电源板PCB布局解决方案【ASEMI】GBU606尺寸精选图!
PCB印刷电路板布局指导手册(doc 18页)

PCB印刷电路板布局指导手册(doc 18页)印刷電路板佈局指導原則技術報告:TR-040 王見名鄒應嶼電力電子與運動控制實驗室.tw/國立交通大學電機與控制工程研究所前言隨著高科技領域的進步,電磁干擾(electromagnetic inference, EMI)的問題也日益增多。
當半導體元件速度變得愈快、密度愈高時,雜訊也愈大。
對印刷電路板(PCB)設計工程師而言,EMI的問題也日趨重要。
忽視EMI佈局的設計工程師,將發現其設計不是在執行時無法與規格一致,就是根本無法動作。
藉由適當的印刷電路板佈局技術與配合系統化的設計方法,可預先避免EMI問題的干擾。
本文所列舉的電路板佈局指導原則雖非解決EMI問題的萬靈丹,但利用已證實的佈局方法,可有效的降低在以高頻微處理器/數位信號處理器為基礎的數位類比混合信號系統中的EMI干擾。
電磁干擾簡介PCB的佈局原則●元件的放置●接地的佈局/接地雜訊的定義/降低接地雜訊●電源線的佈局與解耦/電源線的雜訊耦合/電源線濾波器(power line filter)●信號的佈局●數位IC的削尖電容(despiking capacitor)●數位電路的雜訊與佈線●類比電路的雜訊與佈線PCB 佈局降低雜訊的檢查要項2. EMI 簡介2.1 雜訊的定義雜訊係指除了所需的信號以外而出現在電路內的任何電氣訊號[Motchenbacher and Fitchen, 1973],此定義並不包含內部的失真訊號-一種非線性的附屬品。
所有電子系統都或多或少有些雜訊,但只有當雜訊影響到系統的正常執行時才會發生問題。
雜訊的來源可被歸類成三種不同的典型:●人為的雜訊源一數位電子、無線電傳輸、馬達、開關、繼電器等等。
●天然的干擾一太陽黑子及閃電。
●純質的雜訊源一從實際系統產生的相關隨機擾動,諸如熱雜訊和凸波雜訊。
我們應當瞭解,雜訊是不可能完全被去除的,但是經由適當的接地(grounding)、屏避(shielding)與濾波(filtering),則可將其干擾儘量降低。
GBU606!ASEMI桥堆测量之性能判断

编辑人:MM
摘要:GBU606!ASEMI教你小功率全桥整流桥测量好坏判别性能的方法,就找ASEMI
专业整流桥生产研发服务,一流品质贴心服务。
选择强元芯让您更放心!
ASEMI小功率全桥整流桥测量好坏,你会怎么做?下面以小功率全桥为例,介绍用数字万用表二极管档检测鉴别其性能的方法。
一、判别引脚极性
将数字万用表置于二极管档,把黑表笔固定接某一引脚,再用红表笔分别接触其余三个引脚,如果三次显示中两次为0.5~0.7V,一次为1.0~1.3V,则黑表笔所接的引脚则为全桥的直流输出端正极,即图5-21(a)中的C端;两次显示为0.5~0.7V所对应的便是全桥的交流输入端,即图5-21(a)中的A、B两端,另一端则必定是直流输出端负极,即图5-21(a)的D端。
如果所得不是上述结果,可将黑表笔改换一个引脚重复以上测试步骤,直至得出正确结果为止。
二、判别性能
在上述判别引脚极性的测量中,任意相邻两引脚间(即任何一只二极管)的导通电压应在0.5~0.7V内,四只二极管的导通电压越接近越好,而在反偏测量时,仪表必须显示溢出符号“1”。
对于全桥内部某只二极管的短路性故障,可采用如下技巧进行判别:红表笔接D端,黑表笔接C端,应显示1.0~1.3V;测量A、B端两次(交换表笔)均应显示溢出符号“1”。
若所测结果与上述范围不符,则表明被测全桥内部必定有短路性故障。
整流桥型号哪家生产最齐全?中国深圳强元芯!整流桥型号哪个品牌最正规?中国品牌ASEMI!来到强元芯,免去您拿货找货配货的一切麻烦,强元芯ASEMI提供研发生产指导一体化服务,当日订单,当下发货,选择强元芯,就是让您更放心!。
电源PCB布局和走线设计要求规范标准

