试卷(理科)(解析版)

2019年北京市高考数学一模试卷(理科)(解析版)2019年北京市高考数学一模试卷(理科)一、选择题共8个小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知复数z=i(1+i),则|z|等于()A。

2B。

√2C。

1D。

2√22.在方程r=2cosθ+3sinθ(θ为参数)所表示的曲线上的点是()A。

(2.-7)B。

(3.1)C。

(1.5)D。

(2.1)3.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则Sn=()A。

5anB。

6anC。

7anD。

14an4.将函数y=sin2x的图象向左平移π/4个单位后得到函数y=g(x)的图象。

则函数g(x)的一个增区间是()A。

(π/4.3π/4)B。

(3π/4.5π/4)C。

(5π/4.7π/4)D。

(7π/4.9π/4)5.使“a>b”成立的一个充分不必要条件是()A。

a>b+1B。

a>b-1C。

a^2>b^2D。

a^3>b^36.下列函数:①y=-|x|;②y=(x-1)^3;③y=log2(x-1);④y=-6.在x中,在(1.+∞)上是增函数且不存在零点的函数的序号是()A。

①④B。

②③C。

②④D。

①③④7.某三棱锥的正视图和侧视图如图所示,则该三棱锥的俯视图的面积为()A。

6B。

8C。

10D。

128.远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图所示的是一位母亲记录的孩子自出生后的天数,在从右向左依次排列的不同绳子上打结,满七进一,根据图示可知,孩子已经出生的天数是()A。

