2019年高考文科数学模拟试题精编(文)
湖南师大附中2019届高考模拟卷(一)文科数学(PDF版)

湖南师大附中2019届高考模拟卷(一)数学(文科)第I 卷一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合⎭⎬⎫⎩⎨⎧-==x x y x M 2lg|,{}1|<=x x N ,则=N M ()A .()10,B .(]20,C .[)21,D .()∞+,02.如果复数i ai +-12)(R a ∈为纯虚数,则=a ()A .2-B .0C .1D .23.如图是民航部门统计的某年春运期间12个城市售出的往返机票的平均价格以及相比上年同期变化幅度的数据统计图表,根据图表,下面叙述不正确的是()A .深圳的变化幅度最小,北京的平均价格最高B .深圳和厦门的平均价格同去年相比有所下降C .平均价格从高到低居于前三位的城市为北京、深圳、广州D .平均价格的涨幅众高到低居于前三位的城市为天津、西安、厦门4.记n S 为等差数列{}n a 的前n 项和,若33=a ,216=S ,则数列{}n a 的公差为()A .1B .1-C .2D .2-5.已知2.12=a ,8.021-⎪⎭⎫ ⎝⎛=b ,2ln =c ,则a ,b ,c 的大小关系为()A .ba c <<B .a cb <<C .c a b <<D .a b c <<6.在长方体1111D C B A ABCD -中,1=AB ,2=AD ,31=AA ,则异面直线11B A 与1AC 所成角的余弦值为()A .1438B .1414C .1313D .317.运行如图所示的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素a ,则函数a x y =,[)+∞∈,0x 是增函数的概率为()A .53B .54C .43D .738.已知函数x x x x f 2sin 2cos sin 2)(-=,给出下列四个结论:①函数)(x f 的最小正周期是π;②函数)(x f 在区间⎥⎦⎤⎢⎣⎡85,8ππ上是减函数;③函数)(x f 的图象关于点⎪⎭⎫ ⎝⎛-0,8π对称;④函数)(x f 的图象可由函数x y 2sin 2=的图象向右平移8π个单位,再向下平移1个单位得到.其中正确结论的个数是()A .1B .2C .3D .49.a 实常数,下列图象中可以作为函数a x x x f +=2)(的图象的有()A .1个B .2个C .3个D .4个10.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A 、B两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A 、B 两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为()A .320千元B .360千元C .400千元D .440千元11.在ABC ∆中,已知3=AB ,32=AC ,点D 为BC 的三等分点(靠近C ),则BC AD ⋅的取值范围为()A .()53,B .()355,C .()95,D .()75,12.已知不等式x m x 21-<-在[]20,上恒成立,且函数mx e x f x -=)(在()∞+,3上单调递增,则实数m 的取值范围为()A .()()∞+∞-,,52B .()(]352e ,, ∞-C .()(]252e ,, ∞-D .()(]351e ,, ∞-第Ⅱ卷二、填空题:本大题共4个小题,每小题5分,满分20分.请把答案填在答题卷对应题号后的横线上.13.若角α的顶点在坐标原点,始边为x 轴的正半轴,其终边经过点)4,3(0--P ,则=αtan .14.如图某几何体的三视图是直角边长为1的三个等腰直角三角形,则该几何体的外接球的表面积为.15.设双曲线C :12222=-by a x )0,0(>>b a 的左焦点为1F ,过左焦点1F 作x 轴的垂线交双曲线C 于M 、N 两点,其中M 位于第二象限,),0(b B ,若BMN ∠是锐角,则双曲线的离心率的取值范围是.16.定义在()+∞,0上的函数)(x f 满足:①当[)3,1∈x 时,21)(--=x x f ;②)(3)3(x f x f =.设关于x 的函数a x f x F -=)()(的零点从小到大依次为1x ,2x ,…,n x ,….若()3,1∈a ,则=+++n x x x 221 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.(本小题满分12分)等比数列{}n a 的各项均为正数,且13221=+a a ,62239a a a =.(1)求数列{}n a 的通项公式;(2)设n n a a a b 32313log log log +++= ,求数列⎭⎬⎫⎩⎨⎧n b 1的前n 项和.18.(本小题满分12分)在多面体ABDE C -中,△ABC 为等边三角形,四边形ABDE 为菱形,平面ABC ⊥平面ABDE ,2=AB ,3π=∠DBA .(1)求证:CD AB ⊥;(2)求点B 到平面CDE 的距离.19.(本小题满分12分)2020年开始,国家逐步推行全新的高考制度.新高考不再分文理科,采用33+模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分.为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,采用分层抽样的方法从中抽取n 名学生进行调查.(1)已知抽取的n 名学生中含女生45人,求n 的值及抽取到的男生人数;(2)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为了了解学生对这两个科目的选课情况,对在(1)的条件下抽取到的n 名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),下表是根据调查结果得到的22⨯列联表.请将列联表补充完整,并判断是否有99%的把握认为选择科目与性别有关?说明你的理由;(3)在抽取的选择“地理”的学生中按分层抽样再抽取6名,再从这6名学生中抽取2人了解学生对“地理”的选课意向情况,求2人中至少有1名男生的概率。
2019年高考数学(文)模拟试题含答案及解析(1~5套汇总)