5.2.6.过锡方向分析,散热分析,风向及风流量考虑 (如:散热片应怎样放、多厚、散热牙(翼)方向、散热面积多大最利于散热、散热片材质要求、辅助散热、风道方向、PIN脚稳固性、可靠度等)5.2.7.布局应尽量满足以下要求: 初级电路与次级电路分开布局;交流回路, PFC、PWM回路,整流回路,滤波回路这四大回路包围的面积尽量小, 各回路中功率元件引脚彼此尽量靠近,控制IC要尽量靠近被控制的MOS管,控制IC周边的元件尽量靠近IC布置5.2.8. 电解电容不可触及高发热元件,如大功率电阻,变压器,散热片5.2.9所有金属管脚不能紧靠在相邻元件本体上,以防过锡时高温使元件管脚烫伤其它元件外壳而短路或爆裂5.2.10.发热元件一般应均匀分布,以利于单板和整机的散热,除温度检测元件以外的温度敏感器件应远离发热量大的元器件5.2.11.跳线不要放在IC及其它大体积塑胶外壳的元件下,避免短路或烫伤别的元器件。
5.2.12.SMD封装的IC摆放的方向必需与过锡炉的方向成平行,不可垂直,如下图SOL5.2.13.SMD封装的IC两端尽可能要预留2.0mm的空间不能摆元件,为了预防两端SMD元件吃锡不良。
如果布局上有困难,可允许预留1.0mm的空间5.2.14.多脚元件应有第1脚及规律性的脚位标识(双列16PIN以上和单排10PIN以上均应进行脚位标识)PFC MOS和PWM MOS散热片必须接地,以减少共模干扰5.2.15.对热敏感元件(如电解电容、IC、功率管等)应远离热源,变压器、电感、整流器等;发热量大的元件应放在出风口或边缘;散热片要顺着风的流向摆放;发热器件不能过于集中5.2.16.功率电阻要选用立插封装摆放,以便散热或避免烧坏板子;如果是卧插封装,作业时一定要用打KIN元器件5.2.17.考虑管子使用压条时,压条与周边元件不能相碰或出现加工抵触5.2.18.贴片元件间的间距:a.单面板:PAD与PAD之间要求不小于0.75mmb.双面板:PAD于PAD之间要求不小于0.50mmc.单面板/双面板:PAD于板边间距要求不小于1.0mm;避免折板边损坏元件(机器分板);d.贴片元件与A/I或R/I元件间的距离如图:>=0.75mm>=0.75mm>=0.75mm5.4.PCB布线5.4.1.为了保证PCB加工时板边不出现断线的缺陷,PCB布线距离板边不能小于0.5mm5.4.2.在布线时,不能有90度夹角的走线出现5.4.3.IC相邻PIN脚不允许垂直于引脚相连5.4.4.各类螺钉孔的禁布区围禁止有走线5.4.5.逆变器高压输出的电路间隔要大于240mil,否则开槽≥1.0mm,并有高压符号标示5.4.6.铜箔最小间距:单/双面板0.40mm,特殊情况可以减小,但不超过4处5.4.7.设计双面板时要注意,底部有金属外壳或绕铜线的元件,因插件时底部与PCB接触,顶层的焊盘要开小或不开,同时顶层走线要避开元件底部,以防短路发生不良。
PCB电路板布局技巧

PCB电路板布局技巧PCB布局、布线基本原则一、元件布局基本规则1.按电路模块进行布局,实现同一功能的相关电路称为一个模块,电路模块中的元件应采用就近集中原则,同时数字电路和模拟电路分开;2.定位孔、标准孔等非安装孔周围1.27mm内不得贴装元、器件,螺钉等安装孔周围3.5mm(对于M2.5)、4mm(对于M3)内不得贴装元器件;3.卧装电阻、电感(插件)、电解电容等元件的下方避免布过孔,以免波峰焊后过孔与元件壳体短路;4.元器件的外侧距板边的距离为5mm;5.贴装元件焊盘的外侧与相邻插装元件的外侧距离大于2mm;6.金属壳体元器件和金属件(屏蔽盒等)不能与其它元器件相碰,不能紧贴印制线、焊盘,其间距应大于2mm。
定位孔、紧固件安装孔、椭圆孔及板中其它方孔外侧距板边的尺寸大于3mm;7.发热元件不能紧邻导线和热敏元件;高热器件要均衡分布;8.电源插座要尽量布置在印制板的四周,电源插座与其相连的汇流条接线端应布置在同侧。
特别应注意不要把电源插座及其它焊接连接器布置在连接器之间,以利于这些插座、连接器的焊接及电源线缆设计和扎线。