336B。

510C。

1326D。

3603二、填空题共6小题,每小题5分,共30分。

9.在(1-x)^5的展开式中,x^2的系数为______(用数字作答)。

答案:1010.已知向量a=(1.b)。

b=(-2.-1),且向量a+b的模长为√10.则实数x=______。

(高考题 模拟题)高考数学 素养提升练(一)理(含解析)-人教版高三全册数学试题

(高考题 模拟题)高考数学 素养提升练(一)理(含解析)-人教版高三全册数学试题

素养提升练(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2019·某某长郡中学一模)已知集合A ={x |x >a },B ={x |x 2-4x +3≤0},若A ∩B =B ,则实数a 的取值X 围是( )A .a >3B .a ≥3 C.a ≤1 D.a <1 答案 D解析 因为B ={x |1≤x ≤3},A ∩B =B ,所以a <1.故选D. 2.(2019·某某某某二模)若复数a -2i1+i(a ∈R )为纯虚数,则|3-a i|=( )A.13 B .13 C .10 D.10 答案 A 解析a -2i1+i=a -2i1-i 1+i 1-i =a -2+-a -2i2,因为复数a -2i1+i (a ∈R )为纯虚数,所以⎩⎪⎨⎪⎧a -22=0,-a -22≠0.即⎩⎪⎨⎪⎧a -2=0,a +2≠0.解得a =2,所以|3-a i|=|3-2i|=32+-22=13.故选A.3.(2019·江淮十校模拟)为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为200的调查样本,其中城镇户籍与农村户籍各100人;男性120人,女性80人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A .是否倾向选择生育二胎与户籍有关B .是否倾向选择生育二胎与性别有关C .倾向选择生育二胎的人群中,男性人数与女性人数相同D .倾向选择不生育二胎的人群中,农村户籍人数少于城镇户籍人数 答案 C解析 由比例图可知,是否倾向选择生育二胎与户籍、性别有关,倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数,倾向选择生育二胎的人员中,男性人数为0.8×120=96人,女性人数为0.6×80=48人,男性人数与女性人数不相同,故C 错误,故选C.4.(2019·某某模拟)设等差数列{a n }的前n 项和为S n ,若a 4=4,S 9=72,则a 10=( ) A .20 B .23 C .24 D .28 答案 D解析 由于数列是等差数列,故⎩⎪⎨⎪⎧a 4=a 1+3d =4,S 9=9a 1+36d =72,解得a 1=-8,d =4,故a 10=a 1+9d =-8+36=28.故选D.5.(2019·某某一模)已知函数f (x )=x ln x ,若直线l 过点(0,-e),且与曲线y =f (x )相切,则直线l 的斜率为( )A .-2B .2C .-eD .e 答案 B解析 函数f (x )=x ln x 的导数为f ′(x )=ln x +1,设切点为(m ,n ),则n =m ln m ,可得切线的斜率为k =1+ln m ,∴1+ln m =n +e m =m ln m +e m,解得m =e ,k =1+ln e =2,故选B.6.(2019·某某质检)如图,在△ABC 中,AN →=23NC →,P 是BN 上一点,若AP →=tAB →+13AC →,则实数t 的值为( )A.23B.25C.16D.34 答案 C解析 由题意及图,AP →=AB →+BP →=AB →+mBN →=AB →+m (AN →-AB →)=mAN →+(1-m )AB →,又AN →=23NC →,∴AN →=25AC →,∴AP →=25mAC →+(1-m )AB →,又AP →=tAB →+13AC →,∴⎩⎪⎨⎪⎧1-m =t ,25m =13,解得m =56,t =16,故选C.7.(2019·某某某某一模)如图是某几何体的三视图,其中网格纸上小正方形的边长为1,则该几何体的体积为( )A .12B .15 C.403 D.503答案 D解析 其直观图为四棱锥E -ABCD ,由题意得V =13×⎝ ⎛⎭⎪⎫12×4×4+12×2×2×5=503.故选D.8.(2019·华师附中模拟)设F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,若在直线x =a 2c(其中c 2+b 2=a 2)上存在点P ,使线段PF 1的垂直平分线经过点F 2,则椭圆离心率的取值X 围是( )A.⎝ ⎛⎦⎥⎤0,22 B.⎝ ⎛⎦⎥⎤0,33 C.⎣⎢⎡⎭⎪⎫33,1 D.⎣⎢⎡⎭⎪⎫22,1 答案 C解析 由题意得F 1(-c,0),F 2(c,0),设点P ⎝ ⎛⎭⎪⎫a 2c ,m ,则由中点公式可得线段PF 1的中点K ⎝ ⎛⎭⎪⎫a 2-c 22c,12m ,∵线段PF 1的斜率与KF 2的斜率之积等于-1,即m -0a 2c +c ·12m -0a 2-c 22c-c =-1,∴m 2=-⎝ ⎛⎭⎪⎫a 2c +c ·⎝ ⎛⎭⎪⎫a 2c -3c ≥0,∴a 4-2a 2c 2-3c 4≤0,∴3e 4+2e 2-1≥0,∴e 2≥13或e 2≤-1(舍去),∴e ≥33.又椭圆的离心率0<e <1,故33≤e <1,故选C. 9.(2019·某某模拟)已知函数f (x )=⎩⎪⎨⎪⎧x e x,x ≤0,2-|x -1|,x >0,若函数g (x )=f (x )-m 有两个零点x 1,x 2,则x 1+x 2=( ) A .2 B .2或2+1eC .2或3D .2或3或2+1e答案 D解析 当x ≤0时,f ′(x )=(x +1)e x,当x <-1时,f ′(x )<0,故f (x )在(-∞,-1)上为减函数,当-1<x <0时,f ′(x )>0,故f (x )在(-1,0)上为增函数,所以当x ≤0时,f (x )的最小值为f (-1)=-1e.又在R 上,f (x )的图象如图所示,因为g (x )有两个不同的零点,所以方程f (x )=m 有两个不同的解,即直线y =m 与y =f (x )有两个不同交点且交点的横坐标分别为x 1,x 2,故1<m <2或m =0或m =-1e.若1<m <2,则x 1+x 2=2;若m =0,则x 1+x 2=3;若m =-1e ,则x 1+x 2=-1+3+1e =2+1e.综上,x 1+x 2的值为2或3或2+1e,故选D.10.(2019·某某模拟)如图,若在矩形OABC 中随机撒一粒豆子,则豆子落在图中阴影部分的概率为( )A .1-2πB .2πC .2π2D .1-2π2 答案 A解析 S 矩形=π×1=π,又⎠⎛0πsin x d x =-cos x ⎪⎪⎪π0=-(cosπ-cos0)=2,∴S 阴影=π-2,∴豆子落在图中阴影部分的概率为π-2π=1-2π.故选A .11.(2019·昌平期末)设点F 1,F 2分别为椭圆C :x 29+y 25=1的左、右焦点,点P 是椭圆C 上任意一点,若使得PF 1→·PF 2→=m 成立的点恰好是4个,则实数m 的值可以是( )A.12 B .3 C .5 D .8 答案 B解析 ∵点F 1,F 2分别为椭圆C :x 29+y 25=1的左、右焦点,即F 1(-2,0),F 2(2,0),a2=9,b 2=5,c 2=4,c =2,设P (x 0,y 0),PF 1→=(-2-x 0,-y 0),PF 2→=(2-x 0,-y 0),由PF 1→·PF 2→=m 可得x 2+y 20=m +4,又∵P 在椭圆上,即x 209+y 205=1,∴x 20=9m -94,要使得PF 1→·PF 2→=m 成立的点恰好是4个,则0<9m -94<9,解得1<m <5,∴m 的值可以是3.故选B.12.(2019·某某某某、某某二模)已知正四面体的中心与球心O 重合,正四面体的棱长为26,球的半径为5,则正四面体表面与球面的交线的总长度为( )A .4π B.82π C.122π D.12π 答案 A解析 ∵正四面体A -BCD 的中心与球心O 重合,正四面体的棱长为26,取CD 的中点E ,连接BE ,AE ,过A 作AF ⊥底面BCD ,交BE 于F ,则BE =AE =262-62=32,BF =23BE =22,AF =262-222=4,设正四面体内切球半径为r ,则(4-r )2=(22)2+r 2,解得正四面体内切球半径为r =1,∵球的半径为5,∴由球的半径知球被平面截得小圆半径为r 1=5-1=2,故球被正四面体一个平面截曲线为三段圆弧,且每段弧所对中心角为30°,∴正四面体表面与球面的交线的总长度为4×⎝ ⎛⎭⎪⎫3×30°360°×2π×2=4π.故选A . 第Ⅱ卷 (非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.(2019·某某质检)设x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,2x -y ≥0,x ≤2,则z =2x +3y 的最小值为________. 答案 8解析 画出不等式组⎩⎪⎨⎪⎧x -y +1≤0,2x -y ≥0,x ≤2表示的平面区域,如图阴影部分所示,由图形知,当目标函数z =2x +3y 过点A 时,z 取得最小值.由⎩⎪⎨⎪⎧x -y +1=0,2x -y =0,求得A (1,2),所以z =2x +3y 的最小值是2×1+3×2=8. 14.(2019·金山中学模拟)数列{a n }且a n =⎩⎪⎨⎪⎧1n 2+2n ,n 为奇数,sin n π4,n 为偶数,若S n 为数列{a n }的前n 项和,则S 2018=________.答案30282019解析 数列{a n}且a n=⎩⎪⎨⎪⎧1n 2+2n ,n 为奇数,sin n π4,n 为偶数,①当n 为奇数时,a n =1n 2+2n =12⎝ ⎛⎭⎪⎫1n -1n +2; ②当n 为偶数时,a n =sinn π4,所以S 2018=(a 1+a 3+a 5+…+a 2017)+(a 2+a 4+a 6+…+a 2018)=12⎝⎛⎭⎪⎫1-13+13-15+…+12017-12019+(1+0-1+…+0)=10092019+1=30282019. 15.(2019·某某二模)将多项式a 6x 6+a 5x 5+…+a 1x +a 0分解因式得(x -2)(x +2)5,则a 5=________.答案 8解析 (x -2)(x +2)5=(x 2-4)(x +2)4,(x +2)4展开式中的x 3系数为C 14·21=8.所以a 5=8.16.(2019·某某期末)已知函数f (x )=sin x ·cos2x (x ∈R ),则f (x )的最小值为________.答案 -1解析 函数f (x )=sin x ·cos2x =sin x (1-2sin 2x )=sin x -2sin 3x ,令t =sin x ∈[-1,1],则h (t )=t -2t 3,h ′(t )=1-6t 2, 当-1≤t <-66时,h ′(t )<0,h (t )在⎣⎢⎡⎭⎪⎫-1,-66上单调递减; 当-66≤t <66时,h ′(t )≥0,h (t )在⎣⎢⎡⎭⎪⎫-66,66上单调递增; 当66≤t ≤1时,h ′(t )≤0,h (t )在⎣⎢⎡⎦⎥⎤66,1上单调递减. 所以函数的最小值是h ⎝ ⎛⎭⎪⎫-66或h (1),h (1)=-1<h ⎝ ⎛⎭⎪⎫-66=-66-2⎝ ⎛⎭⎪⎫-663=-69, 故函数f (x )的最小值为-1.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:60分.17.(本小题满分12分)(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .设(sin B -sin C )2=sin 2A -sin B sin C .(1)求A ;(2)若2a +b =2c ,求sin C .解 (1)由已知得sin 2B +sin 2C -sin 2A =sinB sinC , 故由正弦定理得b 2+c 2-a 2=bc .由余弦定理得cos A =b 2+c 2-a 22bc =12.