2019年高考模拟试题(一)文科数学第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,都是实数,那么“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.抛物线的焦点坐标为( )A .B .C .D .3.下列4个图从左到右位次是四位同学甲、乙、丙、丁的五能评价雷达图:甲 乙 丙 丁在从他们四人中选一位发展较全面的学生,则应该选择( ) A .甲 B .乙 C .丙D .丁4.设,满足约束条件,则目标函数的最小值为( )A .B .C .D . 5.《九章算术》是我国古代内容极为丰富的数学名著,系统地总结了战国、秦、汉时期的数学成就.书中将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为“阳马”,若某“阳马”的三视图如图所示(网格纸上小正方形的边长为1),则该“阳马”最长的棱长为()A .B CD .a b 22a b>22a b >22(0)x py p =>,02p ⎛⎫⎪⎝⎭1,08p ⎛⎫⎪⎝⎭0,2p ⎛⎫ ⎪⎝⎭10,8p ⎛⎫ ⎪⎝⎭x y 36020 0,0x y x y x y ⎧⎪⎨⎪+⎩---≤≥≥≥2z x y =-+4-2-0256.大致的图象是()A.B.C.D.7.函数(,是常数,的部分图象如图所示,为得到函数,只需将函数的图象()AC8.中任取一个元素,则函数,是增函数的概率为()A.B.C.D.9.已知函数(,)在处取得极小值,则的最小值为()A.4 B.5C.9 D.1010.在四面体中,若,体的外接球的表面积为()A.B.C.D.11.已知的前项和为,且,,成等差数列,数列的前项和为,则满足的最小正整数的值为()A.8 B.9 C.10 D.1112.已知不等式在上恒成立,且函数在上)())0,π()()sinf x xωϕ=+ωϕ0ω>cosy xω=()()sinf x xωϕ=+A aay x=()0,x∈+∞35453437()321132f x ax bx x=+-0a>0b>1x=14a b+ ABCD AB CD==2AC BD==AD BC== ABCD2π4π6π8π{}na n12nnS m+=+1a4a52a-{}nb nnT20172018nT>n12x m x-<-[]0,2()e xf x mx=-()3,+∞单调递增,则实数的取值范围为()A.B.C.D.第Ⅱ卷(非选择题共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13.已知实数x,y满足条件23x yx yxy-≥+≤≥≥⎧⎪⎪⎨⎪⎪⎩,则3x y+的最大值为__________.14.15.在ABC△中,M是BC的中点,3AM=,点P在AM上,且满足2AP PM=,则()PA PB PC⋅+的值为___________.16.已知ABC△中,角A、B、C所对的边分别是a、b、c且6a=,4sin5sinB C=,有以下四个命题:①ABC△的面积的最大值为40;②满足条件的ABC△不可能是直角三角形;③当2A C=时,ABC△的周长为15;④当2A C=时,若O为ABC△的内心,则AOB△.其中正确命题有__________(填写出所有正确命题的番号).三、解答题:共70分。
(完整word版)2019高考数学模拟试卷(一)(文科)

2019年高考数学模拟试卷(一)(文科)注意事项:1.本试卷分第I 卷(选择题)和第n 卷(非选择题)两部分。
答卷前,考生务必将自己的 姓名、准考证号填写在本试卷和答题卡相应位置上。
2•回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需 改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第n 卷时,将答案写在答题卡上,写在本试卷上无效。
4•考试结束后,将本试卷和答题卡一并交回。
要求的。
3 .长方体内部挖去一部分的三视图如图所示,则此几何体的体积为A . 16— 3 8C . 16 —3、选择题:本题共12小题,每5分,在每小题给出的四个选项中,只有一项是符合题目已知集合A {1,2} , B {xZ |0 x 2},则 A BA. {0}B. {2}C . {0,1,3,4}D .已知i 为虚数单位,复数 z i (2i),则|z|B . .3C. ■■ 5D . 340 B . 3 32 D .—34.若 a (1,1), b A . a 3b(1, 1), c ( 2,4),则以a、b为基底表示的c等于B. a 3b C . 3a b D . 3a b高三数学(文)试题(第1页共10页)5.已知x, y满足x y 1,则z2x y的最小值为y 131A •—B •-C. 3D. 3226 •已知某程序框图如图所示,则执行该程序后输出的结果是彳1A • 1B •-2C. 1 D • 27 •朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升”。
其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升”,在该问题中第3天共分发了多少升大米?A • 192B. 213 C . 234D.2558 •定义在R上的函数f(x)在(4,)上为减函数,且函数y f(x4)为偶函数,则A • f(2) f(3)B. f (3)f(6) C . f(3) f(5)D.f(2) f(5)9 .若过点(2,0)有两条直线与圆x2y 2x 2y m 1 0相切,则实数m的取值范围是高三数学(文)试题(第2页共10页)B • (-1,+ )C・(-1,0)D・(-1,1)A • ( - ,-1)高三数学(文)试题(第3页共10页)高三数学(文)试题 (第3页共10页)10.把边长为3的正方形ABCD 沿对角线AC 对折,使得平面 ABC 平面ADC ,则三棱锥D ABC 的外接球的表面积为11•某次比赛结束后,记者询问进入决赛的甲、乙、丙、丁四名运动员最终冠军的获得者,甲说:我没有获得冠军;乙说:丁获得了冠军;丙说:乙获得了冠军;丁说:我没有获得冠军,这时裁判过来说:他们四个人中只有一个人说的是假话,成立的是13题〜第21题为必考题,每个试题考生都必须做答。
2019届全国高考高三模拟考试卷数学(文)试题(一)(解析版)(最新整理)

1a
b
0 , F1 , F2 为椭圆 C
的左右焦点,离
心率为 2 ,短轴长为 2. 2
(1)求椭圆 C 的方程;
(2)如图,椭圆 C 的内接平行四边形 ABCD 的一组对边分别过椭圆的焦点 F1 , F2 ,求该平行四边形 ABCD
面积的最大值.
页
6第
21.(12 分)[2019·豫西名校]已知函数 f x a ln x x2 ax a R . (1)若 x 3 是 f x 的极值点,求 f x 的单调区间; (2)求 g x f x 2x 在区间 1,e 上的最小值 ha .
A. y2 2x
B. y2 2x
C. y2 3x
D. y2 3x
11.[2019·陕西联考]将函数
y
sin
2x
π 6
的图象向右平移
π 3
个单位,在向上平移一个单位,得到
g
x
的
图象.若 g x1 g x2 4 ,且 x1 , x2 2π, 2π ,则 x1 2x2 的最大值为( )
c 1 cos A 3a sin C .
(1)求角 A 的大小; (2)若 a 7 , b 1 ,求 △ABC 的面积.
页
4第
18.(12 分)[2019·揭阳一模]如图,在四边形 ABED 中, AB∥DE , AB BE ,点 C 在 AB 上,且 AB CD , AC BC CD 2 ,现将 △ACD 沿 CD 折起,使点 A 到达点 P 的位置,且 PE 2 2 . (1)求证:平面 PBC 平面 DEBC ; (2)求三棱锥 P EBC 的体积.
