七年级(上)第一学期期末考试数学试题
七年级第一学期期末考试(数学)试题含答案

七年级第一学期期末考试(数学)(考试总分:120 分)一、单选题(本题共计16小题,总分42分)1.(3分)下列运算结果是a2的是( )A.a+aB.a+2C.a•2D.a•a2.(3分)如图,射线OA表示的方向是( )A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°3.(3分)我国渤海、黄海、东海、南海的海水中含有不少化学元素,其中铝、锰元素总量均约为8×106吨.用科学记数法表示铝、锰元素总量的和约是( )A.8×106吨B.1.6×107吨C.16×106吨D.16×1012吨4.(3分)已知x=5是方程2x−3+a=4的解,则a的值是( )A.3B.2C.-3D.-25.(3分)下列说法不正确...的是( )①a3b的系数是3,次数是3;①近似数304.16精确到了十分位;①多项式−5x+6x2−1是二次三项式;①射线AB与射线BA是同一条射线;①一个角的补角不是锐角就是钝角A.①①①①B.①①①C.①①①D.①①①6.(3分)下列变形不正确...的是( )A.如果a=b,那么a+5=b+5B.如果a=b,那么a−c=b−cC.如果ac=bc,那么a=bD.如果ac =bc,那么a=b7.(3分)已知x3-2m y2与2xy n是同类项,则m−n= ( )A.-1B.0C.1D.28.(3分)如图,数轴上三个点所对应的数分别为a,b,c,则下列结论正确的是( )A.a+b > 0B.a-c > 0C.ac > 0D.|a| > |b|x的值为6,则2x2-5x+6的值为( )9.(3分)已知整式x2−52A.9B.12C.18D.2410.(3分)下列图形中,可能..是如图所示的正方体展开图的是( )A.B.C.D.11.(2分)已知|a|=3,|b|=2,|a−b|=a−b,则a+b=( )A.5或−5B.1或5C.5或−1D.−5或112.(2分)互联网"微商"经营已成为大众创业新途径,某微商将一件商品按进价上调50%标价,再以标价的八折售出,仍可获利30元,则这件商品的进价为( )A.80元B.100元C.130元D.150元13.(2分)如图,将一副三角板叠在一起使直角顶点重合于点O(两块三角板可以在同一平面内自由转动),下列结论一定..成立的是( )A.①BOA > ①DOCB.①BOA+① DOC=180°C.①BOA−①DOC=90°D.①BOC≠①DOA14.(2分)如图,点C是线段AB上一点,点M是线段AB的中点,点N是线段AC的中点,若线段MN的长为4,则线段BC的长度是( )A.4B.6C.8D.1015.(2分)在某市奥林匹克联赛中,实验一中学子再创辉煌,竞赛成绩全市领先.某位同学连续答题40道,答对一题得5分,答错一题扣2分(不答同样算作答错),最终该同学获得144分.请问这位同学答对了多少道题?下面共列出4个方程,其中正确的有( )①设答对了x道题,则可列方程:5x−2(40−x)=144;①设答错了y道题,则可列方程:5(40−y)−2y=144;①设答对题目总共得a分,则可列方程:a5+a−1442=40;①设答错题目总共扣b分,则可列方程:144−b5-b2=40.A.4个B.3个C.2个D.1个16.(2分)在学校温暖课程数字兴趣课中,嘉淇同学将一个边长为a的正方形纸片(如图1)剪去两个相同的小长方形,得到一个""的图案(如图2),将剪下的两个小长方形刚好拼成一个"T"字形(如图3),则"T"字形的外围周长(不包括虚线部分)可表示为( )图1 图2图3A.3a−5bB.5a−8bC.5a−7bD.4a−6b二、填空题(本题共计3小题,总分12分)17.(4分)植树时只要定出两棵树的位置,就能确定这一行树所在的直线,原因是__________.18.(4分)对有理数a,b规定运算"①"的意义为a①b=a+2b,比如:5①7=5+2×7,则方程3x①14=2−x的解为__________ .19.(4分)如图,某花园护栏是用直径为80厘米的半圆形条钢组制而成,且每增加一个半圆形条钢,护栏长度就增加a厘米(相邻两个条钢之间都有交叉,a为正整数),设半圆形条钢的总个数为x(x为正整数).(1).当a=50,x=2时,护栏总长度为__________厘米;(2).当a=60时,护栏总长度为__________厘米(用含x的式子表示,结果要求化简);(3).若护栏的总长度为15米,为尽量减少条钢用量,a的值应为__________厘米.三、解答题(本题共计7小题,总分66分)20.(8分)按要求解答下列各小题.(1).计算:(-1)2021+(-18)×|-29|-4÷(-2);(2).化简:5a2+3b2+2(a2−b2)−(5a2−3b2).21.(8分)嘉淇正在解关于x的方程A:x−2m=−3x+4.(1).用含m的式子表示方程A的解;(2).嘉淇妈妈问:"若方程A与关于x的方程B:m=4-x2的解互为相反数,那么此时方程A的解为多少?"请你帮嘉淇解决妈妈提出的问题.22.(9分)已知A=by2−ay−1,B=2y2+3ay−10y+3.(1).若多项式2A−B的值与字母y的取值无关,求a,b的值;(2).在1的条件下,求(2a2b+2ab2)−[2(a2b−1)+3a2b+2]的值.23.(9分)阅读下列材料:计算:124÷(13−14+112).解法一:原式=124÷13−124÷14+124÷112=124×3−124×4+124×12=1124.解法二:原式=124÷(412−312+112)=124÷212=124×6=14.解法三:原式的倒数=(13−14+112)÷124=(13−14+112)×24=13×24−14×24+112×24=4原式=14 .(1).上述得到的结果不同,你认为解法________是错误的; (2).计算:(12−14+16)×36=________;(3).请你选择合适的解法计算:(−1210)÷(37+215−310−521)24.(10分)已知点O 是直线AB 上一点,①COE=60°,OF 是①AOE 的平分线. (1).如图,当①BOE=80°时,求①COF 的度数;(2).当①COE 和射线OF 在如图所示的位置,且题目条件不变时.①求①COF 与①AOE 之间的数量关系; ①直接写出①BOE-2①COF 的值.25.(10分)甲、乙两城相距800千米,一辆客车从甲城开往乙城,车速为a(0<a <100)千米/小时,同时一辆出租车从乙城开往甲城,车速为90千米/小时,设客车行驶时间为t (小时). (1).当t =5时,客车与乙城的距离为______千米(用含a 的式子表示);(2).已知a =70,丙城在甲、乙两城之间,且与甲城相距260千米,当客车和出租车在甲、乙之间的M 处相遇时,出租车乘客小王突然接到开会通知,需要立即返回,此时小王有两种返回乙城的方案:方案一:继续乘坐出租车到丙城,加油后立刻返回乙城(出租车加油时间忽略不计); 方案二:在M 处换乘客车返回乙城.假设客车和出租车的行驶速度始终不变,试通过计算,分析小王选择哪种方案能更快返回到乙城?26.(12分)如图,已知点M是线段AB上一定点,AB=12cm,C,D两点分别从M,B出发,以1cm/s,2cm/s的速度沿直线AB向左运动(C在线段AM上,D在线段BM上).(1).若AM=4cm,当点C,D运动了2s时,AC=______.DM=______.(2).若点C,D运动时,总有MD=2AC,求AM的长;的值。
重庆市2023-2024学年七年级上学期期末数学试题(含答案)

乌江教育协作体2023-2024学年(上)期末学业质量联合调研抽测初一数学试题(分数:150分,时间:120分钟)一、选择题1.地球与月球平均距离约为384 000千米,将数字384 000用科学记数法表示为( )A .3.84×106B .3.84×105C .38.4×104D .38.4×1052.计算||+1的结果是( )A .B .1C .D .3.4月18日,国际统计局在国新办发布会上公布2023年一季度国民经济运行情况,初步核算,一季度国内生产总值284997亿元,按不变价格计算,同比增长4.5%,比上年年四季度环比增长2.2%,将数据“284997亿”用科学记数法表示为( )A .B .C .D .4.娄底市针对城区中小学日益突出的“大班额”问题,决定自2012年起启动《中心城区化解大班额四年(2012年~2015年)行动计划》,计划投入资金8.71亿元,力争新增学位3.29万个.3.29万用科学记数法表示为( )A .3.29×105B .3.29×106C .3.29×104D .3.29×1035.整理一批图书,由一个人做要40小时完成,现在计划先由x 人做4小时后,再增加2人和他们一起8小时,共完成这项工作的,假设每个人的工作效率相同,则列方程正确的是( )A .B .C .D .6.如图 C 、D 是线段AB 上的两点,且D 是线段AC 的中点,若AB=11,DB=8,则CB 的长为( )A .3B .4C .5D .67.下列各对数中,不是互为相反数的是( )A .与B .与(-3)²C .与(-10)²D .与8.如图,在同一平面内,,,点为反向延长线上一点(图中所有角均指小于180°的角).下列结论:①;②;③;④若绕点顺时针旋转一周,其它条件都不变,若,则或15°,其中结论一定正确的有( )个.34-7414-1452.8499710⨯82.8499710⨯122.8499710⨯132.8499710⨯34()82414040x x ++=()824340404x x ++=()82414040x x -+=()824340404x x -+=()3--3--23-100-3(2)-32-90AOB COD ∠=∠=︒COE BOE ∠=∠F OE AOE DOE ∠=∠180AOD COB ∠+∠=︒90COB AOD ∠-∠=︒OA O :1:6FOD EOC ∠∠=18FOD ∠=︒A .4个B .3个C .2个D .1个9.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( )A .40分钟B .42分钟C .44分钟D .46分钟10.已知数轴上两点、对应的数分别为-1,3,点为数轴上一动点,其对应的数为,当到点、的距离之和为7时,则对应的数的值为( )A.B .和C .和D .和二、填空题11.若与是同类项,则的值为.12.一个圆柱的底面半径为,高为,若它的高不变,将底面半径增加了,体积相应增加了3.则厘米.13.将两个三角尺按图所示的位置摆放,已知,则.14.后屯小学2010年有图书3200套,2011年比2010年新增了,2011比2010年新增了套图书.15.三个互不相等的整数的积为15,则这三个数的和的最大值等于 .16.下列说法:①若,则x 为负数;②若不是负数,则a 为非正数;③;④若,,则.其中正确的结论有.(填序号)17.计算:①1+2﹣3﹣4+5+6﹣7﹣8+9+…﹣2012+2013+2014﹣2015﹣2016+2017= ;②1﹣22+32﹣42+52﹣…﹣962+972﹣982+992=.18.下图是我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”A B P x P A B x 9292-5292-52-9252-12m a b +312na b n m cm R 6cm 2cm 192cmπR=36α∠=︒β∠=180x x +=a -()22a a -=-a b =-b b =a b =这个三角形给出了 的展开式的系数规律(按的次数由大到小的顺序),请依据上述规律,写出展开式中含有项的系数是三、解答题19.已知.(1)化简和;(2)试比较的值与的大小.20.在抗洪抢险中,解放军战士的冲锋舟加满油,沿东西方向的河流抢救灾民,早晨从A 地出发,晚上到达B 地,约定向东为正方向,当天的航行路程记录如下(单位:千米):14,,,,13,,,.(1)请你帮忙确定B 地位于A 地的什么方向,距离A 地多少千米?