因为0°<A <180°,所以A =60°. (2)由(1)知B =120°-C ,由题设及正弦定理得2sin A +sin(120°-C )=2sin C , 即62+32cos C +12sin C =2sin C , 可得cos(C +60°)=-22. 因为0°<C <120°,所以sin(C +60°)=22, 故sin C =sin(C +60°-60°)=sin(C +60°)cos60°-cos(C +60°)sin60°=6+24. 18.(本小题满分12分)(2019·某某一模)小明在某某市某物流公司找到了一份派送员的工作,该公司给出了甲、乙两种日薪薪酬方案,其中甲方案:底薪100元,每派送一单奖励1元;乙方案:底薪140元,每日前55单没有奖励,超过55单的部分每单奖励12元.(1)请分别求出甲、乙两种薪酬方案中日薪y (单位:元)与派送单数n 的函数关系式;(2)根据该公司所有派送员100天的派送记录,得到了如图所示的派送量指标的频率分布直方图,并发现每名派送员的日平均派送单数满足以下条件:当某天的派送量指标在⎝ ⎛⎦⎥⎤2n -110,n 5(n =1,2,3,4,5)时,日平均派送量为(50+2n )单. 若将频率视为概率,回答下列问题:①根据以上数据,设一名派送员的日薪为Y (单位:元),试分别求出甲、乙两种方案中日薪Y 的分布列、数学期望及方差;②结合①中的数据,利用统计的知识,帮助小明分析,他选择哪种薪酬方案比较合适,并说明你的理由.(参考数据:0.62=0.36,1.42=1.96,2.62=6.76,3.42=11.56,3.62=12.96,4.62=21.16,15.62=243.36,20.42=416.16,44.42=1971.36)解 (1)甲方案中派送员日薪y (单位:元)与派送单数n 的函数关系式为y =100+n ,n ∈N .乙方案中派送员日薪y (单位:元)与派送单数n 的函数关系式为y =⎩⎪⎨⎪⎧140n ≤55,n ∈N ,12n -520n >55,n ∈N .(2)①由已知,在这100天中,该公司的一名派送员的日平均派送单数满足下表:派送单数 52 54 56 58 60 频率0.20.30.20.20.1所以Y 甲Y 甲 152 154 156 158 160 P0.20.30.20.20.1所以E (Y 甲)155.4,s 2甲=0.2×(152-155.4)2+0.3×(154-155.4)2+0.2×(156-155.4)2+0.2×(158-155.4)2+0.1×(160-155.4)2=6.44;Y 乙的分布列为Y 乙 140 152 176 200 P0.50.20.20.1所以E (Y 乙),s 2乙=0.5×(140-155.6)2+0.2×(152-155.6)2+0.2×(176-155.6)2+0.1×(200-155.6)2=404.64.②答案一:由①可知,E (Y 甲)<E (Y 乙),但两者相关不大,且s 2甲远小于s 2乙,即甲方案中日薪的波动相对较小,所以小明选择甲方案比较合适.答案二:由①可知,E (Y 甲)<E (Y 乙),即甲方案中日薪的期望小于乙方案中日薪的期望,所以小明选择乙方案比较合适.19.(本小题满分12分)(2019·某某调研)如图1,梯形ABCD 中,AB ∥CD ,过A ,B 分别作AE ⊥CD ,BF ⊥CD ,垂足分别为E ,F .AB =AE =2,CD =5,已知DE =1,将梯形ABCD 沿AE ,BF 同侧折起,得空间几何体ADE -BCF ,如图2.(1)若AF ⊥BD ,证明:DE ⊥平面ABFE ;(2)若DE ∥CF ,CD =3,线段AB 上存在一点P ,满足CP 与平面ACD 所成角的正弦值为520,求AP 的长. 解 (1)证明:由已知得四边形ABFE 是正方形,且边长为2,在题图2中,AF ⊥BE , 由已知得AF ⊥BD ,BE ∩BD =B ,∴AF ⊥平面BDE , 又DE ⊂平面BDE ,∴AF ⊥DE ,又AE ⊥DE ,AE ∩AF =A ,∴DE ⊥平面ABFE .(2)在题图2中,AE ⊥DE ,AE ⊥EF ,DE ∩EF =E ,即AE ⊥平面DEFC , 在梯形DEFC 中,过点D 作DM ∥EF 交CF 于点M ,连接CE ,由题意得DM =2,CM =1,由勾股定理可得DC ⊥CF ,则∠CDM =π6,CE =2,过E 作EG ⊥EF 交DC 于点G ,可知GE ,EA ,EF 两两垂直,以E 为坐标原点,以EA →,EF →,EG →分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则A (2,0,0),B (2,2,0),C (0,1,3),D ⎝ ⎛⎭⎪⎫0,-12,32,AC →=(-2,1,3),AD →=⎝⎛⎭⎪⎫-2,-12,32. 设平面ACD 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·AC →=0,n ·AD →=0,得⎩⎪⎨⎪⎧-2x +y +3z =0,-2x -12y +32z =0,取x =1得n =(1,-1,3), 设AP =m ,则P (2,m,0)(0≤m ≤2), 得CP →=(2,m -1,-3), 设CP 与平面ACD 所成的角为θ, sin θ=|cos 〈CP →,n 〉|=|m |5·7+m -12=520⇒m =23. ∴AP =23.20.(本小题满分12分)(2019·某某高考)如图,已知点F (1,0)为抛物线y 2=2px (p >0)的焦点.过点F 的直线交抛物线于A ,B 两点,点C 在抛物线上,使得△ABC 的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记△AFG ,△CQG 的面积分别为S 1,S 2.(1)求p 的值及抛物线的准线方程; (2)求S 1S 2的最小值及此时点G 的坐标. 解 (1)由题意得p2=1,即p =2.所以抛物线的准线方程为x =-1.(2)设A (x A ,y A ),B (x B ,y B ),C (x C ,y C ),重心G (x G ,y G ).令y A =2t ,t ≠0,则x A =t 2.由于直线AB 过F ,故直线AB 的方程为x =t 2-12ty +1,代入y 2=4x ,得y 2-2t 2-1ty -4=0,故2ty B =-4,即y B =-2t,所以B ⎝ ⎛⎭⎪⎫1t 2,-2t .又x G =13(x A +x B +x C ),y G =13(y A +y B +y C )及重心G 在x 轴上,得2t -2t +y C =0,得C ⎝ ⎛⎭⎪⎫⎝ ⎛⎭⎪⎫1t -t 2,2⎝ ⎛⎭⎪⎫1t -t ,G ⎝ ⎛⎭⎪⎫2t 4-2t 2+23t 2,0.所以直线AC 的方程为y -2t =2t (x -t 2), 得Q (t 2-1,0).由于Q 在焦点F 的右侧,故t 2>2.从而 S 1S 2=12|FG |·|y A |12|QG |·|y C | =⎪⎪⎪⎪⎪⎪2t 4-2t 2+23t 2-1·|2t |⎪⎪⎪⎪⎪⎪t 2-1-2t 4-2t 2+23t 2·⎪⎪⎪⎪⎪⎪2t -2t =2t 4-t 2t 4-1=2-t 2-2t 4-1. 令m =t 2-2,则m >0,S 1S 2=2-m m 2+4m +3=2-1m +3m+4≥2-12 m ·3m+4=1+32. 当m =3时,S 1S 2取得最小值1+32,此时G (2,0). 21.(本小题满分12分)(2019·某某某某一模)已知函数f (x )=ln x -ax 2+(2-a )x ,a ∈R .(1)讨论函数f (x )的单调性;(2)当a <-12时,若对于任意x 1,x 2∈(1,+∞)(x 1<x 2),都存在x 0∈(x 1,x 2),使得f ′(x 0)=f x 2-f x 1x 2-x 1,证明:x 1+x 22<x 0.解 (1)由题意得f ′(x )=1x-2ax +(2-a )=-2x +1ax -1x,x >0,当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,∴f (x )在(0,+∞)上单调递增; 当a >0时,令f ′(x )>0,则0<x <1a ;令f ′(x )<0,则x >1a.∴f (x )在⎝⎛⎭⎪⎫0,1a 上单调递增,在⎝ ⎛⎭⎪⎫1a ,+∞上单调递减.(2)证明:∵当a <-12时,f x 2-f x 1x 2-x 1=1x 2-x 1ln x 2x 1-a (x 2+x 1)+(2-a ),f ′(x 0)=1x 0-2ax 0+(2-a ),∴1x 2-x 1ln x 2x 1-a (x 2+x 1)=1x 0-2ax 0, ∴f ′⎝ ⎛⎭⎪⎫x 1+x 22-f ′(x 0)=2x 2+x 1-a (x 2+x 1)-⎝ ⎛⎭⎪⎫1x 0-2ax 0=2x 2+x 1-1x 2-x1ln x 2x 1=1x 2-x 12x 2-x 1x 2+x 1-ln x 2x 1=1x 2-x 1⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x 2x 1-1x2x 1+1-ln x 2x 1, 令t =x 2x 1,g (t )=2t -1t +1-ln t ,t >1,则g ′(t )=-t -12t t +12<0,∴g (t )<g (1)=0,∴f ′⎝ ⎛⎭⎪⎫x 1+x 22-f ′(x 0)<0,∴f ′⎝⎛⎭⎪⎫x 1+x 22<f ′(x 0),设h (x )=f ′(x )=1x-2ax +(2-a ),x >1, 则h ′(x )=-1x2-2a >-1+1=0,∴h (x )=f ′(x )在(1,+∞)上单调递增, ∴x 1+x 22<x 0.(二)选考题:10分.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)[选修4-4:坐标系与参数方程](2019·某某某某一中三模)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+t cos α,y =t sin α(其中t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ(1-cos2θ)=8cos θ.(1)求l 和C 的直角坐标方程;(2)若l 与C 相交于A ,B 两点,且|AB |=8,求α.解 (1)当α=π2时,l :x =1.当α≠π2时,l :y =tan α·(x -1).由ρ(1-cos2θ)=8cos θ得2ρ2sin 2θ=8ρcos θ,因为x =ρcos θ,y =ρsin θ, 所以C 的直角坐标方程为y 2=4x .(2)将直线l 的参数方程代入曲线C 的直角坐标方程,得(sin 2α)t 2-(4cos α)t -4=0,则t 1+t 2=4cos αsin 2α,t 1t 2=-4sin 2α, 因为|AB |=|t 1-t 2|=t 1+t 22-4t 1t 2=4sin 2α=8, 所以sin α=22或-22,因为0<α<π,所以sin α=22,故α=π4或3π4. 23.(本小题满分10分)[选修4-5:不等式选讲](2019·某某某某一中三模)设函数f (x )=|2x +a |-|x -2|(a ∈R ,x ∈R ). (1)当a =-1时,求不等式f (x )>0的解集;(2)若在x ∈R 上f (x )≥-1恒成立,某某数a 的取值X 围.解 (1)a =-1时,f (x )>0可得|2x -1|>|x -2|,即(2x -1)2>(x -2)2,化简得(3x -3)(x +1)>0,所以不等式f (x )>0的解集为(-∞,-1)∪(1,+∞). (2)①当a <-4时,f (x )=⎩⎪⎨⎪⎧-x -a -2,x <2,-3x -a +2,2≤x ≤-a 2,x +a +2,x >-a2,由函数单调性可得f (x )min =f ⎝ ⎛⎭⎪⎫-a 2=a2+2≥-1,解得-6≤a <-4;②当a =-4时,f (x )=|x -2|,f (x )min =0≥-1,所以a =-4符合题意;③当a >-4时,f (x )=⎩⎪⎨⎪⎧-x -a -2,x <-a2,3x +a -2,-a 2≤x ≤2,x +a +2,x >2,由函数单调性可得,f (x )min=f ⎝ ⎛⎭⎪⎫-a 2=-a 2-2≥-1,解得-4<a ≤-2.综上,实数a 的取值X 围为[-6,-2].。