时日影长度为( )
A. 953 1 分 3
页
B.1052 1 分 2
2019届高考数学模拟考试试卷及答案(文科)(四)

2019届高考数学模拟考试试卷及答案(文科)(四)第Ⅰ卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数21i+的虚部是( ).A .2-B .1-C .1D .2【答案】B 【解析】21i 1i=-+,故虚部为1-.2.已知集合{}{}2|00,1x x ax +==,则实数a 的值为( ).A .1-B .0C .1D .2【答案】A【解析】依题意,有{}{}0,0,1a -=,所以,1a =-.3.已知tan 2θ=,且π0,2θ⎛⎫∈ ⎪⎝⎭,则cos2θ=( ).A .45B .35C .35-D .45-【答案】C【解析】222222cos sin cos2cos sin cos sin θθθθθθθ-=-=+221tan 1tan θθ-=+35=-.4.阅读如图的程序框图,若输入5n =,则输出k 的值为( ).A .2B .3C .4D .5【答案】B【解析】第1步:16n =,2k =; 第2步:49n =,3k =; 第3步:148n =,4k =; 退出循环,4k =.5.已知函数122,0,()1log ,0,x x f x x x +⎧⎪=⎨->⎪⎩≤则((3))f f =( ).A .43B .23C .43-D .3-【答案】A【解析】2(3)1log 3f =-,2222log 3log 324((3))223f f -===,选A .6.已知双曲线222:14x y C a -=的一条渐近线方程为230x y +=,1F ,2F 分别是双曲线C的左,右焦点,点P 在双曲线C 上,且1||2PF =,则2||PF 等于( ).A .4B .6C .8D .10【答案】C【解析】依题意,有:223a=,所以,3a =,因为1||2PF =.所以,点P 在双曲线的左支,故有21||||2PF PF a -=,解得:2||8PF =.7.四个人围坐在一张圆桌旁,每个人面前放着完全相同的硬币,所有人同时翻转自己的硬币.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着.那么,没有相邻的两个人站起来的概率为( ).A .14B .716C .12D .916【答案】B【解析】四个人抛硬币的可能结果有16种,有不相邻2人站起来的可能为:正反正反,反正反正, 只有1人站起来的可能有4种, 没有人站起来的可能有1种, 所以所求概率为:24171616P ++==. 8.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图(等腰直角三角形)和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( ).A. B. C. D.【答案】C【解析】该几何体为正方体截去一部分后的四棱锥P ABCD -,如下图所示, 该几何体的俯视图为C .C BAD P9.设函数32()f x x ax =+,若曲线()y f x =在点00(,())P x f x 处的切线方程为0x y +=,则点P 的坐标为( ).A .(0,0)B .(1,1)-C .(1,1)-D .(1,1)-或(1,1)-【答案】D 【解析】2()32f x x ax '=+,依题意,有:20000320003210x ax x y y x ax ⎧+=-⎪+=⎨⎪=+⎩, 解得:0011x y =⎧⎨=-⎩或0011x y =-⎧⎨=⎩.10.《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马;将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面ABC ,2PA PB ==,4AC =,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( ).A .8πB .12πC .20πD .24π【答案】C【解析】该几何体可以看成是长方体中截出来的三棱锥P ABC -,如下图所示, 其外接球的直径为对角线PC,PCR =为:20π.P ABC11.已知函数()sin()cos()(0,0π)f x x x ωϕωϕωϕ=+++><<是奇函数,直线y =()f x 的图象的两个相邻交点的横坐标之差的绝对值为π2,则( ).A .()f x 在π0,4⎛⎫⎪⎝⎭上单调递减B .()f x 在π3π,88⎛⎫⎪⎝⎭上单调递减C .()f x 在π0,4⎛⎫ ⎪⎝⎭上单调递增D .()f x 在π3π,88⎛⎫ ⎪⎝⎭上单调递增【答案】D【解析】π()4f x x ωϕ⎛⎫=++ ⎪⎝⎭,因为函数为奇函数且0πϕ<<,所以,ππ4ϕ+=,即3π4ϕ=,所以,())f x x ω=,又2ππ2ω=,所以,4ω=,()f x x =,其一个单调增区间为π3π,88⎛⎫⎪⎝⎭.12.已知函数π1()cos 212x f x x x +⎛⎫=+- ⎪-⎝⎭,则201612017k k f =⎛⎫⎪⎝⎭∑的值为( ).A .2016B .1008C .504D .0【答案】B【解析】函数化为:1()sin 212x f x x x ⎛⎫=+- ⎪-⎝⎭, 11(1)sin 122x f x x x -⎛⎫-=+- ⎪-⎝⎭,有:()(1)1f x f x +-=, 所以,201612016100820172k k f =⎛⎫== ⎪⎝⎭∑.第Ⅱ卷二、填空题:本题共4小题,每小题5分.13.已知向量(1,2)a =,(,1)b x =-,若()a a b -∥,则a b ⋅=__________. 【答案】52-【解析】(1,3)a b x -=-,因为()a a b -∥, 所以,32(1)0x +-=,解得:52x =,所以,55222a b ⋅=-=-.14.若一个圆的圆心是抛物线24x y =的焦点,且该圆与直线3y x =+相切,则该圆的标准方程是__________. 【答案】22(1)2x y +-=【解析】抛物线的焦点为(0,1),故圆心为(0,1), 圆的半径为R 22(1)2x y +-=.15.满足不等式组(1)(3)0,0x y x y x a-++-⎧⎨⎩≥≤≤的点(,)x y 组成的图形的面积是5,则实数a 的值为__________.【答案】3【解析】不等式组化为:(1)0(3)00x y x y x a -+⎧⎪+-⎨⎪⎩≥≥≤≤或(1)0(3)00x y x y x a -+⎧⎪+-⎨⎪⎩≤≤≤≤,画出平面区域如下图所示,平面区域为三角形ABC 、ADE ,(1,2)A ,(,1)B a a +,(3)C a -,面积为:11(22)(1)21522S a a =--+⨯⨯=,解得:3a =.16.在ABC △中,60ACB ∠=︒,1BC >,12AC AB =+,当ABC △的周长最短时,BC 的长是__________.【答案】1+【解析】设边AB 、BC 、AC 所对边分别为c 、a 、b ,依题意,有:12160b c a C ⎧=+⎪⎪>⎨⎪=︒⎪⎩,由余弦定理,得:2222cos c a b ab C =+-, 即2221122c a c a c ⎛⎫⎛⎫=++-+ ⎪ ⎪⎝⎭⎝⎭,化简,得:211241a a c a -+=-,ABC △的周长:122a b c a c ++=++2121212a a a a -+=++- 2632(1)a aa -=-. 令1t a =-,则三角形周长为:26(1)3(1)39932222t t t t t +-+=++≥, 当332t t =,即t =1a =时ABC △的周长最短.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且*22()n n S a n =-∈N . (Ⅰ)求数列{}n a 的通项公式. (Ⅱ)求数列{}n S 的前n 项和n T . 【答案】见解析.【解析】(Ⅰ)当1n =时,1122S a =-,即1122a a =-,解得12a =. 当2n ≥时,111(22)(22)22n n n n n n n a S S a a a a ---=-=---=-, 即12n n a a -=,所以数列{}n a 是首项为2,公比为2的等比数列. 