(2)救灾过程中,冲锋舟离出发点A 最远处有多远?(3)若冲锋舟每千米耗油0.5升,油箱容量为28升,求冲锋舟当天救灾过程中至少还需补充多少升油?21.如图,数轴上有A 、B 、C 三个点,A 、B 、C 对应的数分别是a 、b 、c,且满足,点C 在原点右侧距离原点10个单位,动点P 从A 出发,以每秒1个单位的速度向终点C 运动,设运动时间为t 秒.(1)求a 、b 、c 的值;(2)若点P 到A 点的距离是点P 到B 点的距离的2倍,求点P 对应的数;(3)当点P 运动到B 点时,点Q 从点A 出发,以每秒3个单位的速度向C 点运动,Q 点到达C 点后,再立即以同样的速度返回,运动到终点A .在点Q 开始运动后第几秒时,P 、Q 两点之间的距离为4?请说明理由.22.符号表示一种新运算,运算示例如下:,,,,……符号g 表示另一种新运算,运算示例如下:,,,,…….利用以上新运算,完成下列问题是:()n a b +(1,2,3,4...)n =a 20172x x ⎛⎫- ⎪⎝⎭2015x ()()()22223013,34231x a a a y a a a a ⎡⎤=+--=----⎣⎦x y x y -09-8+7-6-12+5-24100a b +++=f ()2213f -=--=-()1112f -=--=-()0011f =-=-()1110f =-=1(3)3g =-1()33g -=1(2)2g =-1(22g -=(1)分别求、的值;(2)用含的代数式表示与,并比较与的大小;(3)先化简,再求值:,其中,.23.某市对居民生活用电实行阶梯电价,具体收费标准如下表:档次月用电量电价(元/度)第1档不超过240度的部分第2档超过240度但不超过400度的部分第3档超过400度的部分已知10月份该市居民老李家用电200度,交电费120元;9月份老李家交电费183元.(1)表中的值为________;(2)求老李家9月份的用电量;(3)若8月份老李家用电的平均电价为元/度,求老李家8月份的用电量.24.已知,(1)如图甲,已知O 为直线上一点,,且位于直线上方①当平分时,度数为 ;②点F 在射线上,若射线绕点O 逆时针旋转,.请判断和的数量关系并说明理由;(2)如图乙,是一个小于的钝角,,从边与边重合开始绕点O 逆时针旋转(旋转到的反向延长线上时停止旋转),当时,求的值()10f ()10g -x ()f x ()g x ()f x -1()g x 222211()2()32f x f xy y g g x xy y ⎛⎫⎛⎫--++ ⎪ ⎪--⎝⎭⎝⎭2x =-4y =a0.650.3a +a 0.762AOC BOC ∠=∠AB 80DOE ∠=︒DOE ∠AB OD AOC ∠EOB ∠OB OF ()060n n ︒<<3FOA AOD ∠=∠FOE ∠EOC ∠AOB ∠108︒12∠=∠DOE AOB DOE ∠OE OB OD OB 32AOD EOC BOE ∠+∠=∠:COD BOD ∠∠乌江教育协作体2023-2024学年(上)期末学业质量联合调研抽测初一数学答案1.B 2.A 3.D 4.C5.B6.C7.D8.C9.C 【详解】试题解析:设开始做作业时的时间是6点x 分,∴6x ﹣0.5x=180﹣120,解得x≈11;再设做完作业后的时间是6点y 分,∴6y ﹣0.5y=180+120,解得y≈55,∴此同学做作业大约用了55﹣11=44分钟.故选C .10.D 【详解】分三种情况讨论:①当点P 位于点A 、B 之间时,P 到A 、B 之间的距离之和为4,不满足条件;②当点P 位于点A 左边时,2PA +AB =7,∴2(-1-x )+4=7,解得:x =;③当点P 位于点B 右边时,AB +2PB =7,∴4+2(x -3)=7,解得:x =;综上所述:x 或x .故选D .11.412.713.14.40015.916.②③④17. 1 ;495018.19.(1),;,,;(2)∵,∵,∴的值比小.20.(1)解:∵,∴B 地在A 地的东边20千米;(2)∵路程记录中各点离出发点的距离分别为:14千米;千米;千米;千米;千米;千米;千米;52-9252=-92=36︒4034-()()223013x a a a=+--22303033a a a =+-+233330a a =-+()2234231y a a a a ⎡⎤=----⎣⎦22342231a a a a =-+-+233334a a =-+()()223333033334x y a a a a -=-+--+2233330333344a a a a =-+-+-=-4<0-x y -01498713612520-+-+-+-=1495-=149813-+=149876-+-=149871319-+-+=1498713613-+-+-=149871361225-+-+-+=千米.∴最远处离出发点25千米;(3)这一天走的总路程为:千米,应耗油(升),故还需补充的油量为:(升).21.(1)解:,,,,;∵点C 在原点右侧距离原点10个单位,∴.(2)解:由题意得,点表示的数是,点到A 点的距离是点到点的距离的2倍,,即,解得或,当时,;当时,;点对应的数为4或;(3)解:设在点开始运动后第秒时,、两点之间的距离为4,当点在点的右侧,且点还没追上点时,,解得:;当点在点的左侧,且点追上点后时,,解得:;当点到达点后,且点在点左侧时,,解得:;当点到达点后,且点在点右侧时,,解得:;综上,当点开始运动后第5、9、、秒时,、两点之间的距离为4.22.(1)∵,,,,……∴,∴;∵,,,,……1498713612520-+-+-+-=1498713612574+++++++=740.537⨯=37289-=|24||10|0a b +++= 240a ∴+=100b +=24a ∴=-10b =-10010c =-=P 24t -+ P P B ()()242422410t t ∴-+--=-+--214t t =-28t =283t =28t =2424284t -+=-+=283t =2844242433t -+=-+=-∴P 443-Q a P Q P Q Q P 3414a a +=+5a =P Q Q P 3414a a -=+9a =Q C P Q 14433434a a +++-=12.5a =Q C P Q 14433434a a +-+-=14.5a =Q 12.514.5P Q ()2213f -=--=-()1112f -=--=-()0011f =-=-()1110f =-=()1f n n =-()101019f =-=1(3)3g =-1(33g -=1(2)2g =-1(22g -=∴,∴.(2)由(1)可得,,∴∵∴(3)∵,,,当,时,原式.23.(1)依题意得:,解得:.故答案为:.(2)设老李家9月份的用电量为x 度,∵(元),,∴.依题意得:,解得:.答:老李家9月份的用电量为300度.(3).∵三个档次的平均价格为(元),8月份老李家用电的平均电价为元/度,∴老李家8月份用电量一定超过400度,设老李家8月份的用电量为y 度,依题意得:,()1g n n=-()11101010g -=-=-()1f x x =-()1g x x=-()()11f x x x -=--=-+111()x g x x==--1x x -+>-()()1f x g x ->()1f x x =-()1g x x=-222211()2()32f x f xy y g g x xy y ⎛⎫⎛⎫--++ ⎪ ⎪--⎝⎭⎝⎭()()()()222212132x xy y x xy y =--------2222122236x xy y x xy y =--++-+-+27xy y =--+2x =-4y =()2244781671=--⨯-+=-+=-200120a =0.6a =0.60.6240144⨯=144183<240x >1440.65240183x +-=()300x =0.650.60.90.713++≈0.76()1440.654002400.60.34000.76y y +⨯-++-=()()解得:.答:老李家8月份的用电量为800度.24.(1)解:①∵,,∴,,∵当平分时,∴,∵,∴,.②当在的右侧,射线绕点O 逆时针旋转,∵,∴,∵,∴,∵,∴;当在的左侧,射线绕点O 逆时针旋转,如图,此时,而,则,则,不符合题意,舍去.(2)∵,,800y =2AOC BOC ∠=∠180AOC BOC ∠+∠=︒18020231AOC ∠=⨯︒=︒1180603BOC ∠=⨯︒=︒OD AOC ∠1602DOC AOC ∠=∠=︒80DOE ∠=︒806020COE ∠=︒-︒=︒602040BOE BOC COE ∠=∠-∠=︒-︒=︒OE OC OF ()060n n ︒<<120AOC ∠=︒120COD AOD ∠=︒-∠80DOE ∠=︒8012040COE DOE COD AOD AOD ∠=∠-∠=︒-︒+∠=∠-︒3FOA AOD ∠=∠EOF AOF AOE ∠=∠-∠()3AOD AOC COE =∠-∠+∠312040AOD AOD =∠-︒-∠+︒()240AOD =∠-︒2COE =∠OE OC OF ()060n n ︒<<40AOD ∠<︒3FOA AOD ∠=∠120FOA ∠<︒>60n ︒2AOC BOC ∠=∠()108AOB y y ∠=︒<∴,,∵,∴,当在内部时,如图,设,则,,,,∵,∴,解得:,∴,当,在内部时,如图,设,则,,,,∵,∴,23AOC y ∠=︒13BOC y ∠=︒12∠=∠DOE AOB 12DOE y ∠=︒OE BOC ∠BOE x ∠=︒13COE BOC BOE y x ∠=∠-∠=︒-︒111236COD DOE COE y y x y x ∠=∠-∠=︒-︒+︒=︒+︒211362AOD AOC COD y y x y x ∠=∠-∠=︒-︒-︒=︒-︒12BOD BOE DOE y x ∠=∠+∠=︒+︒32AOD EOC BOE ∠+∠=∠113232y x y x x -+-=215y x =1216617651633631625y x x xCOD y x BOD y x y x x x ++∠+====∠+++OE OD AOC ∠BOE x ∠=︒13COE x y ∠=︒-︒111236COD y y x y x ∠=︒-︒+︒=︒+︒211362AOD y y x y x ∠=︒-︒-︒=︒-︒12BOD y x ∠=︒+︒32AOD EOC BOE ∠+∠=∠113232y x x y x -+-=解得:,此时,即,则,故不符合题意,舍去,当在内部,在外部时,如图,设,则,,,,∵,∴,解得:,而,即,故不符合题意,舍去,当,都在外部,如图,设,则,,,,∵,∴,解得:,∴,9y x =>BOE BOC ∠∠1>3x y 3y x <OE AOC ∠OD AOC ∠BOE x ∠=︒13COE x y ∠=︒-︒111236COD y y x y x ∠=︒-︒+︒=︒+︒121632AOD y x y x y ∠=︒+︒-︒=︒-︒12BOD y x ∠=︒+︒32AOD EOC BOE ∠+∠=∠113232x y x y x -+-=35y x =BOE AOB ∠<∠y x >OD OE AOB ∠BOE x ∠=︒13COE x y ∠=︒-︒111236COD y y x y x ∠=︒-︒+︒=︒+︒121632AOD y x y x y ∠=︒+︒-︒=︒-︒12BOD x y ∠=︒+︒32AOD EOC BOE ∠+∠=∠113232x y x y x -+-=35y x =13661165193613625y x x xCOD y x BOD y x y x x x ++∠+====∠+++综上:的值为:或.:COD BOD ∠∠17311113。
人教版数学七年级上学期《期末考试试题》及答案解析

21.如图,直线AB、CD相交于点O,OE平分∠AOC,OE⊥OF,∠AOE=32°.