北京高考 2019年朝阳区高三一模数学试卷(理)及答案

北京高考 2019年朝阳区高三一模数学试卷(理)及答案

2019北京市朝阳区高三一模数 学(理)2019.3本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.已知集合{|1}A x x =>,集合2{|4}B x x =<,则A B =IA .{|2}x x >-B .{|12}x x <<C .{|12}x x ≤<D .R2.在复平面内,复数12iiz +=对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限3.41()x x-的展开式中的常数项为A .12-B .6-C .6D . 124.若函数22,1,()log ,1x x f x x x ⎧<=⎨-≥⎩, 则函数()f x 的值域是A .(,2)-∞B .(,2]-∞C .[0,)+∞D .(,0)(0,2)-∞U5.如图,函数()f x 的图象是由正弦曲线或余弦曲线经过变换得到的,则()f x 的解析式可以是A .()sin(2)3f x x π=+B .()sin(4)6f x x π=+C .()cos(2)3f x x π=+D .()cos(4)6f x x π=+12π1-1O 3π xy712π6.记不等式组0,3,y y x y kx ≥⎧⎪≤+⎨⎪≤⎩所表示的平面区域为D .“点(1,1)D -∈”是“1k ≤-”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件 7.某三棱锥的三视图如图所示(网格纸上小正方形的边长为1),则该三棱锥的体积为 A .4B .2C .83D .438.某单位周一、周二、周三开车上班的职工人数分别是14,10,8.若这三天中至少有一天开车上班的职工人数是20,则这三天都开车上班的职工人数至多是A .5B .6C .7D .8第二部分(非选择题 共110分)二、填空题:本大题共6小题,每小题5分,共30分.把答案填在答题卡上. 9.双曲线2214x y -=的右焦点到其一条渐近线的距离是 .10.执行如图所示的程序框图,则输出的x 值为 .11.在极坐标系中,直线cos 1ρθ=与圆4cos ρθ=相交于,A B 两点,则AB =___. 12.能说明“函数()f x 的图象在区间[]0,2上是一条连续不断的曲线.若(0)(2)0f f ⋅>,则()f x 在(0,2)内无零点”为假命题的一个函数是 .13.天坛公园是明、清两代皇帝“祭天”“祈谷”的场所.天坛公园中的圜丘台共有三层(如图1所示),上层坛的中心是一块呈圆形的大理石板,从中心向外围以扇面形石(如图2所示).上层坛从第一环至第九环共有九环,中层坛从第十环至正(主)视图俯视图侧(左)视图第十八环共有九环,下层坛从第十九环至第二十七环共有九环;第一环的扇面形石有9块,从第二环起,每环的扇面形石块数比前一环多9块,则第二十七环的扇面形石块数是______;上、中、下三层坛所有的扇面形石块数是 .14.在平面内,点A是定点,动点C B ,满足||||1AB AC ==u u u r u u u u r ,0AB AC ⋅=u u u r u u u r ,则集合{=+,12}|P AP AB AC λλ≤≤u u u r u u u r u u u r所表示的区域的面积是 .三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题满分13分)在ABC △中,21a =,120A ∠=︒,ABC △的面积等于3,且b c <. (Ⅰ)求b 的值; (Ⅱ)求cos2B 的值. 16.(本小题满分13分)某部门在同一上班高峰时段对甲、乙两地铁站各随机抽取了50名乘客,统计其乘车等待时间(指乘客从进站口到乘上车的时间,乘车等待时间不超过40分钟).将统计数据按[5,10),[10,15),[15,20),,[35,40]L 分组,制成频率分布直方图:假设乘客乘车等待时间相互独立.(Ⅰ)在上班高峰时段,从甲站的乘客中随机抽取1人,记为A ;从乙站的乘客中随机抽取1人,记为B .用频率估计概率,求“乘客A ,B 乘车等待时间都小于20分钟”的概率;乘车等待时间(分钟)0.036乙站O400.0480.0080.0160.052O405101520253035频率/组距0.0480.0120.0280.0360.0120.040甲站频率/组距乘车等待时间(分钟)3530252015105图1图2(Ⅱ)从上班高峰时段,从乙站乘车的乘客中随机抽取3人,X 表示乘车等待时间小于20分钟的人数,用频率估计概率,求随机变量X 的分布列与数学期望. 17.(本小题满分14分)如图,在多面体ABCDEF 中,平面ADEF ⊥平面ABCD .四边形ADEF 为正方形,四边形ABCD 为梯形,且//AD BC ,90BAD ∠=︒,1AB AD ==,3BC =.(Ⅰ)求证:AF CD ⊥;(Ⅱ)求直线BF 与平面CDE 所成角的正弦值;(Ⅲ)线段BD 上是否存在点M ,使得直线//CE 平面AFM ? 若存在,求BMBD的值;若不存在,请说明理由.18.(本小题满分13分)已知函数ln()()ax f x x=(R a ∈且0)a ≠. (Ⅰ)当1a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (Ⅱ)当1a =-时,求证:()1f x x ≥+; (Ⅲ)讨论函数()f x 的极值.19.(本小题满分14分)已知点00(,)M x y 为椭圆22:12x C y +=上任意一点,直线00:22l x x y y +=与圆22(1)6x y -+=交于,A B 两点,点F 为椭圆C 的左焦点.(Ⅰ)求椭圆C 的离心率及左焦点F 的坐标; (Ⅱ)求证:直线l 与椭圆C 相切;(Ⅲ)判断AFB ∠是否为定值,并说明理由.EDCBA F20.(本小题满分13分)在无穷数列{}n a 中,12,a a 是给定的正整数,21n n n a a a ++=-,N n ∈*. (Ⅰ)若123,1a a ==,写出910100,,a a a 的值; (Ⅱ)证明:数列{}n a 中存在值为0的项;(Ⅲ)证明:若12,a a 互质,则数列{}n a 中必有无穷多项为1.数学试题答案一、选择题:(本题满分40分)二、填空题:(本题满分30分)三、解答题:(本题满分80分) 15. (本小题满分13分)解:(Ⅰ)由已知得2221=sin 2=2cos120.S bc A b c bc ⎧⎪⎨⎪+-︒⎩整理得22=4,=17.bc b c ⎧⎨+⎩ 解得=1,=4b c ⎧⎨⎩,或=4,=1.b c ⎧⎨⎩ 因为b c <,所以1b =.………………………………………………….8分(Ⅱ)由正弦定理sin sin a bA B=, 即sin 14B =.所以2213cos 2=12sin 11414B B -=-= ……………………………….13分 16.(本小题满分13分)解:(Ⅰ)设M 表示事件“乘客A 乘车等待时间小于20分钟”,N 表示事件“乘客B 乘车等待时间小于20分钟”,C 表示事件“乘客A,B 乘车等待时间都小于20分钟”.由题意知,乘客A 乘车等待时间小于20分钟的频率为0.0120.0400.048)50.5(++⨯=,故()P M 的估计值为0.5.乘客B 乘车等待时间小于20分钟的频率为0.0160.0280.036)50.4(++⨯=,故()P N 的估计值为0.4.又121()()()()255P C P MN P M P N ==⋅=⨯=. 故事件C 的概率为15.………………………………………………………….6分(Ⅱ)由(Ⅰ)可知,乙站乘客乘车等待时间小于20分钟的频率为0.4,所以乙站乘客乘车等待时间小于20分钟的概率为25. 显然,X 的可能取值为0,1,2,3且2(3,)5~X B .所以033327(0)()5125P X C ===;1232354(1)()55125P X C ==⋅=; 2232336(2)()55125P X C ==⋅=;33328(3)()5125P X C ===. 故随机变量X 的分布列为26355EX =⨯= .……………….13分 17.(本小题满分14分)解:(Ⅰ)证明:因为ADEF 为正方形,所以AF AD ⊥.又因为平面ADEF ⊥平面ABCD ,且平面ADEF I 平面ABCD AD =, 所以AF ⊥平面ABCD .所以AF CD ⊥.………………4分(Ⅱ)由(Ⅰ)可知,AF ⊥平面ABCD ,所以AF AD ⊥,AF AB ⊥. 因为90BAD ∠=︒,所以,,AB AD AF 两两垂直.分别以,,AB AD AF 为x 轴,y 轴,z 轴建立空间直角坐标系(如图). 因为1AB AD ==,3BC =,所以(0,0,0),(1,0,0),(1,3,0),(0,1,0),(0,1,1),(0,0,1)A B C D E F ,所以(1,0,1),(1,2,0),(0,0,1)BF DC DE =-==u u u r u u u r u u u r.设平面CDE 的一个法向量为(,,)x y z =n ,则0,0.DC DE ⎧⋅=⎪⎨⋅=⎪⎩u u u r u u u rn n 即20,0. x y z +=⎧⎨=⎩ 令2x =,则1y =-, 所以(2,1,0)=-n .设直线BF 与平面CDE 所成角为θ,则|2(1)|10sin |cos ,|552BF θ⨯-=〈〉==⨯u u u r n .……………….9分 (Ⅲ)设( (01])BMBDλλ=∈,, 设()111,,M x y z ,则()1111,,(1,1,0)x y z λ-=-, 所以1111,,0x y z λλ=-==,所以()1,,0M λλ-,所以()1,,0AM λλ=-u u u u r.设平面AFM 的一个法向量为000(,,)x y z =m ,则0,0.AM AF ⎧⋅=⎪⎨⋅=⎪⎩u u u u r u u u rm m 因为()0,0,1AF =u u u r ,所以000(1)0,0. x y z λλ-+=⎧⎨=⎩令0x λ=,则01y λ=-,所以(,1,0)λλ=-m .zD y Dx DEDCB A FM在线段BD 上存在点M ,使得//CE 平面AFM 等价于存在[0,1]λ∈,使得0CE ⋅=u u u rm .因为()1,2,1CE =--u u u r,由0CE ⋅=u u u r m ,所以2(1)0λλ---=, 解得2[0,1]3λ=∈, 所以线段BD 上存在点M ,使得//CE 平面AFM ,且23BM BD =.……………….14分 18. (本小题满分13分)解:(Ⅰ)当1a =时,ln ()x f x x =.所以21ln ()xf x x-'=. 因为(1)1,(1)0f f '==,所以曲线()y f x =在(1,(1))f 处的切线方程为1y x =-.……………….3分(Ⅱ)当1a =-时,ln()()x f x x-=. 函数()f x 的定义域为(,0)-∞.不等式()1f x x ≥+成立⇔ln()1x x x-≥+成立⇔2ln()0x x x ---≤成立. 设2()ln()g x x x x =---((,0))x ∈-∞,则2121(21)(1)()21x x x x g x x x x x--+-++'=--==.当x 变化时,()g x ',()g x 变化情况如下表:所以()(1)g x g ≤-.因为(1)0g -=,所以()0g x ≤,所以ln()1x x x-≥+.………………………………………………………………….8分 (Ⅲ)求导得21ln()()ax f x x -'=. 令()0f x '=,因为0a ≠可得ex a=. 当0a >时,()f x 的定义域为()0,+∞.当x 变化时,()f x ',()f x 变化情况如下表:此时()f x 有极大值e ()eaf a =,无极小值. 当0a <时,()f x 的定义域为(),0-∞,当x 变化时,()f x ',()f x 变化情况如下表:此时()f x 有极小值e ()eaf a =,无极大值.……………………………………………….13分 19. (本小题满分14分)解:(Ⅰ)由题意a =1b =,1c ==所以离心率c e a ==,左焦点(1,0)F -.………………………………………….4分 (Ⅱ)当00y =时直线l 方程为x =或x =l 与椭圆C 相切.当00y ≠时,由22001,222x y x x y y ⎧+=⎪⎨⎪+=⎩得2222000(2)4440y x x x x y +-+-=, 由题知,220012x y +=,即220022x y +=,所以 22220000(4)4(2)(44)x y x y ∆=-+-=220016(22)0x y +-=. 故直线l 与椭圆C 相切.………………………………………………………….8分(Ⅲ)设11(,)A x y ,22(,)B x y ,当00y =时,12x x =,12y y =-,1x =2211(1)FA FB x y ⋅=+-u u u r u u u r 2211(1)6(1)x x =+-+-21240x =-=, 所以FA FB ⊥u u u r u u u r ,即90AFB ∠=o .当00y ≠时,由2200(1)6,22x y x x y y ⎧-+=⎪⎨+=⎪⎩ 得22220000(1)2(2)2100y x y x x y +-++-=, 则20012202(2)1y x x x y ++=+,2012202101y x x y -=+, 2001212122220001()42x x y y x x x x y y y =-++2002054422x x y --+=+. 因为1122(1,)(1,)FA FB x y x y ⋅=+⋅+u u u r u u u r1212121x x x x y y =++++ 2222000000220042084225442222y y x y x x y y -++++--+=+++ 2200205(2)10022x y y -++==+. 所以FA FB ⊥u u u r u u u r ,即90AFB ∠=o .故AFB ∠为定值90o . ………………………………………………………….14分20. (本小题满分13分)解:(I)9101000,1,1a a a ===..………………………………………………………….3分 (II)反证法:假设i ∀,0.i a ≠由于21n n n a a a ++=-,记1,2max{}M a a =.则12,a M a M ≤≤. 则32101a a a M <=-≤-,43201a a a M <=-≤-,54302a a a M <=-≤-,65402a a a M <=-≤-,L ,220016[2(1)]x y =--依次递推,有76503a a a M <=-≤-,87603a a a M <=-≤-…,则由数学归纳法易得21,.k a M k k *+≤-∈N当k M >时,210,k a +<与210k a +>矛盾.故存在i ,使=0.i a所以,数列{}n a 必在有限项后出现值为0的项.………………………………………….8分 (III)首先证明:数列{}n a 中必有“1”项.用反证法,假设数列{}n a 中没有“1”项,由(II)知,数列{}n a 中必有“0”项,设第一个“0”项是m a (3)m ≥,令1m a p -=,1,p p >∈N *,则必有2m a p -=,于是,由1233||||m m m m p a a a p a ----==-=-,则32m a p -=,因此p 是3m a -的因数, 由2344|||2|m m m m p a a a p a ----==-=-,则4m a p -=或3p ,因此p 是4m a -的因数. 依次递推,可得p 是12,a a 的因数,因为1p >,所以这与12,a a 互质矛盾.所以,数列{}n a 中必有“1”项. 其次证明数列{}n a 中必有无穷多项为“1”.假设数列{}n a 中的第一个“1”项是k a ,令1k a q -=,1,q q >∈N *, 则111k k k a a a q +-=-=-,若1k a +=11q -=,则数列中的项从k a 开始,依次为“1,1,0”的无限循环,故有无穷多项为1;若111k a q +=->,则213212,1k k k k k k a a a q a a a +++++=-=-=-=,若221k a q +=-=,则进入“1,1,0”的无限循环,有无穷多项为1;若221k a q +=->,则从k a 开始的项依次为1,1,2,1,3,4,1q q q q ----,……,必出现连续两个“1”项,从而进入“1,1,0”的无限循环,故必有无穷多项为1.……13分。