所以1*222()n n n a n -=⨯=∈N . (Ⅱ)因为12222n n n S a +=-=-, 所以12n n T S S S =+++2312222n n +=+++-4(12)212n n ⨯-=-- 2242n n +=--.18.(本小题满分12分)某企业生产的某种产品被检测出其中一项质量指标存在问题.该企业为了检查生产该产品的甲,乙两条流水线的生产情况,随机地从这两条流水线上生产的大量产品中各抽取50件产品作为样本,测出它们的这一项质量指标值.若该项质量指标值落在(195,210]内,则为合格品,否则为不合格品.表1是甲流水线样本的频数分布表,图1是乙流水线样本的频率分布直方图.表1:甲流水线样本的频数分布表图1:乙流水线样本频率分布直方图频率质量指标(Ⅰ)根据图1,估计乙流水线生产产品该质量指标值的中位数.(Ⅱ)若将频率视为概率,某个月内甲,乙两条流水线均生产了5000件产品,则甲,乙两条流水线分别生产出不合格品约多少件.(Ⅲ)根据已知条件完成下面22⨯列联表,并回答是否有85%的把握认为“该企业生产的这种产品的质量指标值与甲,乙两条流水线的选择有关”?附:22()()()()()n ad bc K a b c d a c b d -=++++(其中n a b c d =+++样本容量)【解析】(Ⅰ)设乙流水线生产产品的该项质量指标值的中位数为x ,因为0.48(0.0120.0320.052)50.5(0.0120.0320.0520.076)50.86=++⨯<<+++⨯=,则(0.0120.0320.052)50.076(205)0.5x ++⨯+⨯-=, 解得390019x =.(Ⅱ)由甲,乙两条流水线各抽取的50件产品可得,甲流水线生产的不合格品有15件,则甲流水线生产的产品为不合格品的概率为1535010P ==甲,【注意有文字】乙流水线生产的产品为不合格品的概率为1(0.0120.028)55P =+⨯=乙,【注意有文字】于是,若某个月内甲,乙两条流水线均生产了5000件产品,则甲乙两条流水线生产的不合格品件数分别为35000150010⨯=,1500010005⨯=. (Ⅲ)22⨯列联表:则22100(350600)4 1.3505075253K ⨯-==≈⨯⨯⨯,因为1.3 2.072<,所以没有85%的把握认为“该企业生产的这种产品的该项质量指标值与甲,乙两条流水线的选择有关”.19.(本小题满分12分)如图1,在直角梯形ABCD 中,AD BC ∥,AB BC ⊥,BD DC ⊥,点E 是BC 边的中点,将ABD △沿BD 折起,使平面ABD ⊥平面BCD ,连接AE ,AC ,DE ,得到如图2所示的几何体.图1图2E CBAD(Ⅰ)求证:AB ⊥平面ADC .(Ⅱ)若1AD =,AC 与其在平面ABD B到平面ADE 的距离. 【答案】见解析.【解析】(Ⅰ)因为平面ABD ⊥平面BCD ,平面ABD 平面BCD BD =,又BD DC ⊥,所以DC ⊥平面ABD . 因为AB ⊂平面ABD ,所以DC AB ⊥, 又因为折叠前后均有AD AB ⊥,DC AD D =,所以AB ⊥平面ADC .(Ⅱ)由(Ⅰ)知DC ⊥平面ABD ,所以AC 在平面ABD 内的正投影AD , 即CAD ∠为AC 与其在平面ABD 内的正投影所成角.依题意tan CD CAD AD∠=,因为1AD =,所以CD =设(0)AB x x =>,则BD =因为ABD BDC △∽△,所以AB DC ADBD=,即1x解得x,故ABBD 3BC =.DABCE由于AB ⊥平面ADC ,AB AC ⊥,E 为BC 的中点, 由平面几何知识得322BC AE ==,同理322BC DE ==,所以112ADES =⨯△.因为DC ⊥平面ABD,所以13A BCD ABD V CD S -=⋅△设点B 到平面ADE 的距离为d ,则1132ADE B ADE A BDE A BCD d S V V V ---⋅====,所以d =,即点B 到平面ADE20.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b +=>>,且过点(2,1)A .(Ⅰ)求椭圆C 的方程.(Ⅱ)若P ,Q 是椭圆C 上两个不同的动点,且使PAQ ∠的角平分线垂直于x 轴,试判断直线PQ 的斜率是否为定值?若是,求出该值;若不是,说明理由.【答案】见解析.【解析】(Ⅰ)因为椭圆C,且过点(2,1)A , 所以22411a b +=,c a = 因为222a b c =+,解得28a =,22b =,所以椭圆C 的方程为22182x y +=. (Ⅱ)法1:因为PAQ ∠的角平分线总垂直于x 轴,所以PA 与AQ 所在直线关于直线2x =对称.设直线PA 的斜率为k ,则直线AQ 的斜率为k -.所以直线PA 的方程为1(2)y k x -=-,直线AQ 的方程为1(2)y k x -=-.设点(,)p P P x y ,(,)Q Q Q x y , 由221(2),1,82y k x x y -=-⎧⎪⎨+=⎪⎩消去y ,得2222(14)(168)161640k x k k x k k +--+--=.① 因为点(2,1)A 在椭圆C 上,所以2x =是方程①的一个根,则2216164214P k k x k--=+, 所以2288214P k k x k --=+. 同理2288214Q k k x k +-=+. 所以21614P Q k x x k -=-+. 又28(4)14P Q P Q ky y k x x k -=+-=-+.所以直线PQ 的斜率为12P QPQ P Qy y k x x -==-. 所以直线PQ 的斜率为定值,该值为12. 法2:设点11(,)P x y ,22(,)Q x y ,则直线PA 的斜率1112PA y k x -=-,直线QA 的斜率2212QA y k x -=-.因为PAQ ∠的角平分线总垂直于x 轴,所以PA 与AQ 所在直线关于直线2x =对称.所以PA QA k k =-,即121211022y y x x --+=--,① 因为点11(,)P x y ,22(,)Q x y 在椭圆C 上, 所以2211182x y +=,② 2222182x y +=.③ 由②得2211(4)4(1)0x y -+-=,得11111224(1)y x x y -+=--+,④ 同理由③得22221224(1)y x x y -+=--+,⑤ 由①④⑤得12122204(1)4(1)x x y y +++=++, 化简得12211212()2()40x y x y x x y y ++++++=,⑥由①得12211212()2()40x y x y x x y y ++++++=,⑦⑥-⑦得12122()x x y y +=-+.②-③得22221212082x x y y --+=,得1212121214()2y y x x x x y y -+=-=-+. 所以直线PQ 的斜率为121212PQ y y k x x -==-为定值. 法3:设直线PQ 的方程为y kx b =+,点11(,)P x y ,22(,)Q x y ,则11y kx b =+,22y kx b =+,直线PA 的斜率1112PA y k x -=-,直线QA 的斜率2212QA y k x -=-. 因为PAQ ∠的角平分线总垂直于x 轴,所以PA 与AQ 所在直线关于直线2x =对称.所以PA QA k k =-,即12121122y y x x --=---, 化简得12211212()2()40x y x y x x y y +-+-++=.把11y kx b =+,22y kx b =+代入上式,并化简得12122(12)()440kx x b k x x b +--+-+=.(*) 由22,1,82y kx b x y =+⎧⎪⎨+=⎪⎩消去y 得222(41)8480k x kbx b +++-=,(**) 则122841kb x x k +=-+,21224841b x x k -=+,代入(*)得2222(48)8(12)4404141k b kb b k b k k -----+=++, 整理得(21)(21)0k b k -+-=, 所以12k =或12b k =-. 若12b k =-,可得方程(**)的一个根为2,不合题意. 