(1)求∠DOB的度数;
(2)OF是∠AOD的角平分线吗?为什么?
22.(1)由大小相同 小立方块搭成的几何体如图1,请在图2的方格中画出该几何体的俯视图和左视图.
(2)用小立方体搭一个几何体,使得它的俯视图和左视图与你在方格中所画的一致,则这样的几何体最少要个小立方块,最多要个小立方块.
人 教 版 数 学 七年 级上学 期
期末测 试 卷
学校________班级________姓名________成绩________
一、选择题(每小题3分,满分24分)
1. 的倒数是()
A. B. C. D.
2.“比 的3倍大5的数”用代数式表示为()
A. B. C. D.
3.下列计算结果正确的是()
[答案]7或-7
[解析]
[分析]
设输入的数为x,根据程序列出方程求解即可.
[详解]解:设输入的数为x,则有:
当y=3时,得:
,
解得
故答案为7或-7
[点睛]本题考查了计算程序和列方程求解,能理解程序图是解题关键.
14.如图,若D是AB的中点,E是BC的中点,若AC=8,BC=5,则AD=______.
[详解]主视图与左视图是长方形,所以该几何体是柱体,
又因为俯视图是圆,
所以该几何体是圆柱,
故选C
[点睛]本题考查了由三视图确定几何体的形状,熟练掌握常见几何体的三视图是解题的关键.
6.下列说法正确的个数是()
①射线MN与射线NM是同一条射线;
②两点确定一条直线;
③两点之间直线最短;
④若2AB=AC,则点B是AC的中点
人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.-2的倒数是( )A .-2B .12- C .12 D .22.数据6950000用科学记数法表示为( ) A .469510⨯B .66.9510⨯C .669.510⨯D .70.69510⨯3.如图,点A 位于点O 的( )A .北偏西 65°方向上B .南偏西 65°方向上C .北偏西 35°方向上D .南偏西 35°方向上4.如果向北走50m ,记作+50m ,那么-10m 表示( ) A .向东走10mB .向西走10mC .向南走10mD .向北走10m5.下列运用等式性质进行的变形,其中不正确的为( ) A .如果a b =,那么a c b c +=+ B .如果a b =,那么1122a b -=- C .如果a b =,那么ac bc =D .如果a b =,那么a b c c= 6.如图所示的是三通管的立体图,则这个几何体的俯视图是( )A .B .C .D .7.下午2时30分,钟表中时针与分针的夹角为( ) A .90︒B .105︒C .120︒D .135︒8.已知方程()130mm x ++=是关于x 的一元一次方程,则m 的值是( )A .±1B .1C .-1D .0或169.某志愿者团队承担整理校园图书馆一批图书的任务,由一个人做要40h 完成,现计划由一部分人先做4h ,然后增加2人与他们一起做8h ,完成这项工作.假设志愿者的工作效率相同,具体应先安排多少人工作?如果设安排x 人先做4h ,下列四个方程中正确的是( ). A .4(2)814040x x++= B .48(2)14040x x ++= C .48(2)14040x x -+= D .4814040x x += 10.如图是一个正方体的平面展开图,若将展开图折叠成正方体后,相对面上所标的两个数相等,则a 的值为( )A .2B .5-C .1D .1-二、填空题11.一只蚂蚁由数轴上表示2-的点先向右爬3个单位长度,再向左爬5个单位长度,则此蚂蚁所在的位置表示的数是________. 12.7--=__________. 13.单项式2335π-x y 的系数是__________. 14.已知∠A=67°,则∠A 的余角等于______度.15.用四舍五入法将3.1416精确到0.01后,得到的近似数是____________ 16.已知2|1|(2)0a b -++=,则2011)a b (+的值是___________. 17.若关于x 的方程2x+a=6的解是x=1,则a 的值等于__________. 18.13.26°=_____°_____′_______″19.若2x 3yn 与﹣5xmy 2的和是单项式,则m+n=________.20.一组按规律排列的式子:25811234,,,,(0)b b b b ab a a a a--≠,其中第7个式子是_______,第n 个式子是_______(n 为正整数). 三、解答题 21.计算(1)713620-+-+(2)22323(2)-⨯+⨯-(3)232(21)x x x ---+(4)180483940︒︒'''-22.解方程 (1)5x+12=2x ﹣9 (2)211236x x +--=23.化简求值:22223y x (2x y)(x 3y )-+--+,其中1,2x y ==.24.如图,已知点 A ,B ,C 不在同一条直线上,根据要求画图.(1)作直线 AB . (2)作射线 CA .(3)作线段 BC ,并延长 BC 到 D ,使 CD =CB .25.一个角的补角比它的余角的5倍少10︒,求这个角的度数.26.如图.OE 平分BOC ∠,OD 平分AOC ∠,20,40BOE AOD ∠=︒∠=︒,求DOE ∠的度数.27.如图,点C 在线段AB 上,AC =8cm ,CB =6cm ,点M 、N 分别是AC 、BC 的中点.(1)求线段MN 的长.(2)若C 为线段AB 上任一点,如果AB=14cm ,求MN 的长.28.某车间28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,一个螺栓需要配两个螺母,要想每天生产的螺栓和螺母刚好配套,应安排生产螺栓和螺母的工人各多少名?29.从数轴上看:|a|表示数 a 的点到原点之间的距离,类似地|3|a -表示数 a 的点到表示数3的点之间的距离,|7||(7)|a a +=--表示数 a 的点到表示数–7的点之间的距离.一般地||-a b 表示数 a 的点到表示数 b 的点之间的距离.(1)在数轴上,若表示数x 的点与表示数–2 的点之间的距离为 3 个单位长度,则 x =_______. (2)利用数轴,求方程|5||4|9x x ++-=的所有整数解.参考答案1.B【分析】根据倒数的定义(两个非零数相乘积为1,则说它们互为倒数,其中一个数是另一个数的倒数)求解.【详解】解:-2的倒数是-12, 故选:B . 2.B【分析】科学记数法的表示形式为10n a ⨯,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:6950000=6.95×106, 故选:B .【点睛】题目主要考查科学记数法的变换方法,熟练掌握科学记数法的变换方法是解题关键. 3.A【分析】根据方位角的概念,结合上北下南左西右东的规定进行判断. 【详解】解:点A 位于点O 的北偏西65°的方向上. 故选:A .【点睛】本题考查了方位角的定义,正确确定基准点是关键. 4.C【分析】根据正负数的意义判断即可. 【详解】解:∠向北走50m, 记作+50m , ∠向北走为正,则向南走为负, ∠-10m 表示向南走10m , 故选C .【点睛】此题考查的是正负数的意义,掌握正负数表示具有相反意义的量是解决此题的关键. 5.D【分析】由等式的基本性质直接判断各选项的正误,进而可得到答案.【详解】解:由等式的基本性质1:等式左右两边同时加上同一个数或式子,等式不变; 可得选项A 、B 正确,不符合题意.由等式的基本性质2:等式左右两边同时乘以或除以一个不为零的数或式子; 可知选项C 正确,不符合题意,选项D 错误,符合题意. 故选:D .【点睛】本题考查等式的基本性质,熟练掌握等式的基本性质是解题的关键. 6.A【详解】解:俯视图是从上往下看得到的视图,从上往下看是一个矩形,中间有一个与长边相切的圆. 故选A . 7.B【分析】根据钟表上12个数字,每相邻两个数字之间的夹角为30°,数出时针与分针之间的空格进行求解即可得.【详解】解:∠钟表上12个数字,每相邻两个数字之间的夹角为30°,下午2时30分时,时针的分针与时针之间有3.5个空格, ∠所成夹角为30°×3.5=105°, 故选:B .【点睛】题目主要考查钟面角的计算,熟练掌握钟面角的基础知识点是解题关键. 8.B【分析】直接利用一元一次方程的定义进而分析得出答案. 【详解】解:∠方程(+1)30+=mm x 是关于x 的一元一次方程,∠1m =,+10≠m , 解得:1m =. 故选:B .【点睛】本题主要考查了一元一次方程的定义,正确把握一元一次方程的定义是解题关键. 9.B【分析】由一个人做要40h 完成,即一个人一小时能完成全部工作的140,就是已知工作的速度.本题中存在的相等关系是:先安排的一部分人4h 的工作+增加2人后8h 的工作=全部工作.设安排x 人先做4h ,就可以列出方程. 【详解】解:设安排x 人先做4h ,根据题意可得:48(2)14040x x ++=故选:B.【点睛】本题考查了一元一次方程的应用,是一个工作效率问题,理解一个人做要40小时完成,即一个人一小时能完成全部工作的140,这一个关系是解题的关键.10.D【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形确定出相对面,再根据相对面上的数字相等,求出a.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“a”与“1-”是相对面,相对面上的两个数相等,1a∴=-,故选:D.【点睛】本题考查了正方体的表面展开图,熟知正方体的表面展开图中相对的面之间一定相隔一个正方形式解决问题的关键.11.-4【分析】数轴上点的移动规律是“左减右加”,所以此蚂蚁所在的位置表示的数是-2+3-5=-4.【详解】解:蚂蚁所在的位置为:-2+3-5=-4.故答案为:-4.【点睛】主要考查了数轴,要注意数轴上点的移动规律是“左减右加”.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.12.-7【分析】根据题干信息,利用负数的绝对值等于它的相反数进行分析解答.【详解】解:负数的绝对值等于它的相反数,-l-7|=-7.故答案为:-7.【点睛】本题考查绝对值的性质以及相反数的定义,熟练掌握绝对值的性质以及相反数的定义是解题的关键.13.3 5π-【分析】根据单项式中的数字因数叫做单项式的系数,即可得出答案.【详解】解:单项式2335π-x y 的系数是35π-,故答案为35π-. 【点睛】本题是对单项式系数的考查,熟练掌握单项式的系数知识是解决本题的关键,难度较小. 14.23【详解】∠∠A=67°, ∠∠A 的余角=90°﹣67°=23°, 故答案为23. 15.3.14【分析】近似数精确到哪一位,应当看末位数字实际在哪一位. 【详解】3.1416精确到0.01为3.14. 故答案为3.14.【点睛】本题考查了近似数和有效数字,解题的关键是熟练掌握近似数与有效数字的知识点. 16.1-【详解】试题解析:根据题意得,a -1=0,b+2=0, 解得a=1,b=-2,所以,(a+b )2011=(1-2)2011=-1. 17.4【分析】把x=1代入方程计算即可求出a 的值. 【详解】解:把x =1代入方程得: 2+a ﹣6=0, 解得:a =4, 故答案为:4. 18. 13 15 36【分析】根据角度制的转换规律,乘以60即可解题. 【详解】解:0.26︒⨯60=15.6′, 0.6′⨯60=36″, ∠13.26°= 13°15′36″. 故答案为:13、15、3619.5【详解】解:根据题意:和是单项式,可知它们是同类项,因此根据同类项的概念,可得m=3,n=2,代入m+n=5. 故答案为5.20. 207b a - 31(1)n n n b a-- 【分析】根据分子的变化得出分子变化的规律,根据分母的变化得出分母变化的规律,根据分数符号的变化规律得出分数符号的变化规律,即可得到该组式子的变化规律. 