2019高考理科数学模拟试题(二)

2019高考理科数学模拟试题(二)

2019高考理科数学模拟试题(二)考试时间:120分钟注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、选择题(本题共12小题,每小题5分,共60分,每小题只有一个选项符合题意)1.已知集合A={x|x2﹣4x+3≤0 },B=(1,3],则A∩B=()A.[1,3]B.(1,3]C.[1,3) D.(1,3)2.若2﹣i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q∈R),则q的值为()A.﹣5 B.5 C.﹣3 D.3,1],ax−1≤0,则p是3.已知p:函数f(x)=(a−1)x为增函数,q:∀x∈[12¬q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.2017年高考考前第二次适应性训练考试结束后,对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布N(95,82)的密度曲线非常拟合.据此估计:在全市随机柚取的4名高三同学中,恰有2名同学的英语成绩超过95分的概率是()A.B.C.D.5.设函数f(x)=2cos(ωx+φ)对任意的x∈R,都有,若函数g(x)=3sin(ωx+φ)﹣2,则的值是()A.1 B.﹣5或3 C.﹣2 D.6.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.16 B.20 C.24 D.487.已知如图是一个空间几何体的三视图,则该几何体的外接球的表面积为()A.8πB.16πC.32πD.64π8.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[﹣1,0]上单调递减,设a=f(﹣2.8),b=f(﹣1.6),c=f(0.5),则a,b,c大小关系是()A.a>b>c B.c>a>b C.b>c>a D.a>c>b9.在二项式(2x+a)5的展开式中,含x2项的系数等于320,则=()A.e2﹣e+3 B.e2+4 C.e+1 D.e+210.过平面区域内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,则当α最小时cosα的值为()A.B.C.D.11.双曲线(a≥1,b≥1)的离心率为2,则的最小值为()A.B.C.2 D.12.定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)−3m,则=(x﹣1)2,且当x≤1时,恒有f'(x)+2<x.若f(m)−f(1−m)≥32实数m的取值范围是()A.(﹣∞,1]B.C.[1,+∞)D.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.花园小区内有一块三边长分别是5m,5m,6m的三角形绿化地,有一只小狗在其内部玩耍,若不考虑小狗的大小,则在任意指定的某时刻,小狗与三角形三个顶点的距离均超过2m的概率是.14.已知O为原点,点P为直线2x+y﹣2=0上的任意一点.非零向量=(m,n).若•恒为定值,则=.15.对于数列{a n},定义H n=为{a n}的“优值”,现在已知某数列{a n}的“优值”H n=2n+1,记数列{a n﹣kn}的前n项和为S n,若S n≤S6对任意的n 恒成立,则实数k的取值范围是.16.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤),当x=﹣时函数f(x)能取得最小值,当x=时函数y=f(x)能取得最大值,且f(x)在区间(,)上单调.则当ω取最大值时φ的值为.三、解答题(共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(12分)设等差数列{a n}的前n项和为S n,a5+a6=24,S11=143,数列{b n}的前n项和为T n,满足.(Ⅰ)求数列{a n}的通项公式及数列的前n项和;(Ⅱ)判断数列{b n}是否为等比数列?并说明理由.18.(12分)某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过本地养鱼场年利润率的调研,得到如图所示年利润率的频率分布直方图.对远洋捕捞队的调研结果是:年利润率为60%的可能性为0.6,不赔不赚的可能性为0.2,亏损30%的可能性为0.2.假设该公司投资本地养鱼场的资金为x(x≥0)千万元,投资远洋捕捞队的资金为y(y≥0)千万元.(1)利用调研数据估计明年远洋捕捞队的利润ξ的分布列和数学期望Eξ.(2)为确保本地的鲜鱼供应,市政府要求该公司对本地养鱼场的投资不得低于远洋捕捞队的一半.适用调研数据,给出公司分配投资金额的建议,使得明年两个项目的利润之和最大.19.(12分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,点E,F分别是PB,DC的中点.(1)求证:EF∥平面PAD;(2)求EF与平面PDB所成角的正弦值.20.(12分)如图,已知椭圆C:,其左右焦点为F1(﹣1,0)及F2(1,0),过点F1的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|、|F1F2|、|AF2|构成等差数列.(1)求椭圆C的方程;(2)记△GF1D的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.21.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.23.(10分)设函数f(x)=|2x﹣7|+1.(1)求不等式f(x)≤x的解集;(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.2018高考理科数学模拟试题(二)参考答案与试题解析一.选择题(共12小题)1.已知集合A={x|x2﹣4x+3≤0 },B=(1,3],则A∩B=()A.[1,3]B.(1,3]C.[1,3) D.(1,3)【分析】先分别求出集合A,B,由此能求出A∩B.【解答】解:∵集合A={x|x2﹣4x+3≤0 }={x|1≤x≤3},B=(1,3],∴A∩B=(1,3].故选:B.【点评】本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.若2﹣i是关于x的方程x2+px+q=0的一个根(其中i为虚数单位,p,q∈R),则q的值为()A.﹣5 B.5 C.﹣3 D.3【分析】直接利用实系数一元二次方程的虚根成对原理及根与系数的关系求解.【解答】解:∵2﹣i是关于x的实系数方程x2+px+q=0的一个根,∴2+i是关于x的实系数方程x2+px+q=0的另一个根,则q=(2﹣i)(2+i)=|2﹣i|2=5.故选:B.【点评】本题考查实系数一元二次方程的虚根成对原理,考查复数模的求法,是基础题.,1],ax−1≤0,则p是3.已知p:函数f(x)=(a−1)x为增函数,q:∀x∈[12¬q的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】p:函数f(x)=(a﹣1)x为增函数,则a﹣1>1,解得a范围.,1],ax−1≤0,a.即可判断出关系.q:∀x∈[12【解答】解:p:函数f(x)=(a﹣1)x为增函数,则a﹣1>1,解得a>2.,1],ax−1≤0,a=1.¬q:a>1.q:∀x∈[12则p是¬q的充分不必要条件.故选:A.【点评】本题考查了函数的单调性、不等式的性质与解法、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.4.2017年高考考前第二次适应性训练考试结束后,对全市的英语成绩进行统计,发现英语成绩的频率分布直方图形状与正态分布N(95,82)的密度曲线非常拟合.据此估计:在全市随机柚取的4名高三同学中,恰有2名同学的英语成绩超过95分的概率是()A.B.C.D.【分析】由题意,英语成绩超过95分的概率是,利用相互独立事件的概率公式,即可得出结论.【解答】解:由题意,英语成绩超过95分的概率是,∴在全市随机柚取的4名高三同学中,恰有2名冋学的英语成绩超过95分的概率是=,故选:D.【点评】本题考查正态分布,考查相互独立事件的概率公式,比较基础.5.设函数f(x)=2cos(ωx+φ)对任意的x∈R,都有,若函数g(x)=3sin(ωx+φ)﹣2,则的值是()A.1 B.﹣5或3 C.﹣2 D.【分析】根据f(+x)=f(﹣x)确定x=是函数f(x)的对称轴,再由正余弦函数在其对称轴上取最值,求得g()的值.【解答】解:函数f(x)=2cos(ωx+φ)对任意的x∈R,都有,∴函数f(x)的一条对称轴方程为x=,且x=时函数f(x)过最高点或最低点;∴cos(ω+φ)=±1,解得ω+φ=kπ,k∈Z;∴g()=3sin(ω+φ)﹣2=3sinkπ﹣2=﹣2.故选:C.【点评】本题主要考查了三角函数的图象与性质的应用问题,注意正余弦函数在其对称轴上取最值.6.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)()A.16 B.20 C.24 D.48【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:C.【点评】本题考查循环框图的应用,考查了计算能力,注意判断框的条件的应用,属于基础题.7.