电源插座及焊接连接器的布置间距应考虑方便电源插头的插拔;9.其它元器件的布置:所有IC元件单边对齐,有极性元件极性标示明确,同一印制板上极性标示不得多于两个方向,出现两个方向时,两个方向互相垂直;10、板面布线应疏密得当,当疏密差别太大时应以网状铜箔填充,网格大于8mil(或0.2mm);11、贴片焊盘上不能有通孔,以免焊膏流失造成元件虚焊。
重要信号线不准从插座脚间穿过;12、贴片单边对齐,字符方向一致,封装方向一致;13、有极性的器件在以同一板上的极性标示方向尽量保持一致。
二、元件布线规则1、画定布线区域距PCB板边≤1mm的区域内,以及安装孔周围1mm内,禁止布线;2、电源线尽可能的宽,不应低于18mil;信号线宽不应低于12mil;cpu入出线不应低于10mil(或8mil);线间距不低于10mil;3、正常过孔不低于30mil;4、双列直插:焊盘60mil,孔径40mil;二、1/4W电阻:51*55mil(0805表贴);直插时焊盘62mil,孔径42mil;无极电容:51*55mil (0805表贴);直插时焊盘50mil,孔径28mil;5、注意电源线与地线应尽可能呈放射状,以及信号线不能出现回环走线。
PCB、原理图布线规范详细版

第一部分布局1 层的设置在PCB的EMC设计考虑中,首先涉及的便是层的设置:单板的层数由电源、地的层数和信号层数组成:电源层、地层、信号层的相对位置以及电源、地平面的分割对单板的EMC指标至关重要。
1.1 合理的层数根据单板的电源、地的种类、信号密度、板级工作频率、有特殊布线要求的信号数量,以及综合单板的性能指标要求与成本承受能力,确定单板的层数:对于EMC指标要求苛刻 (如产品需认证CISPR16 CLASS B)而相对成本能承受的情况下,适当增加地平面乃是PCB的EMC设计的杀手铜之一。
1.1.1 Vcc、GND的层数单板电源的层数由其种类数量决定 :对于单一电源供电的 PCB,一个电源平面足够了 :对于多种电源,若互不交错,可考虑采取电源层分割 (保证相邻层的关键信号布线不跨分割区 ):对于电源互相交错(尤其是象8260等IC,多种电源供电,且互相交错)的单板,则必须考虑采用2个或以上的电源平面,每个电源平面的设置需满足以下条件•单一电源或多种互不交错的电源;•相邻层的关键信号不跨分割区;地的层数除满足电源平面的要求外,还要考虑•元件面下面(第2层或倒数第2层)有相对完整的地平面;•高频、高速、时钟等关键信号有一相邻地平面;•关键电源有一对应地平面相邻(如48V与BGND相邻)。
1.1.2 信号层数在CAD室现行工具软件中,在网表调入完毕后,EDA软件能提供一布局、布线密度参数报告,由此参数可对信号所需的层数有个大致的判断: 经验丰富的CAD工程师,能根据以上参数再结合板级工作频率、有特殊布线要求的信号数量以及单板的性能指标要求与成本承受能力,最后确定单板的信号层数。
信号的层数主要取决于功能实现,从EMC的角度,需要考虑关键信号网络(强辐射网络以及易受干扰的小、弱信号)的屏蔽或隔离措施。
1.2 单板的性能指标与成本要求面对日趋残酷的通讯市场竞争,我们的产品开发面临越来越大的压力 :时间、质量、成本是我们能否战胜对手乃至生存的基本条件。
EMI有关PCB布局布线规则

模块电源布局
模块电源旁路电容布局
EMI有关PCB布局布线规则
PCB布线 传输线
传输线要求走线线宽一致,拐线时尤其要注意
EMI有关PCB布局布线规则
PCB布线 传输线
传输线怕过孔引起的阻抗突变,信号线CLK ,RGB RAM BUS 总 VIA不要超过4个
EMI有关PCB布局布线规则
串扰强度和频率正比
EMI有关PCB布局布线规则
PCB布线 串扰
减少串扰措施
➢ 加大线间距,减小线平行长度,必要时可以以jog方式走线;