【详解】分子为b ,指数为2,5,8,11,..., ∴分子指数的规律为3n – 1,分母为a ,指数为1,2,3,4,..., ∴分母指数的规律为n ,分数符号为-,+,-,+,…., ∴其规律为()1n-,于是,第7个式子为207b a-,第n 个式子为31(1)n nnb a--, 故答案为:207b a-,31(1)n n nb a --. 21.(1)20 (2)6-(3)253x x -+- (4)1312020'''︒【分析】(1)按照有理数的混合运算法则计算即可; (2)按照有理数的混合运算法则计算即可; (3)按照整式的加减运算法则计算即可; (4)按照角度的运算法则计算即可. (1)解:原式=6620-+ =20, (2)解:原式=9234-⨯+⨯ =1812-+ =6-, (3)解:原式=23221x x x --+- =253x x -+-, (4)解:原式=1795960483940''''''︒-︒ =1312020'''︒. 22.(1)x=-7 (2)x=3【分析】(1)根据移项合并同类项,系数化为1,求出方程的解;(2)根据去分母,去括号,移项合并同类项,系数化为1,求出方程的解. (1)解:5x+12=2x -9, 移项得5x -2x=-9-12, 合并同类项,得3x=-21, 系数化为1,得x=-7; (2) 解:211236x x +--= 去分母,得2(2x+1)-(x -1)=12, 去括号,得4x+2-x+1=12, 移项合并同类项,得3x=9, 系数化为1,得x=3. 23.222x x y -+-;-2【分析】根据整式的加减混合运算法则计算将原式化简,再代值计算即可.【详解】解:原式2222323y x x y x y =-+---222x x y =-+-.当1x =,2y =时,原式221212=-⨯+⨯-2=-.24.(1)见解析(2)见解析(3)见解析【分析】(1)连接AB 并双向延长即可;(2)连接CA 并延长即可得;(3)连接BC 并延长,使用刻度尺测得CD=CB ,即可确定点D 的位置.(1)如图所示:直线AB 即为所作;(2)如图所示:射线CA 即为所作;(3)如图所示:线段BC=CD 即为所作.【点睛】题目主要考查了作直线、射线和线段,熟练掌握这三个基本图形的性质及作法是解题关键.25.这个角的度数为65︒【分析】设这个角为x ︒,根据题意列方程求解即可.【详解】解:设这个角为x ︒,则余角为(90)x -︒,补角为(180)x -︒,由题意得:()18059010-=--x x ,解得:65x =.答:这个角的度数是65︒.【点睛】本题考查了一元一次方程的应用,以及余角和补角的意义,如果两个角的和等于90°,那么这两个角互为余角,其中一个角叫做另一个角的余角;如果两个角的和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角,根据题意列出方程是解题关键.26.60度【分析】根据角平分线定义求出∠COD和∠COE,代入∠DOE=∠COD+∠COE求出即可.【详解】解:∠OE平分∠BOC,∠BOE=20°,∠∠BOE=∠COE=20°,∠OD平分∠AOC,∠AOD=40°,∠∠COD=∠AOD=40°,∠∠DOE=∠COD+∠COE=40°+20°=60°.【点睛】本题考查角平分线的定义,解题关键是角平分线的定义的运用.27.(1)7cm(2)7cm【分析】(1)根据线段中点的性质,可得CM、CN的长,根据线段的和差,可得答案;(2)根据线段中点的性质及线段的和差,可得答案.(1)解:∠点M,N分别是AC,BC的中点,AC=8,CB=6,∠CM=12AC=12×8=4,CN=12BC=12×6=3,∠MN=CM+CN=4+3=7cm;(2)解:∠点M,N分别是AC,BC的中点,AC+CB=AB=14cm,∠CM=12AC,CN=12BC,∠MN=CM+CN=12AC +12BC =12(AC+BC)=7cm.【点睛】本题考查了两点间的距离及线段中点的性质,熟练掌握运用线段中点的性质进行计算是解题关键.28.生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.【分析】设生产螺栓的工人有x名,则生产螺母的工人有(28﹣x)名,根据题意等量关系:“螺栓数量×2=螺母数量”列出方程,求出方程的解即可得到结果.【详解】设生产螺栓的工人有x 名,则生产螺母的工人有(28﹣x )名,根据题意得: 12x×2=18(28﹣x )解得:x=12.当x=12时,28﹣x=16.答:生产螺栓的工人有12名,则生产螺母的工人有16名,才能使当天生产的螺栓和螺母与第一天生产的刚好配套.【点睛】本题考查了一元一次方程的应用,得到螺栓和螺母数量的等量关系是解答本题的关键.29.(1)1或-5(2)x=-5,-4,-3,-2,-1,0,1,2,3,4.【分析】(1)根据数轴表示数的方法分两种情况进行求解即可;(2)根据54x x ++-所表示的意义,结合数轴表示数的意义求解即可.(1)解:根据题意可得:()23x --=,∠x -(-2)=±3,x=(-2) ±3,解得:x 1=1,x 2=-5,故答案为:1或-5;(2)解:如图所示,设点C 在数轴上所表示的数为x ,当C 在线段AB (含端点A 、B )上时,()55x x CA +=--=,4x CB -=,∠CA+CB=AB=9,即x 是549x x ++-=的解,∠x是整数,∠x=-5,-4,-3,-2,-1,0,1,2,3,4.。
人教版七年级上册数学期末考试试卷附答案

人教版七年级上册数学期末考试试题一、单选题1.2-的值等于()A.2B.12-C.12D.﹣22.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.已知x=y,则下列变形不一定成立的是()A.x+a=y+a B.x ya a=C.x﹣a=y﹣a D.ax=ay4.下列各组数中,互为相反数的是()A.-(-1)与1B.(-1)2与1C.|1|-与1D.-12与15.下列图形中,不是正方体的展开图的是()A.B.C.D.6.下列说法中正确的是()A.两点之间的所有连线中,线段最短B.射线就是直线C.两条射线组成的图形叫做角D.小于平角的角可分为锐角和钝角两类7.某品牌手机的进价为1200元,按原价的八折出售可获利14%,则该手机的原售价为()A.1800元B.1700元C.1710元D.1750元8.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是()A.x+1=2(x﹣2)B.x+3=2(x﹣1)C.x+1=2(x﹣3)D.1 112xx+-=+9.某中学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4500米,一列火车以每小时120千米的速度迎面开来,测得火车与队首学生相遇,到车尾与队末学生相遇共经过60秒,如果队伍长500米,那么火车长()A .1500米B .1575米C .2000米D .2075米10.如图,小明将一个正方形纸片剪去一个宽为4cm 的长条后,再从剩下的长方形纸片上剪去一个宽为5cm 的长条,如果两次剪下的长条面积正好相等,那么每一个长条的面积为()A .162cm B .202cm C .802cm D .1602cm 二、填空题11.数轴上距离原点2个单位长度的点表示的数是_____12.如果把6.48712保留三位有效数字可近似为_________.13.青藏高原是世界上海拔最高的高原,它的面积约为2500000平方千米,数据2500000用科学记数法表示为_______________.14.单项式2323x y -的系数是__________,次数是___________.15.若代数式53m a b 与22n a b -是同类项,那么m +n =______.16.小明每晚19:00都要看新闻联播,这时钟面上时针和分针的夹角的度数为_________度.17.已知|3m ﹣12|+212n ⎛⎫+ ⎪⎝⎭=0,则2m ﹣n=_____.18.关于x 的方程352x k -+=的解是1x =,则k =________.19.当x=1时,代数式31px qx ++的值为2012,则当x=-1时,代数式31px qx ++的值为_____.20.如图,∠AOC 和∠BOD 都是直角,如果∠DOC=36°,则∠AOB 是__________度三、解答题21.计算(1)(-3)-13+(-12)-|-43|.(2)2108(2)(4)(3)-+÷---⨯-(3)233136402924''''''+︒︒22.解方程(1)()()()228131x x x ---=-(2)225353x x x ---=-23.先化简,再求值222212[32()6]2x y x y ----+,其中1,2x y =-=-.24.一个角的余角比这个角的12少30°,请你计算出这个角的大小.25.如图M 是线段AC 中点,B 在线段AC 上,且AB=2cm ,BC=2AB ,求MC 和BM 长度.26.一艘船从甲码头到乙码头顺流而行,用了2h ;从乙码头返回甲码头逆流而行,用了2.5h .已知水流的速度是3km/h ,求船在静水中的平均速度.(要求列方程解答)27.某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍.乒乓球拍每副定价30元,乒乓球每盒定价5元.经洽谈后,甲店每买一副球拍赠送一盒乒乓球,乙店全部按定价的九折优惠.该班需球拍5副,乒乓球若干盒(不小于5盒).问:(1)当购买乒乓球多少盒时,两种优惠办法付款一样?(2)当购买15盒乒乓球时,请你去办这件事,你打算去哪家商店购买?为什么?28.如图,已知90AOB ∠=︒,OE 平分∠AOB ,60EOF ∠=︒,OF 平分∠BOC .求∠BOC 和∠AOC 的度数.参考答案1.A【详解】根据数轴上某个点与原点的距离叫做这个点表示的数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以22-=,故选A .2.B【分析】结合题意,根据两点确定一条直线的性质分析,即可得到答案.【详解】在墙壁上固定一根横放的木条,则至少需要钉子的枚数是2,故选:B .【点睛】本题考查了直线的知识;解题的关键是熟练掌握两点确定一条直线的性质,从而完成求解.3.B【分析】答题时首先记住等式的基本性质,然后对每个选项进行分析判断.【详解】A.C.D的变形均符合等式的基本性质,B项a不能为0,不一定成立.故答案选B.【点睛】本题考查了等式的性质,解题的关键是熟练的掌握等式的性质.4.D【分析】利用相反数的定义,两个数之和为零来判断.【详解】解:A,-(-1)与1不是相反数,选项错误,不符合题意;B,(-1)2与1不是互为相反数,选项错误,不符合题意;C,|-1|与1不是相反数,选项错误,不符合题意;D,-12与1是相反数,选项正确,符合题意;故选D.【点睛】本题考查了相反数,解题的关键是掌握相应的定义即两个数之和为零,这两个数互为相反数.5.D【详解】A、B、C是正方体的展开图,D不是正方体的展开图.故选D.6.A【详解】试题分析:根据线段、射线和角的概念,对选项一一分析,选择正确答案.解:A、两点之间的所有连线中,线段最短,选项正确;B、射线是直线的一部分,选项错误;C、有公共端点的两条射线组成的图形叫做角,选项错误;D、小于平角的角可分为锐角、钝角,还应包含直角,选项错误.故选:A.考点:直线、射线、线段;角的概念.7.C【详解】设手机的原售价为x元,由题意得,0.8x-1200=1200×14%,解得:x=1710.即该手机的售价为1710元.故选:C .8.C【详解】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊,∴乙有13122x x +++=只,∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=-即x+1=2(x−3).故选:C .9.B【详解】试题解析:设火车长x 千米.60秒160=小时,根据题意得:()1 4.51200.5.60x ⨯+=+解得:x=1.575.1.575千米=1575米.