若12k =时,合题意. 所以直线PQ 的斜率为定值,该值为12.21.(本小题满分12分) 已知函数()ln (0)a f x x a x=+>. (Ⅰ)若函数()f x 有零点,其实数a 的取值范围. (Ⅱ)证明:当2ea ≥时,()e x f x ->. 【答案】见解析.【解析】(Ⅰ)法1:函数()ln a f x x x=+的定义域为(0,)+∞. 由()ln a f x x x =+,得221()a x a f x x x x-'=-=. 因为0a >,则(0,)x a ∈时,()0f x '<;(,)x a ∈+∞时,()0f x '>.所以函数()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增.当x a =时,[]min ()ln 1f x a =+.当ln 10a +≤,即10ea <≤时,又(1)ln10f a a =+=>,则函数()f x 有零点. 所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. 法2:函数()ln a f x x x=+的定义域为(0,)+∞. 由()ln 0a f x x x=+=,得ln a x x =-. 令()ln g x x x =-,则()(ln 1)g x x '=-+. 当10,e x ⎛⎫∈ ⎪⎝⎭时,()0g x '>;当1,e x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '<. 所以函数()g x 在10,e ⎛⎫ ⎪⎝⎭上单调递增,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递减. 故1e x =时,函数()g x 取得最大值1111ln e e e eg ⎛⎫=-= ⎪⎝⎭.因而函数()ln a f x x x =+有零点,则10ea <≤. 所以实数a 的取值范围为10,e ⎛⎤ ⎥⎝⎦. (Ⅱ)要证明当2ea ≥时,()e x f x -=, 即证明当0x >,2e a ≥时,ln e x a x x-+>,即ln e x x x a x -+>. 令()ln h x x x a =+,则()ln 1h x x '=+. 当10e x <<时,()0f x '<时;当1ex >时,()0f x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增. 当1e x =时,[]min 1()eh x a =-+. 于是,当2e a ≥时,11()e eh x a -+≥≥.① 令()e x x x ϕ-=,则()e e e (1)x x x x x x ϕ--'=-=-.当01x <<时,()0f x '>;当1x >时,()0f x '<.所以函数()x ϕ在(0,1)上单调递减,在(1,)+∞上单调递减.当1x =时,[]min 1()ex ϕ=. 于是,当0x >时,1()ex ϕ≤.② 显然,不等式①、②中的等号不能同时成立. 故当2ea ≥时,()e x f x ->.请考生在第22~23题中任选一题作答,如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4;坐标系与参数方程在直角坐标系xOy 中,直线l 的参数方程为3,1x t y t =-⎧⎨=+⎩(t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标中,曲线π:4C ρθ⎛⎫=- ⎪⎝⎭. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程.(Ⅱ)求曲线C 上的点到直线l 的距离的最大值.【答案】见解析.【解析】(Ⅰ)由3,1x t y t =-⎧⎨=+⎩,消去t 得40x y +-=,所以直线l 的普通方程为40x y +-=.由π4ρθ⎛⎫=- ⎪⎝⎭ππcos cos sin sin 44θθ⎫=+⎪⎭ 2cos 2sin θθ=+,得22cos 2sin ρρθρθ=+.将222x y ρ=+,cos x ρθ=,sin y ρθ=代入上式, 得曲线C 的直角坐标方程为2222x y x y +=+,即22(1)(1)2x y -+-=. (Ⅱ)设曲线C上的点为(1,1)P αα, 则点P 到直线l的距离为d =当πsin 14α⎛⎫+=- ⎪⎝⎭时,min d = 所以曲线C 上的点到直线l的距离的最大值为23.(本小题满分10分)选修4-5:不等式选讲 已知函数()|1||2|f x x a x a =+-+-.(Ⅰ)若(1)3f <,求实数a 的取值范围. (Ⅱ)若1a ≥,x ∈R ,求证:()2f x ≥.【答案】见解析.【解析】(Ⅰ)因为(1)3f <,所以|||12|3a a +-<. ①当0a ≤时,得(12)3a a -+-<,解得23a >-,所以203a -<≤. ②当102a <<时,得(12)3a a +-<,解得2a >-,所以102a <<. ③当12a ≥时,得(12)3a a --<,解得43a <,所以1423a <≤. 综上所述,实数a 的取值范围是24,33⎛⎫- ⎪⎝⎭. (Ⅱ)因为1a ≥,x ∈R .所以()|1||2||(1)(2)|f x x a x a x a x a =+-+-+---≥|31|=-a=-≥.312a。
2019年普通高中高考文科数学模拟测试试卷及答案

试卷类型:A2019年普通高中高考模拟测试试卷数 学(文科)本试卷分选择题和非选择题两部分,共4页,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号填写在答题卡上.用2B 铅笔将答题卡上试卷类型(A )涂黑.在答题卡右上角的“试室号”栏填写本科目试室号,在“座位号”列表内填写座位号,并用2B 铅笔将相应的信息点涂黑.不按要求填涂的,答卷无效.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考试必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回. 参考公式:()()22221211236n n n n ++++++= ()S r r l π'=+圆台侧(,r r '分别表示圆台上、下底面半径,l 表示母线长)第一部分 选择题(共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.sin 480的值为A .12-B .C .12D 2.函数2x y =(x ∈R )的反函数为A .2log y x =(0x >)B .2log y x =(1x >)C .log 2x y =(0x >)D .log 2x y =(1x >)3.某个路口的交通指示灯,红灯时间为30秒,黄灯时间为10秒,绿灯时间为40秒.当你到达路口时,看见红灯的概率是A .18 B .38 C .12D .58 4.已知等差数列{}n a 的前三项分别为1a -,21a +,7a +,则这个数列的通项公式为 A .43n a n =- B .21n a n =-C .42n a n =-D .23n a n =-5.已知向量OA 和向量OC 对应的复数分别为34i +和2i -,则向量AC 对应的复数为A .53i +B .15i +C .15i --D .53i --6.1a =是直线1y ax =+和直线()21y a x =--垂直的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件7.一个圆台的两底面的面积分别为π,16π,侧面积为25π,则这个圆台的高为A .3B .4C .5 D9.如图1所示,ABCDEF 为正六边形,则以F 、C 为焦点,且经过A 、E 、D 、B 四点的双曲线的离心率为 A 1 B 1 C 1 D 1 10.已知方程210ax bx +-=(,a b ∈R 且0a >)有两个实数根,其中一个根在区间()1,2内,则a b -的取值范围为A .()1,-+∞B .(),1-∞-C .(),1-∞D .()1,1-图1。
高考文科数学2019新文数模拟试卷可A4纸直接打印附答案详解多张试卷综合

bn an lgan .