➢ 加入端接匹配可以减小或消除反射,从而减小串扰; ➢ 信号层限制在高于地线平面10mil以内; ➢ 在串扰较严重的两条线之间插入一条地线,可以起到隔离的作 用,从而减小串扰。
EMI有关PCB布局布线规则
PCB敷铜 地分割
信号线跨越分割地,引起的空间辐射场强
EMI有关PCB布局布线规则
PCB敷铜 地分割
信号线跨越分割地,走线下要有地桥已减小回流
EMI有关PCB布局布线规则
EMI有关PCB布局布线规则
PCB板的堆叠与分层
B种情况,S2S3层信号完整性好, S2层为好的布线层,S3 层次之。电源平面阻抗较好,层电容较大,利于整板EMI抑制。 但S1S2和信号层相邻,有较大层间干扰,且离电源和底层 较远,EMI空间辐射强度较大,需要外加屏蔽壳。 C种情况,这种情况是六层板中最好的情况,S1,S2,S3都 是好的布线层。电源平面阻抗较好。美中不足的是S4层离参 考层远。 D种情况,在六层板中,性能虽优于前三种,但布线层少于 前两种。此种情况多在背板中使用。
EMI有关PCB布局布线规则
PCB板的堆叠与分层
PCB板布局原则布线技巧

---------------------------------------------------------------最新资料推荐------------------------------------------------------PCB板布局原则布线技巧PCB 板布线布局一. PCB 布局原则首先,要考虑 PCB 尺寸大小。
PCB 尺寸过大时,印制线条长,阻抗增加,抗噪声能力下降,成本也增加;过小,则散热不好,且邻近线条易受干扰。
在确定 PCB 尺寸后.再按结构要素布置安装孔、接插件等需要定位的器件,并给这些器件赋予不可移动属性,按工艺设计规范的要求进行尺寸标注。
最后,根据电路的功能单元,对电路的全部元器件进行布局。
1. 布局操作的基本原则 A. 位于电路板边缘的元器件,离电路板边缘一般不小于 2mm。
电路板的最佳形状为矩形。
长宽比为 3:2 成 4:3。
B. 遵照先大后小,先难后易的布置原则,即重要的单元电路、核心元器件应当优先布局.C. 布局中应参考原理框图,根据单板的主信号流向规律安排主要元器件.D. 布局应尽量满足以下要求:总的连线尽可能短,关键信号线最短;高电压、大电流信号与小电流,低电压的弱信号完全分开;模拟信号与数字信号分开;高频信号与低频信号分开;高频元器件的间隔要充分.E. 以每个1 / 3功能电路的核心元件为中心,围绕它来进行布局。
元器件应均匀、整齐、紧凑地排列在 PCB 上.尽量减少和缩短各元器件之间的引线和连接。
F. 相同结构电路部分,尽可能采用对称式标准布局;同类型插装元器件在 X 或 Y 方向上应朝一个方向放置;同一种类型的有极性分立元件也要力争在 X 或 Y 方向上保持一致,便于生产和检验。
2.布局操作技巧 1. 元器件的排列要便于调试和维修,亦即小元件周围不能放置大元件、需调试的元、器件周围要有足够的空间。
2. 元件布局时,应适当考虑使用同一种电源的器件尽量放在一起, 以便于将来的电源分隔。
PCB布局布线设计规范和要求

PCB布局布线设计规范和要求预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制PCB布局布线设计规范和要求PCB布局规范一:布局设计原则1:距板边距离应大于5mm2:先放置与结构关系密切的元件,如接插件,开关,电源插座等3:优先摆放电路功能块的核心元件及体积较大的元器件,再以核心元件为中心摆放周围电路元器件4:功率大的元件摆放在有利于散热的位置上5:质量较大的元器件应避免放在板的中心,应靠近机箱中的固定边放置6:有高频连线的元件尽可能靠近,以减少高频信号的分布和电磁干扰7:输入,输出元件尽量远离8:带高压的元器件尽量放在调试时手不易触及的地方9:热敏元件应远离发热元件10:可调元件的布局应便于调节11:考虑信号流向,合理安排布局使信号流向尽可能保持一致12:布局应均匀,整齐,紧凑13:SMT元件