火车的长为1575米.故选B.10.C【分析】首先根据题意,设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ;然后根据第一次剪下的长条的面积=第二次剪下的长条的面积,列出方程,求出x 的值是多少,即可求出每一个长条面积为多少.【详解】解:设原来正方形纸的边长是xcm ,则第一次剪下的长条的长是xcm ,宽是4cm ,第二次剪下的长条的长是(x ﹣4)cm ,宽是5cm ,则4x =5(x ﹣4),去括号,可得:4x =5x ﹣20,移项,可得:5x ﹣4x =20,解得x =204x =4×20=80(cm 2)所以每一个长条面积为80cm2.故选:C.【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答是解题的关键.11.-2或2【详解】试题分析:设数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,进而可得出结论.解:数轴上与原点的距离等于2的点所表示的数是x,则|x|=2,解得x=±2.故答案为-2或2.考点:1.数轴;2.绝对值.12.6.49【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.近似数6.48712保留三位有效数字,精确到百分位.【详解】解:6.48712保留三位有效数字可近似为:6.49.故答案是:6.49.【点睛】本题考查了近似数和有效数字,从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.最后一位所在的位置就是精确度.13.62.510⨯【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:2500000=2.5×106.故答案为:2.5×106.【点睛】本题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.14.23-5【分析】根据单项式系数和次数的定义:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数解答即可.【详解】解:单项式2323x y-的系数是23-,次数是5,故答案为:23-,5.【点睛】本题考查单项式的知识,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.15.7【分析】根据同类项的概念求解.【详解】解:∵代数式53m a b 与22n a b -是同类项,∴n=5,m=2,∴m+n=2+5=7.故答案为:7.【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.150【分析】利用钟表表盘的特征:钟表上12个数字,每相邻两个数字之间的夹角为30°解答即可.【详解】解:19:00,时针和分针中间相差5大格.∵钟表12个数字,每相邻两个数字之间的夹角为30°,∴19:00分针与时针的夹角是5×30°=150°.故答案为:150【点睛】本题考查的是钟面角的含义及计算,掌握“钟表上12个数字,每相邻两个数字之间的夹角为30°”是解本题的关键.17.10【详解】解:∵|3m ﹣12|+2(1)2n +=0,∴|3m ﹣12|=0,2(1)2n +=0,∴m=4,n=﹣2,∴2m ﹣n=8﹣(﹣2)=10.故答案为:10【点睛】本题考查了非负数的性质,几个非负数的和等于0,则每个数都等于0,初中范围内的非负数有:绝对值,算术平方根和偶次方.18.6【分析】把x=1代入已知方程,列出关于k 的新方程,通过解新方程来求k 的值.【详解】解:把x=1代入,得3×1-k+5=2,解得k=6.故答案是:6.【点睛】本题考查了一元一次方程的解的定义.把方程的解代入原方程,等式左右两边相等.19.-2010【分析】由当x=1时,代数式31px qx ++的值为2012,可得2011p q +=,把x=-1代入代数式31px qx ++整理后,再把2011p q +=代入计算即可.【详解】因为当1x =时,3112012px qx p q ++=++=,所以2011p q +=,所以当1x =-时,311()1201112010px qx p q p q ++=--+=-++=-+=-.【点睛】本题考查了求代数式的值,把所给字母代入代数式时,要补上必要的括号和运算符号,然后按照有理数的运算顺序计算即可,熟练掌握有理数的运算法则是解答本题的关键.在求代数式的值时,一般先化简,再把各字母的取值代入求值.有时题目并未给出各个字母的取值,而是给出一个或几个式子的值,这时可以把这一个或几个式子看作一个整体,将待求式化为含有这一个或几个式子的形式,再代入求值.运用整体代换,往往能使问题得到简化.20.144【分析】根据∠AOC 和∠BOD 都是直角,∠DOC=36°,可得∠AOD 的度数,从而求得结果.【详解】∵∠AOC=∠BOD=90º,∠DOC=36°∴∠AOD=∠AOC-∠DOC=54°∴∠AOB =∠AOD+∠BOD =144°.故答案为36°.点睛:本题是基础应用题,只需学生熟练掌握角的大小关系,即可完成.21.(1)-71;(2)-20;(3)641'︒.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题;(3)根据度分秒的换算进行计算即可.(1)解:(-3)-13+(-12)-|-43|=-3-13-12-43=-71;(2)解:2108(2)(4)(3)-+÷---⨯-108412=-+÷-10212=-+-=-20;(3)解:233136402924''''''+︒︒636060'''=︒641'=︒.【点睛】本题考查了有理数的混合运算以及度分秒的换算,注意:1°60'=,160'''=.22.(1)13x =(2)38x =-【分析】(1)去括号,移项,合并同类项,系数化为1;(2)去分母,移项,合并同裂项,系数化为1.(1)()()()228131x x x ---=-,去括号得248833x x x --+=-,整理得13x =(2)225353x x x ---=-,去分母得122535533x x x -+=--,整理得38x =-【点睛】本题考查方程的化简求解,需熟练掌握其运算方法.23.22532x y ---,14-【分析】先去小括号,再去中括号得到化简后的结果,再将未知数的值代入计算.【详解】解:原式=222232()32x y x y --+--=22532x y ---,当1,2x y =-=-时,原式=()()2251232---⨯--=14-.【点睛】此题考查了整式的化简求值,正确掌握整式去括号的计算法则,是解题的关键.24.这个角的度数是80°.【分析】设这个角的度数为x ,根据互余的两角的和等于90°表示出它的余角,然后列出方程求.【详解】设这个角的度数为x ,则它的余角为(90°-x ),由题意得:12x-(90°-x )=30°,解得:x=80°.答:这个角的度数是80°.25.MC 的长度是3cm ;BM 的长度是1cm .【分析】先根据AB=2cm ,BC=2AB 求出BC 的长,进而得出AC 的长,由M 是线段AC 中点求出AM ,再由BM=AM-AB 即可得出结论.【详解】解:∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=2+4=6(cm),∵M 是线段AC 中点,∴MC=AM=12AC=3(cm),∴BM=AM-AB=3-2=1(cm).故MC 的长度是3cm ;BM 的长度是1cm .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.26.在静水中的速度为27km/h【分析】等量关系为:顺水速度⨯顺水时间=逆水速度⨯逆水时间.即2⨯(静水速度+水流速度) 2.5=⨯(静水速度-水流速度).【详解】解:设船在静水中的平均速度为x km/h ,根据往返路程相等,列得2(3) 2.5(3)x x +=-,解得27x =.答:在静水中的速度为27km/h .【点睛】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,列出方程求解.27.(1)购买20盒乒乓球时,两种优惠办法付款一样(2)购买15盒乒乓球时,去甲店较合算,见解析【分析】(1)根据总价=单价×数量结合两家店给出的优惠政策,即可用含x 的代数式表示出在两家店购买所需费用;(2)根据在两家店购买所需费用相同,即可得出关于x 的一元一次方程,解之即可得出结论.(1)解:设购买x 盒乒乓球时,两种优惠办法付款一样.依题意得,()()3055530550.9x x ⨯+-⨯=⨯+⨯,解得:x =20,所以,购买20盒乒乓球时,两种优惠办法付款一样.(2)当购买15盒时:甲店需付款:()3051555200⨯+-⨯=(元),乙店需付款:()3051550.9202.5⨯+⨯⨯=(元),因为200202.5<,所以购买15盒乒乓球时,去甲店较合算.【点睛】本题考查了一元一次方程的应用以及列代数式,解题的关键是:(1)根据各数量之间的关系,用含x 的代数式表示出在两家店购买所需费用;(2)找准等量关系,正确列出一元一次方程.28.∠BOC 和∠AOC 的度数分别为30°,120︒【分析】根据角平分线的定义得到1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,再计算出15BOF EOF BOE ∠=∠-∠=︒,然后根据∠BOC=2∠BOF ,∠AOC=∠BOC+∠AOB 进行计算.【详解】解:∵OE 平分∠AOB ,OF 平分∠BOC ,∴1452BOE AOB ∠=∠=︒,∠BOC=2∠BOF ,∵604515BOF EOF BOE ∠=∠-∠=︒-︒=︒,∴230BOC BOF ∠=∠=︒,3090120AOC BOC AOB ∠=∠+∠=︒+︒=︒.即∠BOC 和∠AOC 的度数分别为30°,120︒.【点睛】本题主要考查了角的计算以及角平分线的定义,正确应用角平分线的定义是解题关键.。
七年级上册数学期末考试试卷及答案

七年级上册数学期末考试试卷及答案七年级上册数学期末考试试卷及答案期末考试对学生一个学期所学知识做全面的检测,下面是店铺为大家整理的七年级数学期末考试卷及答案,希望大家能够认真做题,查漏补缺!更多考试相关内容请及时关注我们店铺!一、选择题(共15小题,每小题3分,满分45分)1. |﹣2|等于( )A.﹣2B.﹣C.2D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( )A.1枚B.2枚C.3枚D.任意枚3.下列方程为一元一次方程的是( )A.y+3=0B.x+2y=3C.x2=2xD. +y=24.下列各组数中,互为相反数的是( )A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与15.如图,下列图形全部属于柱体的是( )A. B. C. D.6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=﹣3D.x=27.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是( )A.8cmB.84mC.8cm或4cmD.无法确定8.一元一次方程﹣ =1,去分母后得( )A.2(2x+1)﹣x﹣3=1B.2(2x+1)﹣x﹣3=6C.2(2x+1)﹣(x﹣3)=1D.2(2x+1)﹣(x﹣3)=69.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有( )A.1个B.2个C.3个D.4个10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30°B.45°C.50°D.60°11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为( )A.69°B.111°C.141°D.159°12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为( )A.5B.4C.3D.213.