(1)求数列bn 的前 n 项和Tn ;
(2)若对一切 n N* 都有 bn bn1 ,求 a 的取值范围.
试卷第 3 页,总 3 页
2019年高考文数模拟试卷1 参考答案
1.A
【 解 析 】 集 合 A { x| 0 x 2 }, B {x|x2 9 , x Z}={2. 1,0,1, 2} , 所 以
1 1 a1 a2 A. 2016
2017
1 等于( ) a2 0 1 7
B. 2017 2018
C. 4034 2018
D. 4024 2017
13.不等式 x 1 5 的解集为__________.
14.等比数列bn 中, b5 2 , b7 4 ,则 b11 的值为__________.
5.已知数列an ,“an 为等差数列”是“ n N* , an 3n 2 ”的( )
A. 充分而不必要条件 B. 必要而不充分条件
C. 充要条件 D. 既不充分也不必要条件
6.若 a b 0 ,则下列不等式中一定不成立的是( )
A. 1 1 ab
B. a b
和为( ) A. 64 B. 32
C. 16
D. 128
2x y 6 0 9.设 x, y 满足约束条件{ x 2 y 6 0 ,则目标函数 z x y 取最小值时的最优解
y0
是( )
A. 6,0 B. 3,0 C. 0,6 D. 2, 2
10.已知an 是等差数列, a4 20, a12 20 ,记数列an 的第 n 项到第 n 3 项的
20.已知 f x 3sin2x cos2x ,在 ABC 中, a,b, c 分别为内角 A, B,C 所对的
2019年高考文科数学模拟试题精编(文)

高考文科数学模拟试题精编(一)第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集Q ={x |2x 2-5x ≤0,x ∈N},且P ⊆Q ,则满足条件的集合P 的个数是( )A .3B .4C .7D .8 2.若复数z =m (m -1)+(m -1)i 是纯虚数,其中m 是实数,则1z=( )A .iB .-iC .2iD .-2i 3.已知等差数列{a n }的公差为5,前n 项和为S n ,且a 1,a 2,a 5成等比数列,则S 6=( )A .80B .85C .90D .95 4.小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是( )A.34B.23C.12D.135.已知以下三视图中有三个同时表示某一个三棱锥,则不是..该三棱锥的三视图的是( )6.已知p :a =±1,q :函数f (x )=ln(x +a 2+x 2)为奇函数,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知f (x )是定义在R 上的偶函数,且满足f (x +4)=f (x ),当x ∈[-2,0]时,f (x )=-2x ,则f (1)+f (4)等于( )A.32B .-32C .-1D .18.我们可以用随机数法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为781,则由此可估计π的近似值为( )A .3.119B .3.124C .3.132D .3.1519.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f ⎝ ⎛⎭⎪⎫π6|对x ∈R恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z)B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z)C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z)10.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,直线PF 与曲线C 相交于M ,N 两点,若PF →=3MF→,则|MN |=( ) A.212 B.323 C .10 D .11 11.数列{a n }满足a 1=1,且a n +1=a 1+a n +n (n ∈N *),则1a 1+1a 2+…+1a 2 018等于( )A.4 0362 019B.4 0322 017C.2 0172 018D.2 0162 01812.已知函数f (x )=-2x 2+1,函数g (x )=⎩⎪⎨⎪⎧log 12x ,x >02x ,x ≤0,则函数y=|f (x )|-g (x )的零点的个数为( )A .2B .3C .4D .5第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知|a |=2,|b |=1,(a -2b )·(2a +b )=9,则|a +b |=________.14.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -3y +5≥02x +y -4≤0y +2≥0,则z =x +y 的最小值为________.15.已知F 为双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过原点的直线l 与双曲线交于M ,N 两点,且MF →·NF →=0,△MNF 的面积为ab ,则该双曲线的离心率为________.16.在矩形ABCD 中,AB <BC ,现将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直.其中正确结论的序号是________.(写出所有正确结论的序号)三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.(本小题满分12分)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求A 的值.18.(本小题满分12分)如图所示的几何体QPABCD 为一简单组合体,在底面ABCD 中,∠DAB =60°,AD ⊥DC ,AB ⊥BC ,QD ⊥平面ABCD ,PA ∥QD ,PA =1,AD =AB =QD =2.(1)求证:平面PAB ⊥平面QBC ; (2)求该组合体QPABCD 的体积.19.(本小题满分12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:日期 12月1日 12月2日 12月3日 12月4日 12月5日 温差x (℃) 10 11 13 12 8 发芽数y (颗)23253026163组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得到的线性回归方程是否可靠?附:b ^=∑i =1nx i y i -n x -y -∑i =1nx 2i -n x2,a ^=y -b x .20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=43,A ⎝ ⎛⎭⎪⎪⎫3,-132是椭圆上一点. (1)求椭圆C 的标准方程和离心率e 的值;(2)若T 为椭圆C 上异于顶点的任一点,M ,N 分别为椭圆的右顶点和上顶点,直线TM 与y 轴交于点P ,直线TN 与x 轴交于点Q ,求证:|PN |·|QM |为定值.21.(本小题满分12分)已知函数f (x )=(2-a )(x -1)-2ln x (a ∈R). (1)若曲线g (x )=f (x )+x 上点(1,g (1))处的切线过点(0,2),求函数g (x )的单调减区间;(2)若函数y =f (x )在区间⎝⎛⎭⎪⎫0,12内无零点,求实数a 的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos αy =t sin α(t 为参数),直线l 与曲线C :⎩⎪⎨⎪⎧x =1cos θy =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|PA |·|PB |的值.23.(本小题满分10分)选修4-5:不等式选讲已知函数f(x)=|x-3|+|x+m|(x∈R).(1)当m=1时,求不等式f(x)≥6的解集;(2)若不等式f(x)≤5的解集不是空集,求参数m的取值范围.高考文科数学模拟试题精编(一)班级:__________ 姓名:_________ 得分:_______请在答题区域内答题高考文科数学模拟试题精编(二) (考试用时:120分钟 试卷满分:150分)注意事项:1.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考文科数学模拟试题精编(一) (考试用时:120分钟 试卷满分:150分)注意事项:1.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