已知如图是一个空间几何体的三视图,则该几何体的外接球的表面积为()A.8πB.16πC.32πD.64π【分析】由三视图判断出几何体是直三棱锥,且底面是等腰直角三角形,求出对应的高和底面的边长,根据它的外接球是对应直三棱锥的外接球,由外接球的结构特征,求出它的半径,代入表面积公式进行求解.【解答】解:由三视图知该几何体是直三棱锥,且底面是等腰直角三角形,直三棱锥的高是2,底面的直角边长为,斜边为2,则直三棱锥的外接球是对应直三棱柱的外接球,设几何体外接球的半径为R,因底面是等腰直角三角形,则底面外接圆的半径为1,∴R2=1+1=2,故外接球的表面积是4πR2=8π,故选A.【点评】本题考查球的表面积的求法,几何体的三视图与直观图的应用,考查空间想象能力,计算能力.8.定义在R上的偶函数f(x)满足f(x+2)=f(x),且在[﹣1,0]上单调递减,设a=f(﹣2.8),b=f(﹣1.6),c=f(0.5),则a,b,c大小关系是()A.a>b>c B.c>a>b C.b>c>a D.a>c>b【分析】由条件可得函数的周期为2,再根据a=f(﹣2.8)=f(﹣0.8),b=f(﹣1.6)=f(0.4)=f(﹣0.4),c=f(0.5)=f(﹣0.5),﹣0.8<﹣0.5<﹣0.4,且函数f(x)在[﹣1,0]上单调递减,可得a,b,c大小关系【解答】解:∵偶函数f(x)满足f(x+2)=f(x),∴函数的周期为2.由于a=f(﹣2.8)=f(﹣0.8),b=f(﹣1.6)=f(0.4)=f(﹣0.4),c=f(0.5)=f(﹣0.5),﹣0.8<﹣0.5<﹣0.4,且函数f(x)在[﹣1,0]上单调递减,∴a>c>b,故选:D【点评】本题主要考查函数的单调性、奇偶性、周期性的应用,体现了转化的数学思想,属于中档题.9.在二项式(2x+a)5的展开式中,含x2项的系数等于320,则=()A.e2﹣e+3 B.e2+4 C.e+1 D.e+2【分析】二项式(2x+a)5的展开式中,含x2项,利用通项公式求出含有x2的项,可得系数,从而求出a,利用定积分公式求解即可.【解答】解:二项式(2x+a)5的展开式中,含x2项,由通项公式,∵含x2项,∴r=3.∴含有x2的项的系数为=320,可得:a=2.则==e2﹣e+22﹣1=e2﹣e+3.故选:A.【点评】本题主要考查二项式定理的通项公式的应用,以及定积分公式的计算.属于基础题10.过平面区域内一点P作圆O:x2+y2=1的两条切线,切点分别为A,B,记∠APB=α,则当α最小时cosα的值为()A.B.C.D.【解答】解:作出不等式组对应的平面区域如图,要使α最小,则P到圆心的距离最大即可,由图象可知当P位于点D时,∠APB=α最小,由,解得,即D(﹣4,﹣2),此时|OD|=,|OA|=1,则,即sin=,此时cosα=1﹣2sin2=1﹣2()2=1﹣=,故选:C11.双曲线(a≥1,b≥1)的离心率为2,则的最小值为()A.B.C.2 D.【分析】根据双曲线(a≥1,b≥1)的离心率为2,可得a,b的关系,代入化简,利用单调性,即可求得的最小值.【解答】解:∵双曲线(a≥1,b≥1)的离心率为2,∴∴∴b2=3a2∴==∵a≥1∴在[1,+∞)上单调增∴≥故选A.【点评】本题考查双曲线的几何性质,考查函数的单调性,正确运用双曲线的几何性质是关键.12.定义在R上的可导函数f(x),其导函数记为f'(x),满足f(x)+f(2﹣x)−3m,则=(x﹣1)2,且当x≤1时,恒有f'(x)+2<x.若f(m)−f(1−m)≥32实数m的取值范围是()A.(﹣∞,1]B.C.[1,+∞)D.【分析】令g(x)=f(x)+2x﹣,求得g(x)+g(2﹣x)=3,则g(x)关于(1,3)中心对称,则g(x)在R上为减函数,再由导数可知g(x)在R上为−3m为g(m)≥g(1﹣m),利用单调性求解.减函数,化f(m)−f(1−m)≥32【解答】解:令g(x)=f(x)+2x﹣,g′(x)=f′(x)+2﹣x,当x≤1时,恒有f'(x)+2<x.∴当x≤1时,g(x)为减函数,而g(2﹣x)=f(2﹣x)+2(2﹣x)﹣,∴f(x)+f(2﹣x)=g(x)﹣2x++g(2﹣x)﹣2(2﹣x)+=g(x)+g(2﹣x)+x2﹣2x﹣2=x2﹣2x+1.∴g(x)+g(2﹣x)=3.则g(x)关于(1,)中心对称,则g(x)在R上为减函数,−3m,得f(m)+2m≥f(1﹣m)+2(1﹣m)﹣,由f(m)−f(1−m)≥32即g(m)≥g(1﹣m),∴m≤1﹣m,即m.∴实数m的取值范围是(﹣∞,].故选:D.【点评】本题考查利用导数研究函数的单调性,构造函数是解答该题的关键,是压轴题.二.填空题(共4小题)13.花园小区内有一块三边长分别是5m,5m,6m的三角形绿化地,有一只小狗在其内部玩耍,若不考虑小狗的大小,则在任意指定的某时刻,小狗与三角形三个顶点的距离均超过2m的概率是1﹣.【分析】根据题意,记“小狗距三角形三个顶点的距离均超过2”为事件A,则其对立事件为“小狗与三角形的三个顶点的距离不超过2”,先求得边长为4的等边三角形的面积,再计算事件构成的区域面积,由几何概型可得P(),进而由对立事件的概率性质,可得答案【解答】解:记“小狗距三角形三个顶点的距离均超过2”为事件A,则其对立事件为“小狗与三角形的三个顶点的距离不超过2”,三边长分别为5m、5m、6m的三角形的面积为S=×6×4=12,则事件构成的区域可组合成一个半圆,其面积为S()=π×22=2π,由几何概型的概率公式得P()=;P(A)=1﹣P()=1﹣;故答案为:1﹣【点评】本题考查几何概型,涉及对立事件的概率性质;解题时关键是求出小狗与三角形三个顶点的距离均不超过2m区域面积.14.已知O为原点,点P为直线2x+y﹣2=0上的任意一点.非零向量=(m,n).若•恒为定值,则=2.【分析】设点P(x,y),由P为直线2x+y﹣2=0上的任意一点,用x表示,写出•的解析式;根据•恒为定值,x的系数为0,求出m、n的关系,可得的值.【解答】解:设点P(x,y),∵点P为直线2x+y﹣2=0上的任意一点,∴y=2﹣2x,∴=(x,2﹣2x);又非零向量=(m,n),∴•=mx+n(2﹣2x)=(m﹣2n)x+2n恒为定值,∴m﹣2n=0,∴=2.故答案为:2.【点评】本题考查了平面向量数量积的定义与应用问题,是基础题.15.对于数列{a n},定义H n=为{a n}的“优值”,现在已知某数列{a n}的“优值”H n=2n+1,记数列{a n﹣kn}的前n项和为S n,若S n≤S6对任意的n 恒成立,则实数k的取值范围是.【分析】由题意,H n==2n+1,则a1+2a2+…+2n﹣1a n=n•2n+1,n≥2时,a1+2a2+…+2n﹣2a n﹣1=(n﹣1)2n,相减可得a n=2(n+1),对a1也成立,可得a n﹣kn=(2﹣k)n+2.由于数列{a n﹣kn}为等差数列,S n≤S6对任意的n(n ∈N*)恒成立可化为a6﹣6k≥0,a7﹣7k≤0,即可得出.【解答】解:由题意,H n==2n+1,则a1+2a2+…+2n﹣1a n=n•2n+1,n≥2时,a1+2a2+…+2n﹣2a n﹣1=(n﹣1)2n,则2n﹣1a n=n2n+1﹣(n﹣1)2n=(n+1)2n,则a n=2(n+1),对a1也成立,故a n=2(n+1),则a n﹣kn=(2﹣k)n+2,则数列{a n﹣kn}为等差数列,故S n≤S6对任意的n(n∈N*)恒成立可化为a6﹣6k≥0,a7﹣7k≤0;即解得,,故答案为:.【点评】本题考查了新定义、等差数列的通项公式与单调性、数列递推关系,考查了推理能力与计算能力,属于中档题.16.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤),当x=﹣时函数f(x)能取得最小值,当x=时函数y=f(x)能取得最大值,且f(x)在区间(,)上单调.则当ω取最大值时φ的值为﹣.【分析】根据x=﹣时f(x)取得最小值,x=时f(x)取得最大值,得出(n+)•T=,求出T以及ω的值;再由f(x)在(,)上单调,得出T以及ω的取值;讨论ω的取值,求出满足条件的ω的最大值以及对应φ的值.【解答】解:当x=﹣时f(x)能取得最小值,x=时f(x)能取得最大值,∴(n+)•T=﹣(﹣),即T=,(n∈N)解得ω=4n+2,(n∈N)即ω为正偶数;∵f(x)在(,)上单调,∴﹣=≤,即T=≥,解得ω≤12;当ω=12时,f(x)=cos(12x+φ),且x=﹣,12×(﹣)+φ=﹣π+2kπ,k∈Z,由|φ|≤,得φ=0,此时f(x)=cos12x在(,)不单调,不满足题意;当ω=10时,f(x)=cos(10x+φ),且x=﹣,10×(﹣)+φ=﹣π+2kπ,k∈Z,由|φ|≤,得φ=﹣,此时f(x)=cos(10x﹣)在(,)单调,满足题意;故ω的最大值为10,此时φ的值为﹣.故答案为:﹣.【点评】本题考查了余弦型函数的图象和性质的应用问题,也考查了转化思想与分类讨论思想的应用问题,难度较大.三.解答题(共7小题,满分70分)17.(12分)设等差数列{a n}的前n项和为S n,a5+a6=24,S11=143,数列{b n}的前n项和为T n,满足.(Ⅰ)求数列{a n}的通项公式及数列的前n项和;(Ⅱ)判断数列{b n}是否为等比数列?并说明理由.【分析】(Ⅰ)由S11=11a6=143,得a6=13,由a5+a6=24,得a5=11,从而d=2,进崦{a n}的通项公式是a n=2n+1(n∈N*),再由,能求出前n项的和.(Ⅱ)由a1=3,,,得b1=7;当n≥2时,,从而b n=4b n(n≥2.若{b n}是等比数列,则+1有b2=4b1,与b2=4b1矛盾,从而得到数列{b n}不是等比数列.【解答】(本小题满分12分)解:(Ⅰ)设数列{a n}的公差为d,由S11=11a6=143,∴a6=13.