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB= AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB 中点.其中正确的是( )A.①③④B.④C.②③④D.③④15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A. B.C. D.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣ xy2的系数是.17.若x=2是方程8﹣2x=ax的解,则a= .18.计算:15°37′+42°51′=.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于cm2(结果保留π).20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= cm.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为度.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2) = ;(3) ﹣ =1;(4)x﹣ =1﹣ .26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是(请写出盈利或亏损) 元.32.|x+2|+|x﹣2|+|x﹣1|的最小值是.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.2015-2016学年山东省济南市历下区七年级(上)期末数学试卷参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.|﹣2|等于( )A.﹣2B.﹣C.2D.【考点】绝对值.【专题】探究型.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.【点评】本题考查绝对值,解题的关键是明确绝对值的定义.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是( )A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.下列方程为一元一次方程的是( )A.y+3=0B.x+2y=3C.x2=2xD. +y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.下列各组数中,互为相反数的是( )A.﹣(﹣1)与1B.(﹣1)2与1C.|﹣1|与1D.﹣12与1【考点】相反数;绝对值;有理数的乘方.【专题】计算题.【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.【解答】解:A、﹣(﹣1)=1,所以A选项错误;B、(﹣1)2=1,所以B选项错误;C、|﹣1|=1,所以C选项错误;D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.5.如图,下列图形全部属于柱体的是( )A. B. C. D.【考点】认识立体图形.【专题】常规题型.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选C.【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.6.若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )A.x=0B.x=3C.x=﹣3D.x=2【考点】一元一次方程的定义.【专题】计算题.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.7.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是( )A.8cmB.84mC.8cm或4cmD.无法确定【考点】两点间的距离.【分析】根据点B在线段AC上和在线段AC外两种情况进行解答即可.【解答】解:如图1,当点B在线段AC上时,∵AB=6cm,BC=2cm,∴AC=6+2=8cm;如图2,当点CB在线段AC外时,∵AB=6cm,BC=2cm,∴AC=6﹣2=4cm.故选:C.【点评】本题考查的是两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.8.一元一次方程﹣ =1,去分母后得( )A.2(2x+1)﹣x﹣3=1B.2(2x+1)﹣x﹣3=6C.2(2x+1)﹣(x﹣3)=1D.2(2x+1)﹣(x﹣3)=6【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣(x﹣3)=6,故选D【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.9.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有( )A.1个B.2个C.3个D.4个【考点】总体、个体、样本、样本容量;全面调查与抽样调查.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:①这种调查方式是抽样调查故①正确;②6000名学生的数学成绩是总体,故②错误;③每名学生的数学成绩是个体,故③正确;④500名学生是总体的一个样本,故④正确;故选:C.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于( )A.30°B.45°C.50°D.60°【考点】角的计算.【专题】计算题.【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选A.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B 在南偏东15°的方向,那么∠AOB的大小为( )A.69°B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为( )A.5B.4C.3D.2【考点】两点间的距离.【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10,M是AB中点,∴BM= AB=5,又∵NB=2,∴MN=BM﹣BN=5﹣2=3.故选C.【点评】考查了两点间的距离,根据点M是AB中点先求出BM 的长度是解本题的关键.13.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为( )A.240元B.250元C.280元D.300元【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB= AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB 中点.其中正确的是( )A.①③④B.④C.②③④D.③④【考点】比较线段的长短.【专题】应用题.【分析】根据线段中点的定义:线段上一点,到线段两端点距离相等的点,可进行判断解答.【解答】解:①如图,AM=BM,但M不是线段AB的中点;故本选项错误;②如图,由AB=2AM,得AM=MB;故本选项正确;③根据线段中点的定义判断,故本选项正确;④根据线段中点的定义判断,故本选项正确;故选C.【点评】本题考查了线段中点的判断,符合线段中点的条件:①在已知线段上②把已知线段分成两条相等线段的点.15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是( )A. B.C. D.【考点】由实际问题抽象出一元一次方程.【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.【解答】解:设A港和B港相距x千米,可得方程:= ﹣3.故选A.【点评】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度﹣水流速度.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣ xy2的系数是﹣.【考点】单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣ xy2的系数是﹣,故答案为:﹣ .【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.17.若x=2是方程8﹣2x=ax的解,则a= 2 .【考点】一元一次方程的解.【分析】把x=2,代入方程得到一个关于a的方程,即可求解.【解答】解:把x=2代入方程,得:8﹣4=2a,解得:a=2.故答案是:2.【点评】本题考查了方程的解的定义,理解定义是关键.18.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于6πcm2(结果保留π).【考点】扇形面积的计算.【分析】直接利用扇形面积公式计算即可.【解答】解:=6π(cm2).故答案为6π.【点评】此题主要考查了扇形的面积公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇形= .熟记公式是解题的关键.20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= 15 cm.【考点】比较线段的长短.【专题】计算题.【分析】已知AB和AC的长度,即可求出BC的长度,点D是BC的中点,则可求出CD的长度,AD的长度等于AC的长度加上CD 的长度.【解答】解:因为AB=24cm,AC=6cm,所以BC=18cm,点D是BC中点,所以CD的长度为:9cm,AD=AC+CD=15cm.【点评】本题关键是根据题干中的图形得出各线段之间的关系,然后根据这些关系并结合已知条件即可求出AD的长度.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE为20 度.【考点】角平分线的定义.【分析】先求出∠BOC=140°,再由OD平分∠BOC,求出∠COD= ∠BOC=70°,即可求出∠DOE=20°.【解答】解:∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD= ∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°;故答案为:20.【点评】本题考查了角平分线的定义;弄清各个角之间的数量关系是解决问题的关键.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为55 .【考点】轴对称的性质.【分析】根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=70°,可得出∠B′OG的度数.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG= ×110°=55°.【点评】本题考查轴对称的性质,在解答此类问题时要注意数形结合的应用.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为(﹣1)n+1•2n•xn.【考点】单项式.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵2x=(﹣1)1+1•21•x1;﹣4x2=(﹣1)2+1•22•x2;8x3=(﹣1)3+1•23•x3;﹣16x4=(﹣1)4+1•24•x4;第n个单项式为(﹣1)n+1•2n•xn,故答案为:(﹣1)n+1•2n•xn.