应注意焊盘方向尽量一致,以利于装焊,减少桥联的可能14:去藕电容应在电源输入端就近位置15:波峰焊面的元件高度限制为4mm16:对于双面都有的元件的PCB,较大较密的IC,插件元件放在板的顶层,底层只能放较小的元件和管脚数少且排列松散的贴片元件17:对小尺寸高热量的元件加散热器尤为重要,大功率元件下可以通过敷铜来散热,而且这些元件周围尽量不要放热敏元件.18:高速元件尽量靠近连接器;数字电路和模拟电路尽量分开,最好用地隔开,再单点接地19:定位孔到附近焊盘的距离不小于7.62mm(300mil),定位孔到表贴器件边缘的距离不小于5.08mm(200mil)二:布线设计原则1:线应避免锐角,直角,应采用四十五度走线2:相邻层信号线为正交方向3:高频信号尽可能短4:输入,输出信号尽量避免相邻平行走线,最好在线间加地线,以防反馈耦合5:双面板电源线,地线的走向最好与数据流向一致,以增强抗噪声能力6:数字地,模拟地要分开7:时钟线和高频信号线要根据特性阻抗要求考虑线宽,做到阻抗匹配8:整块线路板布线,打孔要均匀9:单独的电源层和地层,电源线,地线尽量短和粗,电源和地构成的环路尽量小10:时钟的布线应少打过孔,尽量避免和其他信号线并行走线,且应远离一般信号线,避免对信号线的干扰;同时避开板上的电源部分,防止电源和时钟互相干扰;当一块电路板上有多个不同频率的时钟时,两根不同频率的时钟线不可并行走线;时钟线避免接近输出接口,防止高频时钟耦合到输出的CABLE线并发射出去;如板上有专门的时钟发生芯片,其下方不可走线,应在其下方铺铜,必要时对其专门割地;11:成对差分信号线一般平行走线,尽量少打过孔,必须打孔时,应两线一起打,以做到阻抗匹配12:两焊点间距很小时,焊点间不得直接相连;从贴盘引出的过孔尽量离焊盘远些Q:众所周知PCB板包括很多层,但其中某些层的含义我还不是很清楚。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
编辑:DD
摘要:导读:工程上选择整流桥堆常常会有两个选择,一是先定下桥堆的尺寸再设计电源板,二是先设计电源板再定桥堆。
相比较而言,大多数工程师会选择第二种,因为一块电源板上并不是只有一种
导读:工程上选择整流桥堆常常会有两个选择,一是先定下桥堆的尺寸再设计电源板,二是先设计电源板再定桥堆。
相比较而言,大多数工程师会选择第二种,因为一块电源板上并不是只有一种元器件,如果每件元器件的尺寸都要先定下来,电源板的设计就会变得很复杂。
但是这样做也经常会遇到元器件尺寸不合适的情况。
今天要讲的就是我们常遇到的难题:桥堆KBL封装的尺寸太大,电源板的尺寸不合适,来吧,来试试ASEMI 半导体GBU606。
GBU606是一款薄至3.36mm的整流桥,相比KBL封装的5.98mm,GBU606是属于超薄型的整流桥。
但是尺寸小了,会不会芯片也小了呢?放心吧,绝对不对。
ASEMI半导体研发团队虽然在设计GBU606的厚度上,改变了以往厚实的身躯,但是在功率上,ASEMI半导体研发团队依然能做到不改变它原有的功率。
ASEMI半导体同以往一样仍然采用台湾波峰GPP晶圆芯片,在芯片大小上保持着跟KBL封装一样的大小84MIL,使GBU606在超薄的小个子下具有相同的功率却又不会失去应有的稳定性能。
下面给大家看下这两款型号的全部尺寸规格,是否合适,您可以自行定夺~
GBU606,它的电性参数为6A600V,即最大正向电流为6安培,反向峰值耐压是600伏;这两个电性参数数值是采购专员首要关注的参数,ASEMI生产严格按照行业标准规格要求,生产出来的整流桥经18道检验检测,足电流足耐压;采用的台湾进口波峰GPP大芯片,足足有88mil,保证了整流桥在电路工作中的稳定性,不炸机,更安全!
GBU606产品还有一个特点优势,那就是它所采用的GBU-4封装,厚度仅仅只有4.83mm,散热性能佳;引脚采用优质进口99.99%的无氧铜,抗弯曲、抗氧化、高导电性。