2.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
3.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集Q ={x |2x 2-5x ≤0,x ∈N},且P ⊆Q ,则满足条件的集合P 的个数是( )A .3B .4C .7D .8 2.若复数z =m (m -1)+(m -1)i 是纯虚数,其中m 是实数,则1z=( )A .iB .-iC .2iD .-2i 3.已知等差数列{a n }的公差为5,前n 项和为S n ,且a 1,a 2,a 5成等比数列,则S 6=( )A .80B .85C .90D .95 4.小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是( )A.34B.23C.12D.135.已知以下三视图中有三个同时表示某一个三棱锥,则不是..该三棱锥的三视图的是( )6.已知p :a =±1,q :函数f (x )=ln(x +a 2+x 2)为奇函数,则p 是q 成立的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.已知f (x )是定义在R 上的偶函数,且满足f (x +4)=f (x ),当x ∈[-2,0]时,f (x )=-2x ,则f (1)+f (4)等于( )A.32B .-32C .-1D .18.我们可以用随机数法估计π的值,如图所示的程序框图表示其基本步骤(函数RAND 是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为781,则由此可估计π的近似值为( )A .3.119B .3.124C .3.132D .3.1519.已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f ⎝ ⎛⎭⎪⎫π6|对x ∈R恒成立,且f ⎝ ⎛⎭⎪⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎢⎡⎦⎥⎤k π-π3,k π+π6(k ∈Z)B.⎣⎢⎡⎦⎥⎤k π,k π+π2(k ∈Z)C.⎣⎢⎡⎦⎥⎤k π+π6,k π+2π3(k ∈Z)D.⎣⎢⎡⎦⎥⎤k π-π2,k π(k ∈Z)10.已知抛物线C :y 2=8x 的焦点为F ,准线为l ,P 是l 上一点,直线PF 与曲线C 相交于M ,N 两点,若PF →=3MF→,则|MN |=( ) A.212 B.323 C .10 D .11 11.数列{a n }满足a 1=1,且a n +1=a 1+a n +n (n ∈N *),则1a 1+1a 2+…+1a 2 018等于( )A.4 0362 019B.4 0322 017C.2 0172 018D.2 0162 018 12.已知函数f (x )=-2x 2+1,函数g (x )=⎩⎪⎨⎪⎧log 12x ,x >02x ,x ≤0,则函数y=|f (x )|-g (x )的零点的个数为( )A .2B .3C .4D .5第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已知|a |=2,|b |=1,(a -2b )·(2a +b )=9,则|a +b |=________.14.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -3y +5≥02x +y -4≤0y +2≥0,则z =x +y 的最小值为________.15.已知F 为双曲线x 2a 2-y 2b2=1(a >0,b >0)的右焦点,过原点的直线l 与双曲线交于M ,N 两点,且MF →·NF →=0,△MNF 的面积为ab ,则该双曲线的离心率为________.16.在矩形ABCD 中,AB <BC ,现将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折的过程中,给出下列结论:①存在某个位置,使得直线AC 与直线BD 垂直; ②存在某个位置,使得直线AB 与直线CD 垂直; ③存在某个位置,使得直线AD 与直线BC 垂直.其中正确结论的序号是________.(写出所有正确结论的序号)三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.(本小题满分12分)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求A 的值.18.(本小题满分12分)如图所示的几何体QPABCD 为一简单组合体,在底面ABCD 中,∠DAB =60°,AD ⊥DC ,AB ⊥BC ,QD ⊥平面ABCD ,PA ∥QD ,PA =1,AD =AB =QD =2.(1)求证:平面PAB ⊥平面QBC ;(2)求该组合体QPABCD 的体积.19.(本小题满分12分)某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:3组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是不相邻2天数据的概率;(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y 关于x 的线性回归方程y ^=b ^x +a ^;(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得到的线性回归方程是否可靠?附:b ^=∑i =1nx i y i -n x -y -∑i =1nx 2i -n x2,a ^=y -b x .20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=43,A ⎝⎛⎭⎪⎪⎫3,-132是椭圆上一点. (1)求椭圆C 的标准方程和离心率e 的值;(2)若T 为椭圆C 上异于顶点的任一点,M ,N 分别为椭圆的右顶点和上顶点,直线TM 与y 轴交于点P ,直线TN 与x 轴交于点Q ,求证:|PN |·|QM |为定值.21.(本小题满分12分)已知函数f (x )=(2-a )(x -1)-2ln x (a ∈R). (1)若曲线g (x )=f (x )+x 上点(1,g (1))处的切线过点(0,2),求函数g (x )的单调减区间;(2)若函数y =f (x )在区间⎝⎛⎭⎪⎫0,12内无零点,求实数a 的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =3+t cos αy =t sin α(t 为参数),直线l 与曲线C :⎩⎪⎨⎪⎧x =1cos θy =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|PA |·|PB |的值. 23.(本小题满分10分)选修4-5:不等式选讲 已知函数f (x )=|x -3|+|x +m |(x ∈R). (1)当m =1时,求不等式f (x )≥6的解集;(2)若不等式f (x )≤5的解集不是空集,求参数m 的取值范围.高考文科数学模拟试题精编(一)班级:__________ 姓名:_________ 得分:_______请在答题区域内答题19.(本小题满分12分)高考文科数学模拟试题精编(二) (考试用时:120分钟 试卷满分:150分)注意事项:1.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
2.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