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.【考点】整式的加减—化简求值;有理数的减法;有理数的乘方.【专题】计算题;整式.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式去括号合并得到最简结果,把a的`值代入计算即可求出值.【解答】解:(1)原式=﹣1﹣5×(2﹣9)=﹣1+35=34;(2)原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13,当a=﹣1时,原式=﹣3﹣34﹣13=﹣50.【点评】此题考查了整式的加减﹣化简求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2) = ;(3) ﹣ =1;(4)x﹣ =1﹣ .【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2y=﹣4y﹣20,移项合并得:2y=﹣26,解得:x=﹣13;(2)去分母得:6x﹣4=3,移项合并得:6x=7,解得:x= ;(3)去分母得:6(3x+4)﹣(7﹣2x)=12,去括号得:18x+24﹣7+2x=12,移项合并得:20x=﹣5,解得:x=﹣0.25;(4)去分母得:6x﹣3(3﹣2x)=6﹣(x+2),去括号得:6x﹣9+6x=6﹣x﹣2,移项合并得:13x=13,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?【考点】一元一次方程的应用.【分析】设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,依题意得:3x+2(43﹣x)=94,解得x=8.答:一个杯子的价格为8元.【点评】本题考查了一元一次方程的应用.关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择合适的方法进行计算.27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?【考点】一元一次方程的应用.【分析】(1)根据题意可以列出相应的方程,本题得以解决;(2)根据题意,分两种情况,一种是相遇前相距40千米,一种是相遇后相距40千米,从而可以分别写出两种情况下的方程,本题得以解决.【解答】解:(1)设同向而行,开始时乙在前,经过x小时甲追上乙,18x﹣6x=48解得,x=4即同向而行,开始时乙在前,经过4小时甲追上乙;(2)设相向而行,经过x小时两人相距40千米,18x+6x=48﹣40或18x+6x=48+40,解得x= 或x=即相向而行,经过小时或小时两人相距40千米.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,列出相应的方程,注意第(2)问有两种情况.28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.【考点】频数(率)分布直方图;扇形统计图.【分析】(1)根据时间是1小时的有32人,占40%,据此即可求得总人数;(2)利用总人数乘以百分比即可求得时间是0.5小时的一组的人数,即可作出直方图;(3)利用360°乘以活动时间是2小时的一组所占的百分比即可求得圆心角的度数.【解答】解:(1)调查人数=32÷40%=80(人);(2)户外活动时间为0.5小时的人数=80×20%=16(人);补全频数分布直方图见下图:(3)表示户外活动时间2小时的扇形圆心角的度数= ×360°=48°.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOC的度数,再由AO⊥DO求出∠AOD的度数,根据∠COD=∠AOD﹣∠AOC即可得出结论.【解答】解:∵∠AOB=150°,OC平分∠AOB,∴∠AOC= ∠AOB=75°.∵AO⊥DO,∴∠AOD=90°,∴∠COD=∠AOD﹣∠AOC=90°﹣75°=15°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.【考点】一元一次方程的解;代数式求值.【专题】计算题.【分析】此题把x的值代入,得出与的值,即可得出此题答案.【解答】解:把x=2代入方程得:,∴3(a﹣2)=2(2b﹣3),∴3a﹣6=4b﹣6,∴3a=4b,∴ ,,∴ .【点评】此题考查的是一元一次方程的解,关键在于解出关于a,b的比值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是亏损(请写出盈利或亏损) 80 元.【考点】一元一次方程的应用.【分析】设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【解答】解:设盈利20%的电子琴的成本为x元,x(1+20%)=960,解得x=800;设亏本20%的电子琴的成本为y元,y(1﹣20%)=960,解得y=1200;∴960×2﹣(800+1200)=﹣80,∴亏损80元,故答案为:亏损;80.【点评】此题主要考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.32.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【考点】绝对值.【分析】根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小.【解答】解:|x+2|+|x﹣2|+|x﹣1|表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小,是4.故答案为:4.【点评】本题主要考查了绝对值的意义,正确理解|x﹣a|表示数轴上x与a之间的距离,是解决本题的关键.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.【考点】圆柱的计算.【专题】计算题.【分析】结合图形,知水的体积不变,从而根据第二个图空着的部分的高度是2cm,可以求得水与空着的部分的体积比为4:2=2:1.结合第一个图中水的体积,即可求得总容积.【解答】解:由已知条件知,第二个图上部空白部分的高为7﹣5=2cm,从而水与空着的部分的体积比为4:2=2:1.由第一个图知水的体积为10×4=40,所以总的容积为40÷2×(2+1)=60立方厘米.【点评】此题的关键是解决不同底的问题,能够有机地把两个图形结合起来,求得水与空着的部分的体积比.下载全文。
山东省菏泽市-七年级上学期期末数学试题(含答案)

七年级数学试题注意事项:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共6页.满分120分.考试用时120分钟.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的学校、姓名、准考证号填写在答题卡中规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题,共30分)一、选择题:(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.《九章算术》中著有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若把气温为零上5℃记作5+℃,则3-℃表示气温为( )A .零上5℃B .零下5℃C .零上3℃D .零下3℃2.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,如果从上面的方向去观察它,得到的平面图形是()A .B .C .D .3.如图2,数轴上A ,B ,C 三个点所对应的数分别是a ,b ,c ,点O 为原点,且有OA OC =,下列说法正确的是()①c 为整数;②a c =;③a c +为非负数;④c b -为负数;⑤c b a -+为整数.A .①②B .②③C .②③⑤D .③④⑤4.若代数式223n x y 与264x y -是同类项,则常数n 的值( )A .2B .3C .4D .65.由中国工程院院刊《工程》(Engineering )评选的“2023全球十大工程成就”2023年12月20日在北京揭晓发布,中国空间站、ChatGPT 等10个中外项目入选.中国空间站已于2022年底全面建成,工程随即转入应用与发展阶段,全面实现了载人航天工程“三步走”发展战略目标.中国空间站离地球的远地点距离约为347000m ,其中347000用科学记数法可表示为( )A .434.710⨯B .43.4710⨯C .53.4710⨯D .60.34710⨯6.下列四个图中,能用1∠,AOB ∠,O ∠三种方法表示同一个角的图形是()A .B .C .D .7.下列方程的变形中,不正确的是( )A .由193x x -=,得27x =-B .由761x x =-,得761x x -=C .由510x =,得2x =D .由36x x =-,得36x x +=8.同一平面内A ,B ,C 三点,经过任意两点画直线,共可画( )A .1条B .3条C .1条或3条D .不能确定9.空气的成分(除去水、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是( )A .条形统计图B .折线统计图C .扇形统计图D .频数分布直方图10.()na b +(n 为非负整数)当0n =,1,2,3,…时的展开情况如下所示:()01a b +=()1a b a b +=+()2222a b a ab b +=++()3322333a b a a b ab b +=+++()4432234464a b a a b a b ab b +=++++()554322345510105a b a a b a b a b ab b +=+++++观察上面式子的等号右边各项的系数,我们得到了如图所示:这就是南宋数学家杨辉在其著作《详解九章算法》中列出的一个神奇的“图”,他揭示了()na b +展开后各项系数的情况,被后人称为“杨辉三角”.根据图,你认为()9a b +展开式中所有项系数的和应该是()A .128B .256C .512D .1024第Ⅱ卷(非选择题,共90分)二、填空题:(本大题共8个小题,每小题3分,共24分,直接填写答案.)11.圆周率是圆的周长与直径的比值,即圆周率=圆周长÷直径,一般用希腊字母π表示,是一个在数学及物理学中普遍存在的数学常数.中国古算书《周髀算经》(约公元前2世纪)的中有“径一而周三”的记载,意即取π3≈.公元480年左右,南北朝时期的数学家祖冲之进一步得出精确到小数点后7位的结果,给出不足近似值3.1415926和过剩近似值3.1415927,在之后的800年里祖冲之计算出的π值都是最准确的.用四舍五入法把3.141592精确到0.01,所得到的近似数为______.12.如图,是某几何体的展开图,该几何体是______.13.如图,将五边形ABCDE 沿虚线裁去一个角得到六边形ABCDGF ,则该六边形的周长一定比原五边形的周长小,理由为______.14.干支纪年法是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称.干支纪年法的组合方式是天干在前,地支在后,以十天干和十二地支循环配合,每个组合代表一年,60年为一个循环.我们把天干、地支按顺序排列,且给它们编上序号.天干的计算方法是:年份减3,除以10所得的余数;地支的计算方法是:年份减3,除以12所得的余数.以2024年为例:天干为:()20243102011-÷=⋅⋅⋅⋅⋅⋅;地支为:()20243121685-÷=⋅⋅⋅⋅⋅⋅.对照天干地支表得出,2024年为农历甲辰年.123456789101112天干甲乙丙丁戊己庚辛壬癸地支子丑寅卯辰巳午未申酉戊亥请你依据上述规律推断2050年为农历______年.15.写出一个整式,这个整式与2x 进行加减运算后,结果是单项式:______.16.为了加强学生垃圾分类意识,提高学生垃圾分类能力,某校从全校2000名学生的垃圾分类知识测试卷中随机抽取了200份试卷进行成绩统计.在这个问题中,样本是______.17.《九章算术》是中国古代的数学专著,是《算经十书》中最重要的一部,成书于公元一世纪左右,进入汉朝后又经许多学者的删补才最后成书.《九章算术》内容十分丰富,全书总结了战国、秦、汉时期的数学成就.同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,《方程》章还在世界数学史上首次阐述了负数及其加减运算法则.《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有共买物,人出八,盈三;入出七,不足四.问人数、物价各几何?意思是:现有几个人共买一件物品,每人出8钱多出3钱;每人出7钱,还差4钱.问:人数、物价各是多少?若设物价是x 钱,根据题意,可列一元一次方程为______.18.古希腊著名的毕达哥拉斯学派把1,3,6,10,……这样的数称为“三角数”;把1,4,9,16,……这样的数称为“正方形数”.观察图可以发现,任何一个大于1的“正方形数”都可以写成两个相邻的“三角形数”之和.那么“正方形数”2n (n 为大于1的整数)可以写成两个相邻的“三角形数”______与______之和。