又a5+a6=24,解得a5=11,d=2,因此{a n}的通项公式是a n=2n+1(n∈N*),所以,从而前n项的和为:===.…(6分)(Ⅱ)因为a1=3,,.当n=1时,b1=7;当n≥2时,;=4b n(n≥2.若{b n}是等比数列,则有b2=4b1,所以b n+1而b1=7,b2=12,所以与b2=4b1矛盾,故数列{b n}不是等比数列.…(12分)【点评】本题考查数列的通项公式、前n项和的求法,考查数列是否是等比数列的判断与求法,是基础题,解题时要认真审题,注意等差数列、等比数列的性质的合理运用.18.(12分)某公司计划明年用不超过6千万元的资金投资于本地养鱼场和远洋捕捞队.经过本地养鱼场年利润率的调研,得到如图所示年利润率的频率分布直方图.对远洋捕捞队的调研结果是:年利润率为60%的可能性为0.6,不赔不赚的可能性为0.2,亏损30%的可能性为0.2.假设该公司投资本地养鱼场的资金为x(x≥0)千万元,投资远洋捕捞队的资金为y(y≥0)千万元.(1)利用调研数据估计明年远洋捕捞队的利润ξ的分布列和数学期望Eξ.(2)为确保本地的鲜鱼供应,市政府要求该公司对本地养鱼场的投资不得低于远洋捕捞队的一半.适用调研数据,给出公司分配投资金额的建议,使得明年两个项目的利润之和最大.【解答】解:(1)随机变量ξ的可能取值为0.6y,0,﹣0.3y,随机变量ξ的分布列为,ξ0.6y0﹣0.3yP0.60.20.2∴Eξ=0.36y﹣0.06y=0.3y;(2)根据题意得,x,y满足的条件为①,由频率分布直方图得本地养鱼场的年平均利润率为:﹣0.3×0.2×0.5+(﹣0.1)×0.2×0.5+0.1×0.2×1.0+0.3×0.2×2.0+0.5×0.2×1.0=0.20,∴本地养鱼场的年利润为0.20x千万元,∴明年连个个项目的利润之和为z=0.2x+0.3y,作出不等式组①所表示的平面区域若下图所示,即可行域.当直线z=0.2x+0.3y经过可行域上的点M时,截距最大,即z最大.解方程组,得∴z的最大值为:0.20×2+0.30×4=1.6千万元.即公司投资本地养鱼场和远洋捕捞队的资金应分别为2千万元、4千万元时,明年两个项目的利润之和的最大值为1.6千万元.19.(12分)如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,点E,F分别是PB,DC的中点.(1)求证:EF∥平面PAD;(2)求EF与平面PDB所成角的正弦值.【分析】取CB的中点G,连结DG,建立空间直角坐标系:(1)=(12,0,0)为平面PAD的一个法向量,根据,进而可证EF ∥面PAD(2)平面PAD的法向量=(5,﹣12,0),代和线面夹角公式,可得答案.【解答】证明:取CB的中点G,连结DG,因为AD∥BG且AD=BD,所以四边形ABGD为平行四边形,所以DG=AB=12,又因为AB⊥AD,所以DG⊥AD,又PD⊥平面ABCD,故以点D原点建立如图所示的空间直角坐标系.…(2分)因为BC=10,AD=5,PD=8,所以有D(0,0,0),P(0,0,8),B(12,5,0),C(12,﹣5,0),因为E,F分别是PB,DC的中点,所以E(6,﹣2.5,0),F(6,2.5,4),(1)因为PD⊥平面ABCD,DG⊂平面ABCD,所以PD⊥DG,又因为DG⊥AD,AD∩PD=D,AD,PD⊂平面PAD,所以DG⊥平面PAD,所以=(12,0,0)为平面PAD的一个法向量,…(4分)又=(0,5,4),=0,所以,又EF⊄平面PAD,所以EF∥平面PAD;…(6分)(2)设平面PAD的法向量为=(x,y,z),所以,即,即,令x=5,则=(5,﹣12,0)…(9分)所以EF与平面PDB所成角θ满足:sinθ===,…(11分)所以EF与平面PDB所成角的正弦值为…(12分)【点评】本题考查的知识点是直线与平面平行的证明,直线与平面的夹角,难度中档.20.(12分)如图,已知椭圆C:,其左右焦点为F1(﹣1,0)及F2(1,0),过点F1的直线交椭圆C于A,B两点,线段AB的中点为G,AB的中垂线与x轴和y轴分别交于D,E两点,且|AF1|、|F1F2|、|AF2|构成等差数列.(1)求椭圆C的方程;(2)记△GF1D的面积为S1,△OED(O为原点)的面积为S2.试问:是否存在直线AB,使得S1=S2?说明理由.【分析】(1)依题意,|AF1|、|F1F2|、|AF2|构成等差数列,求出a,再利用c=1,求出b,即可求椭圆C的方程;(2)假设存在直线AB,使得S1=S2,确定G,D的坐标,利用△GFD∽△OED,即可得到结论.【解答】解:(1)因为|AF1|、|F1F2|、|AF2|构成等差数列,所以2a=|AF1|+|AF2|=2|F1F2|=4,所以a=2.…(2分)又因为c=1,所以b2=3,…(3分)所以椭圆C的方程为.…(4分)(2)假设存在直线AB,使得S1=S2,显然直线AB不能与x,y轴垂直.设AB方程为y=k(x+1)将其代入,整理得(4k2+3)x2+8k2x+4k2﹣12=0…(5分)设A(x1,y1),B(x2,y2),所以.故点G的横坐标为.所以G(,).…(6分)因为DG⊥AB,所以×k=﹣1,解得x D=,即D(,0)…(8分)∵Rt△GDF1和∵Rt△ODE相似,∴若S1=S2,则|GD|=|OD|所以,…(10分)整理得8k2+9=0.因为此方程无解,所以不存在直线AB,使得S1=S2.…(12分)【点评】本题考查直线与椭圆的位置关系,考查韦达定理的运用,考查学生分析解决问题的能力,属于中档题.21.(12分)已知函数f(x)=e﹣x﹣ax(x∈R).(1)当a=﹣1时,求函数f(x)的最小值;(2)若x≥0时,f(﹣x)+ln(x+1)≥1,求实数a的取值范围.【分析】(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最小值;(2)得到e x+ax+ln(x+1)﹣1≥0.(*)令g(x)=e x+ax+ln(x+1)﹣1,通过讨论a的范围,确定函数的单调性,从而求出满足条件的a的具体范围即可;【解答】解:(1)当a=﹣1时,f(x)=e﹣x+x,则f′(x)=﹣+1.令f'(x)=0,得x=0.当x<0时,f'(x)<0;当x>0时,f'(x)>0.∴函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增.∴当x=0时,函数f(x)取得最小值,其值为f(0)=1f(x)的最小值为1.(2)若x≥0时,f(﹣x)+ln(x+1)≥1,即e x+ax+ln(x+1)﹣1≥0(*)令g(x)=e x+ax+ln(x+1)﹣1,则①若a≥﹣2,由(1)知e﹣x+x≥1,即e﹣x≥1﹣x,故e x≥1+x∴函数g(x)在区间[0,+∞)上单调递增,∴g(x)≥g(0)=0.∴(*)式成立.②若a<﹣2,令,则∴函数ϕ(x)在区间[0,+∞)上单调递增,由于ϕ(0)=2+a<0,.故∃x0∈(0,﹣a),使得ϕ(x0)=0,则当0<x<x0时,ϕ(x)<ϕ(x0)=0,即g'(x)<0.∴函数g(x)在区间(0,x0)上单调递减,∴g(x0)<g(0)=0,即(*)式不恒成立.综上所述,实数a的取值范围是[﹣2,+∞).【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,考查分类讨论思想、转化思想,是一道综合题.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.(1)求C的普通方程和l的倾斜角;(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.【分析】(1)直接把曲线的参数方程转化为直角坐标方程,进一步把极坐标方程转化为直角坐标方程,在求出直线的倾斜角.(2)利用定点把直线的直角坐标式转化为参数式,进一步建立一元二次方程根与系数的关系,最后求出结果.【解答】解:(1)由消去参数α,得即C的普通方程为由,得ρsinθ﹣ρcosθ①将代入①得y=x+2所以直线l的斜率角为.(2)由(1)知,点P(0,2)在直线l上,可设直线l的参数方程为(t为参数)即(t为参数),代入并化简得设A,B两点对应的参数分别为t1,t2.则,所以t1<0,t2<0所以.【点评】本题考查的知识要点:直角坐标方程与参数方程的互化,直线和曲线的位置关系的应用,一元二次方程根与系数的关系的应用.23.(10分)设函数f(x)=|2x﹣7|+1.(1)求不等式f(x)≤x的解集;(2)若存在x使不等式f(x)﹣2|x﹣1|≤a成立,求实数a的取值范围.【分析】(1)问题转化为解不等式组问题,解出取并集即可;(2)先求出g(x)的分段函数,求出g(x)的最小值,从而求出a的范围.【解答】解:(1)由f(x)≤x得|2x﹣7|+1≤x,∴,∴不等式f(x)≤x的解集为;(2)令g(x)=f(x)﹣2|x﹣1|=|2x﹣7|﹣2|x﹣1|+1,则,∴g(x)min=﹣4,∵存在x使不等式f(x)﹣2|x﹣1|≤a成立,∴g(x)min≤a,∴a≥﹣4.【点评】本题考查了绝对值不等式的解法,考查函数的最值问题,是一道基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学科试题(理科)注意事项:1. 本试卷分第I卷(选择题)和第□卷(非选择题)两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2. 回答第I卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3•回答第□卷时,将答案写在答题卡上。