3.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.复数z =⎪⎪⎪⎪()3-i i +i 2 019(为虚数单位),则复数的共轭复数为( )A .2-iB .2+iC .4-iD .4+i2.已知集合M ={x |x 2<1},N ={x |2x >1},则M ∩N =( ) A .∅ B .{x |0<x <1} C .{x |x <0} D .{x |x <1}3.如图是调查某地区男女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出( )A .性别与喜欢理科无关B .女生中喜欢理科的比为80%C .男生比女生喜欢理科的可能性大些D .男生不喜欢理科的比为60%4.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的一条渐近线的倾斜角为30°,则其离心率的值为( )A .2B .2 2 C.233 D.3225.若θ∈[0,π],则sin ⎝⎛⎭⎪⎫θ+π3>12成立的概率为( )A.13B.12C.23 D .1 6.某几何体的三视图如图所示,则该几何体的体积为( )A .12B .18C .24D .30 7.不等式组⎩⎪⎨⎪⎧2x +y -3≤03x -y +3≥0x -2y +1≤0的解集记为D ,有下面四个命题:p 1∶∀(x ,y )∈D,2x +3y ≥-1;p 2∶∃(x ,y )∈D,2x -5y ≥-3;p 3∶∀(x ,y )∈D ,y -12-x ≤13;p 4∶∃(x ,y )∈D ,x 2+y 2+2y ≤1.其中的真命题是( )A .p 1,p 2B .p 2,p 3C .p 2,p 4D .p 3,p 4 8.现有四个函数:①y =x sin x ;②y =x cos x ;③y =x |cos x |;④y =x ·2x的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是( )A .④①②③B .①④③②C .③④②①D .①④②③9.若将函数f (x )=sin(2x +φ)+3cos(2x +φ)(0<φ<π)的图象向左平移π4个单位长度,平移后的图象关于点⎝ ⎛⎭⎪⎫π2,0对称,则函数g (x )=cos(x +φ)在⎣⎢⎡⎦⎥⎤-π2,π6上的最小值是( )A .-12B .-32 C.22 D.1210.宋元时期数学名著《算学启蒙》中有关于“松竹并生”的问题:松长五尺, 竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图是源于其思想的一个程序框图,若输入的a ,b 分别为5,2,则输出的n 等于( )A .2B .3C .4D .5 11.已知抛物线C :x 2=8y 与直线y =2x -2相交于A ,B 两点,点P 是抛物线C 上不同于A ,B 的一点,若直线PA ,PB 分别与直线y =2相交于点Q ,R ,O 为坐标原点,则OR →·OQ →的值是( )A .20B .16C .12D .与点P 的位置有关的一个实数12.已知函数f (x )=(x 2+2x +1)e x ,设t ∈[-3,-1],对任意x 1,x 2∈[t ,t +2],则|f (x 1)-f (x 2)|的最大值为( )A .4e -3B .4eC .4e +e -3D .4e +1第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.甲、乙、丙三名同学被问到是否具有A ,B ,C 三个微信公众号时, 甲说:我具有的微信公众号比乙多,但没有B 微信公众号; 乙说:我没有C 微信公众号;丙说:我们三个人具有同一个微信公众号. 由此可判断乙具有的微信公众号为________.14.若函数f (x )=2sin ⎝ ⎛⎭⎪⎫π8x +π4(-2<x <14)的图象与x 轴交于点A ,过点A 的直线l 与函数f (x )的图象交于B 、C 两点,O 为坐标原点,则(OB →+OC →)·OA →=________.15.已知三棱锥D ABC 的体积为2,△ABC 是等腰直角三角形,其斜边AC =2,且三棱锥D ABC 的外接球的球心O 恰好是AD 的中点,则球O 的体积为________.16.已知等腰三角形ABC 满足AB =AC ,3BC =2AB ,点D 为BC 边上一点且AD =BD ,则sin ∠ADB 的值为________.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.)(一)必考题:共60分.17.(本小题满分12分)已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14na n a n +1,求数列{b n }的前n 项和T n .18.(本小题满分12分)如图,已知四棱锥S ABCD ,底面梯形ABCD 中,AD ∥BC ,平面SAB ⊥平面ABCD ,△SAB 是等边三角形,已知AC =2AB =4,BC =2AD =2CD =25,M 是SD 上任意一点,SM →=mMD→,且m >0. (1)求证:平面SAB ⊥平面MAC ;(2)试确定m 的值,使三棱锥S ABC 体积为三棱锥S MAC 体积的3倍. 19.(本小题满分12分)在国际风帆比赛中,成绩以低分为优胜,比赛共11场,并以最佳的9场成绩计算最终的名次.在一次国际风帆比赛中,前7场比赛结束后,排名前8位的选手积分如下表: 运动员 比赛场次总分 1 2 3 4 5 6 7 8 9 1011A 3 2 2 2426 21 B 1 3 5 1 10 4 4 28 C 9 8 6 1 1 1 2 28 D7 844 3 1 8 35 E 3 12 5 8 2 7 5 42 F 4 11 6936847 G 10 12 12 8 12 10 771 H1212 6 12 7 12 1273(1)根据表中的比赛数据,比较运动员A 与B 的成绩及稳定情况; (2)从前7场平均分低于6.5分的运动员中,随机抽取2个运动员进行兴奋剂检查,求至少1个运动员平均分不低于5分的概率;(3)请依据前7场比赛的数据,预测冠亚军选手,并说明理由.20.(本小题满分12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为35,过左焦点F 且垂直于长轴的弦长为325.(1)求椭圆C 的标准方程;(2)点P (m,0)为椭圆C 的长轴上的一个动点,过点P 且斜率为45的直线l 交椭圆C 于A ,B 两点,证明:|PA |2+|PB |2为定值.21.(本小题满分12分)已知函数f (x )=12x 2+(1-a )x -a ln x .(1)讨论f (x )的单调性;(2)设a >0,证明:当0<x <a 时,f (a +x )<f (a -x );(3)设x 1,x 2是f (x )的两个零点,证明:f ′⎝ ⎛⎭⎪⎫x 1+x 22>0. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.(本小题满分10分)选修4-4:坐标系与参数方程在平面直角坐标系下,直线l :⎩⎪⎨⎪⎧x =1+22ty =22t(t 为参数),以原点O为极点,以x 轴的非负半轴为极轴,取相同长度单位建立极坐标系,曲线C 的极坐标方程为ρ-4cos θ=0.(1)写出直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 交于A ,B 两点,求|AB |的值. 23.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|x -a |,a ∈R. (1)当a =5时,解不等式f (x )≤3;(2)当a =1时,若∃x ∈R ,使得不等式f (x -1)+f (2x )≤1-2m 成立,求实数m 的取值范围.高考文科数学模拟试题精编(二)班级:__________ 姓名:_________ 得分:_______请在答题区域内答题19.(本小题满分12分)高考文科数学模拟试题精编(三) (考试用时:120分钟 试卷满分:150分)注意事项:1.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。