初一上册数学期末试卷及答案

七年级第一学期期末试卷一、选择题:本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,恰有一项....是符合题目要求的,请将正确选项的代号填入题后括号内. 1.如果+20%表示增加20%,那么-6%表示( ). A .增加14% B .增加6% C .减少6% D .减少26%2.如果2()13⨯-=,则“”内应填的实数是( ) A .32B .23C .23-D .32-3. 实数a ,b 在数轴上的对应点如图所示,则下列不等式中错误..的是( )A .0ab >B .0a b +<C .1ab <D .0a b -<4. 下面说法中错误的是( ). A .368万精确到万位B .2.58精确到百分位C .0.0450有4个有效数字D .10000保留3个有效数字为1.00×1045.如图,是一个几何体从正面、左面、上面看得到的平面图形,下列说法错误的是 ( )A .这是一个棱锥B .这个几何体有4个面C .这个几何体有5个顶点D .这个几何体有8条棱6.如果a <0,-1<b <0,则a ,ab ,2ab 按由小到大的顺序排列为( )A .a <ab <2abB .a <2ab <abC .ab <2ab <aD .2ab <a <ab7.在解方程5113--=x x 时,去分母后正确的是( )A .5x =15-3(x -1)B .x =1-(3 x -1)C .5x =1-3(x -1)D .5 x =3-3(x -1)b8.如果x y 3=,)1(2-=y z ,那么x -y +z 等于( )A .4x -1B .4x -2C .5x -1D .5x -29. 如图1,把一个长为m 、宽为n 的长方形(m n >)沿虚线剪开,拼接成图2,成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .2m n - B .m n - C .2m D .2n图1 图2 从正南方向看 从正西方向看 第7题 第8题10.若干个相同的正方体组成一个几何体,从不同方向看可以得到如图所示的形状,则这 个几何体最多可由多少个这样的正方体组成?( )A .12个B .13个C .14个D .18个二、填空题:本大题共10小题,每小题3分,共30分. 11.多项式132223-+--x xy y x x 是_______次_______项式12.三视图都是同一平面图形的几何体有 、 .(写两种即可) 13.若ab ≠0,则等式a b a b +=+成立的条件是______________. 14.若2320a a --=,则2526a a +-= .15.多项式223368x kxy y xy --+-不含xy 项,则k = ;16.如图,点A ,B 在数轴上对应的实数分别为m ,n ,则A ,B 间的距离是 . (用含m ,n 的式子表示)17.有理数a 、b 、c 在数轴上的位置如图所示,化简c b c a b a -+--+的结果 是________________.nnmn18.一个角的余角比它的补角的32还少40°,则这个角为 度.19.某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品20.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级(上)第一学期期末考试数学试题
一、选择题(本大题共15个小题,每小题3分,共45分.)
1.-5的绝对值是( )
2.下列关于“0”的叙述,不正确的是( )
A.不是正数,也不是负数 B.不是正整数,也不是负整数
C.不是非正数,也不是非负数
D.不是负数,是整数
3.下列说法中正确的是( )
C、-3是相反数 D.O没有相反数
4.用科学记数法表示780 000的结果是( )
A.78xl04
B. 7.8xl05
C. 0.78xl06
D. 7.8xl06
5.下列调查II作需采用普查方式的是( )
A.环保部门对淮河某段水域的水污染情况的调查
B.电视台对正在播出的某电视节目收视率的调查
C.质检部门对各厂家生产的电池使用寿命的调查
D.企业在给职工做工作服前进行的尺寸大小的调查
6.下面的计算正确的是( )
A. 6a -5a =1
B. a+2a2 =3a3
C. -(a-b)=-a+b
D. 2(a+b)=2a+b 7.如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“树”相对的面上的汉字是( ) A.文 B.明 C.新 D.风
8.已知等式3a=2b,则下列等式中不一定成立的是( )
9.经过同一平面内的三个点A、B、C中的每两个点画直线,可以画( )
A.1条
B.3条
C.1条或3条
D.无数条
10.下列说法中正确的有( )
①过两点有且只有一条直线②连接两点的线段叫做两点间的距离
③两点之间,线段最短④若AB=BC,则点B是AC的中点
A.1个
B.2个
C.3个
D.4个
11.去年某市9.6万学生参加初中毕业会考,为了解这9.6万名考生的数学成绩,从中抽取5000名考生的数学成绩进行统计分析,以下说法正确的是( )
A,这5000名考生是总体的一个样本 B.9.6万名考生是总体
C. 每位考生的数学成绩是个体
D. 5000名学生是样本容量
12.如图,∠1+∠2等于( ) A. 600 B. 900 C. 1100 D. 1800
13.钟表上12时15分时,时针与分针的夹角为( )
14.教室里有40套课桌椅,共计2800元,每把椅子20元,问每张桌子多少元?
设每张桌子x元,则可列方程为( )
A. 40x+20=2800
B. 40x+40×20=2800
C. 40x+20(40 -x)=2800
D. 40(x- 20)=2800 15.商店购进某种商品的进价是每件8元,销售价是每件10元,为了扩大销售量,
将每件的销售价降低x%出售,但要求卖出一件商品所获得的利润是降价前所获得利润的90%,那么x应等于( )
A.10 B.4 C.2 D. 18
二、填空题(本大题共8个小题,每小题3分,共24分.把答案填在题中的横线上.)
16.-2的倒数是
17.某班有男生a人,女生比男生多3人,则女生有人.
18.已知是同类项,则5m +3n =
19.如果x= -4是方程2x+a-x-l的解,则a=____.
20.如图,已知∠AOC=750, ∠BQC= 500, OD平分∠BOC, 则∠AOD=_________
21.若代数式的值等于12,则x等于
22.若的值相等,则x=
23.在数学活动中,小明为了求的值(结果用行表示),
设计如图所示的几何图形,请你利用这个几何图形,计算
三、解答题(共51分)
24.(每小题4分,共8分)计算:
(1)(-3)-(+5)+(-6)-(-12)
25.(6分)先化简,再求值.2(a2b_ab2)_3(a2b_l)+2ab2+1,其中a-l,b-2
26.(每小题4分,共8分)解下列方程:
(1) 5x-2=5-x
27.(6分)某校为了了解九年级学生体育测试成绩情况,以九年级(1)班学生的体育测试成绩为样本,按彳,B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:
(说明:A级:90分—100分;B级:75分—89分;C级:60分~74分;D级:60分以下)
(1)求出D级学生的人数占全班总人数的百分比;
(2)求出扇形统计图中C级所在的扇形圆心角的度数;
(3)若该校九年级学生共有500人,请你估计这次考试中彳级和B级的学生共有多少人?
28.(7分)已知:点A,B;C在一条直线上,线段AB=6cm,,线段BC=4cm,若M,N分别为线段AB、BC的中点,求MN的长.
29;(7分)一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成,现有长为35米的篱笆,爸爸的设计方案是长比宽多5米;妈妈的设计方案是长比宽多2米,你认为谁的设计合理,为什么?如果按这种设计,养鸡场的面积是多少?
30.(9分)两个自行车队员进行训练,训练时1号队员与2号队员都以35km/h的速度前进,
突然,1号队员以45km/h的速度独自行进,行进16km后调转车头,仍以45km/h的速度往回骑,
直到与2号队员会合.
(1)1号队员从离队开始到与2号队员重新会合,经过了多长时间?
(2)1号队员从离队开始到与2号队员重新会合这个过程中,经过多长时间与2号队员相距lkm.
历下区2013-2014年七年级第一学期期末考试 数学试题答案 一、 1——5 DCBBD 6——10 CACCB 11——15 CBBBC
二、16. 12
- 17.(a+3) 18. 13 19. 3 20. 100° 21. 8 22.-18或27 23. 1
12n -
24.(1)-2 (2)3 25.原式=2a b 4-+ 当a=1,b=2时,原式=2124-⨯+=2 26. (1) 7
6
x =
(2) y 11=- 27.(1)1326%=50人 2÷50=4%(2)360°×(1-50%-26%-4%)=72°
(3)500×(50%+26%)=380人 答:这次考试中A 级和B 级的学生共有380人 28. 图略 ① ∵M 为AB 的中点,AB=6cm ∴MB=1
2
AB=3cm ∵N 为BC 在中点,AB=4cm ∴NB=
1
2
BC=2cm ∴MN=MB+NB=5cm… ②∵M 为AB 的中点,AB=6cm ∴MB=1
2AB=3cm
∵N 为BC 的中点,AB=4cm ∴NB=1
2
BC=2cm ∴MN=MB-NB=1cm
综上所述,MN 的长为5cm 或1cm
29.解:设爸爸的设计方案中鸡场的宽为xm ,则长为(x+5)m 2x+(x+5)=35 x=10 x+5=15m>14m ,所以不符合实际… 设妈妈的设计方案中鸡场的宽为ym ,则长为(y+2)m 2y+(y+2)=35 x=11… x+2=13m<14m ,所以符合实际
此时鸡场的面积为11×13=1432m 答:妈妈的设计符合实际,鸡场在面积为1432m
30.解:(1)设经过了xh ,1号队员从离队开始到与2号队员重新会合. 35x+45x=16×2 x=25
答:设经过了2
5
h ,1号队员从离队开始到与2号队员重新会合.
(2)①设经过xh 第一次与2号队员相距1km .35x+1=45x x=1
10
②设经过yh 第二次与2号队员相距1km .35y+45y=16×2-1 y=31
80
答:经过110h 或31
80
h 1号队员与2号队员相距1km。