写在本试卷上无效。

4•考试结束后,将本试卷和答题卡一并收回。

•选择题:本大题共12个小题,每小题5分,共60分。

在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合A {xx22x 3 0}, BA.{2,3}B. {2,3,4}12 .已知i是虚数单位,z,则z z3iA.5B. ,103 •执行如图所示的程序框图,若输入的点为{2,3,4},则(C R A) B =C. {2}D.c 11C. D.-105A. 3B. 4 P(1,1),则输出的n值为C. 5D. 6(WI*输人氏御)/n=\ x=7+lCFA(第 4题)(第 3 题)A. 10B. 12C. 16D. 20x y 25 .若实数x, y满足y x 1 ,则z2x 8y的最大值是y 0A. 4B. 8C. 16D. 326. 一个棱锥的三视图如右图,则该棱锥的表面积为4 .如图,LLD uur ABCD是边长为8的正万形,若DE严,且F为BC的中点,则EAEFA. 16.5 8 2 32B. 32.5 32C. 16 2 32D. 16 5 16 .. 2 327. 5张卡片上分别写有0,1,2,3,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是A.—10 108•设S n是数列{a n}的前n项和,且a1a n 1 S n S n 1,则a5 =A • 30 B. 30 120丄209.函数f ln的大致图像为10.底面为矩形的四棱锥P ABCD的体积为8,若PA 平面ABCD,且PA 3,则四棱锥211.已知抛物线y 2px p 0 ,过焦点且倾斜角为A . X 11 A.-2二•填空题:本大题共 4小题,每小题5分,共20分.y 2018的方差是P ABCD 的外接球体积最小值是A.垄6B . 125125~6"•25为直径的圆与抛物线的准线相切, 切点的纵坐标是3, 则抛物线的准线方程为30° 的直线交抛物线于 A,B 两点,以AB 12.已知函数2f (x) x In x ( x-),函数g(x )X 1 ,直线y t 分别与两函数交于A, B 两点, 则AB 的最小值为B . 1D. 213. 设样本数据X 1, X 2,... , X 2018的方差是5,若y3X j 1,2,...,2018 ),则 y , y 2 ,...,14. 已知函数 f(x) sin x .3 cos x (0),若 3,则方程f (x) 1在(0,)的实15. 数根个数是1, 2, ... , 9填入3 3的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1, 2,我国的《洛书》中记载着世界上最古老的一个幻方:将3,…,n 2填入n n 的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方 形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为N n (女口:在3阶幻方中,N 3 15),则 2= ________3若 si nC sin (A B) sin2B ,贝y ABC 的面积为 ______________三、解答题:本大题共 6小题,其中17-21小题为必考题,每小题12分,第22— 23题为选考题,考生根据要求做答,每题 10分.17. (本小题满分12分)设数列{aj 是公差为d 的等差数列. (I )推导数列{a n }的通项公式;(n )设d 0,证明数列{a n 1}不是等比数列18. (本小题满分12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0,5) , [5 , 10) , [10, 15) , [15 , 20) , [20, 25],得到如图所示的频率分布直方图. (I )写出女生组频率分布直方图中 a 的值;(n )在抽取的40名学生中从月上网次数不少于20的学生中随机抽取 2人,并用X 表示随机抽取的2人中男生的人数,求 X 的分布列和数学期望.7t16.已知 ABC 中,内角A, B, C 所对的边分别为a , b , c ,且c 1 , C19. (本小题满分12分)在直三棱柱 ABC ABQ ,中,AB AC AA , 2 , BA CA 。

(I )证明:BC , AB ,;(n )求直线A ,C 与平面A .BG 所成的角.占八、、-1( I )当k -, r 1,若点代B 都在坐标轴的正半轴上,求椭圆的方程;3(n )若以AB 为直径的圆经过坐标原点,探究 a,b,r 之间的等量关系20. (本小题满分12分)在平面直角坐标系xoy 中,已知椭圆E :2x~2 ab 21(a b 0),圆 O : x 22 2y r (0 r b ),若圆O 的一条切线I: ykx m 与椭圆E 相交于AB 两21. (本小题满分12分)已知函数f(x ) e ax ( e 是自然对数的底数). ( I )求f(x)的单调区间;(n )若 a 1,当 xf (x) x 3 5a _3 x 2 3ax 1 m 对任意 x [0,)恒成2立时,m 的最大值为1,求实数a 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,做答时请先将 对应题号用铅笔涂黑.22. (本小题满分10分)选修4— 4:坐标系与参数方程极点,x 轴正半轴为极轴,建立极坐标系,曲线C 2的极坐标方程为2cos .(I )写出G 的普通方程和C 2的直角坐标方程;(n )设点P 在G 上,点Q 在C 2上,判断G 与C 2的位置关系并求|PQ|的最小值.23. (本小题满分10分)选修4— 5:不等式选讲已知函数 f (x) x m 2x 1 (m 0). (I )当m 1时,解不等式f (x)2 ;(n )当x [m,2m 2]时,不等式1 f (x) x 1恒成立,求实数 m 的取值范围2数学科答案(理科)、选择题 1-5 ACADD 6-10 ABCBC 11-12 BA在直角坐标系xOy 中,曲线C 1的参数方程为x 3cos , y 1 3si n (为参数).以坐标原点为血卡V3二、 填空题 13.45 14.315.65 16. 或46三、 解答题17. 解: (1)因为{a n }是等差数列且公差为 d ,所以a n a n 1 d (n 2) ....................将上述式子相加,得a n a1(n 1)d所以,数列{a n }的通项公式为a n a 1 (n 1)d ..........................(2)假设数列{a n 1}是等比数列, (7)当n 2时,a n 1 1, a n 1,a “ 1 1成等比数列所以(a n 1)2 (a n1 1) (a n 1 1) ....................................................2所以d 0,所以d 0,这与d 0矛盾所以,数列{an1}不是等比数列. ..................18.解:(1)由频率分布直方图,得a J (2 0.02 0.03°.°8)5错误!未找到引用源。

5=0.05 .3(2)在抽取的女生中,月上网次数不少于20的学生的频率为0.02 X 5=0.1 ,学生人数为0.1 X 20=2.4同理,在抽取的男生中,月上网次数不少于 20的 学生人数为0.03 X 5X 20=3, 5故X 的所有可能取值为0,1, 2,C 2 1 C 1 C 1 6则P(X 0) Cf 丄错误!未找到引用源。

,P(X 1)今-错误!未找到引用C 2 10 C 2 10a 2 a 1 da 3 a ? da n an 1d (3)所以(a n 1)2[(a n 1) d] [(a n 1) d]源。

,P(X 2) C 2 —C 510所以X 的分布列为19.解:(1)由题意,以A 为坐标原点,以AB,AC,AA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A-xyz. 因为 AB ACAA2则 A(0,0,0),B(2,0,0),C(0,2,0),^(0,0,2),BJ2,0,2),G(0,2,2) (3)所以 BC 1 ( 2,2,2),AB 1 (2,0,2) 所以 BC 1 AB 1 4 0 4 0 (4)所以 BC 1 AB 1 ,所 以BC 1 AB 15 (2)又因为 AB (2,0, 2),所以 ARAB 4 0 4 0所以AB AB 又因为AB BC 1 B所以AB 1 平面ABC , (8)41又 AC (0,2, 2),所以 cos AC,AB r.............................10<8(821所以E(X)=0 X 丄错误!未找到引用源10错误!未找到引用源。

.12 610 5 +1X 3错误!未找到引用源。

+2X 卫二 52 1012所以(1 k 2)(a 2m 2 a 2b 2) km( 2kma 2) m 2(a 2k 2 b 2)且m 2r 2(1 k 2)所以 2 2 2 2(a b )r (1 k ) 2 2 2(1 k )a b ,11所以 丄丄丄a 2b 2 r 2所以 AC,AB 1311所以直线AC 与平面ABG 所成的角为一61220.解(°因为圆O 的一条切线为1: ykx m所以木2「,当k 1,r1, 所以m..10 3又点A, B 都在坐标轴的正半轴上,所以 m 、103所以切线I: y1 .. 10 -x 3 3所以A,B 两点坐标是(0号)和C 。

),29 2所以椭圆的方程为—乩110 10所以X 1X 2 yy0,所以 X 1X 2 (kx 1 m)(kx 2 m) 0所以(1 k 2)x 1x 2 km(x 1 x 2) m 222Xy_ 1由a 2b 21所以(b 2a 2k 2)x 22 2 2 2 22kma x a m a by kx m2 2 2 2a m a b2kma 2 (2)设A (x 1, y 1), B(X 2,y 2),以AB 为直径的圆经过坐标原 0x 1x 2x-i x 2a 2k 2b 2 ' 2 2 2a k bx21. 解(1)因为f (x) e a (1)①a 0时,f (x) 0恒成立,所以f (x)在R上单调递增,无减区间; (2)②a 0 时,f (x) e x a 0 有x ln a,且x ( ,l na)时,f (x) 0. x (ln a,)时,f (x) 0,所以f (x)的增区间是(lna,),减区间是(,lna) (4)(2)xf (x) x3 5^^x2 3ax 1 m 对任意x [0,)恒成立,2所以x(e x ax) x3 5^x2 3ax 1 m对任意x [0,)恒成立2所以m x(e x x2 3(a 1)x 3a) 1对任意x [0,)恒成立 (5)2设g (x) e x x2卫x 3a, x [0,),因为m的最大值为1, (6)23(^ 1) x 3a 0恒成立所以g (x) e x x27g (x) e 2x , .............................................x 3(a 1)令h(x) e 2x '所以h(x) e x 2 0 有x In2,且x [0,l n 2),h (x) 0,x [l n 2, ),h (x) 03所以g (x) g(ln2) 2 'a 1) 2ln2 0所以g(x)在x [0,)是单调递增的。

相关文档
最新文档