全国各地2019高3文科数学模拟试卷精彩试题汇编17 Word版含解析
2019年高考全国卷3文科数学与答案(word精校版)

2019 年普通高等学校招生全国统一考试全国卷 3 文科数学考试时间:2019年6 月7 日15:00——17:00使用省份:云南、广西、贵州、四川、西藏本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150 分,考试时间120 分钟。
注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60 分)一、选择题:本题共12 小题,每小题 5 分,共60 分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合 2A { 1,0,1,2},B { x x 1},则AI B ()A.1,0,1 B.0,1 C.1,1 D.0,1,22.若z(1 i) 2i ,则z=()A. 1 i B.1+i C.1 i D.1+i 3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A .16B.14C.13D.124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著. 某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A.0.5 B.0.6 C.0.7 D.0.85.函数 f (x) 2sin x sin2 x 在[0,2π的]零点个数为()A.2 B.3 C.4 D.56.已知各项均为正数的等比数列{ a n}的前 4 项和为15,且a5=3 a3+4a1,则a3=()A.16 B.8 C.4 D. 2x7.已知曲线y ae x ln x 在点(1,ae)处的切线方程为y=2x+b,则()-1 -1,b=1 D.a= e,b 1 A.a= e,b=-1 B.a= e,b=1 C.a=e8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD,M 是线段ED 的中点,则()A .BM = E N,且直线BM、EN 是相交直线B.BM≠EN,且直线BM,EN 是相交直线C.BM = E N,且直线BM、EN 是异面直线D.BM≠EN,且直线BM,EN 是异面直线9.执行下边的程序框图,如果输入的为0.01,则输出s 的值等于()A.2142B.2152C. 2162D. 217210.已知 F 是双曲线C:的面积为()2 2x y4 51 的一个焦点,点P 在C 上,O 为坐标原点,若OP = OF ,则△O P FA.32B.52C.72D.92 x y 6,⋯11 .记不等式组2x y 0 表示的平面区域为 D.命题p : (x , y ) D , 2x⋯y;命题q : (x, y) D,2 x y, 12 .下面给出了四个命题①p q ②p q ③p q ④p q 这四个命题中,所有真命题的编号是()A .①③B.①②C.②③D.③④12.设f x 是定义域为R的偶函数,且在0, 单调递减,则()3 2A.f (log3 12 )> f (2 ))> f( 2 342 31)> f (2 )> f (2 )B.f (log33 243 2C.f (2 )> f (2 32 )> f (log3 1)4 2 3D.f ()2 )> f ( 22 )> f (log3 134第Ⅱ卷(非选择题,共90 分)二、填空题:本题共 4 小题,每小题 5 分,共20 分。
(完整word)2019年高考全国卷3文科数学及答案(word精校版)

2019年普通高等学校招生全国统一考试全国卷3文科数学考试时间:2019年6月7日15:00——17:00 使用省份:云南、广西、贵州、四川、西藏本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =I ( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z =( )A .1i --B .1+i -C .1i -D .1+i 3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14C .13D .124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.8 5.函数()2sin sin2f x x x =-在[0,2π]的零点个数为( )A .2B .3C .4D .56.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( ) A . 16 B . 8 C .4 D . 2 7.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( )A .a=e ,b =-1B .a=e ,b =1C .a=e -1,b =1D .a=e -1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于( )A.4122-B. 5122-C. 6122-D. 7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OPF△的面积为( )A .32B .52 C .72 D .92 11.记不等式组6,20x y x y +⎧⎨-≥⎩…表示的平面区域为D .命题:(,),29p x y D x y ∃∈+…;命题:(,),212q x y D x y ∀∈+„.下面给出了四个命题 ①p q ∨ ②p q ⌝∨ ③p q ∧⌝ ④p q ⌝∧⌝这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则( )A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分。
最新2019年新课标全国卷3数学(文科)模拟试卷(解析版)

最新2019年新课标全国卷3数学(文科)模拟试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}{}225,log 2M x x N x x =≤≤=≤,则M N ⋂=A .{}1,2,3,4,5B .{}2,3,4C .{}05x x <≤D .{}24x x ≤≤2.若,a b 都是实数,且11a b i i+=+,则a b +的值是 A .-1 B .0 C .1 D .23.国家统计局统计了我国近10年(2009年2018年)的GDP(GDP 是国民经济核算的核心指标,也是衡量一个国家或地区总体经济状况的重要指标)增速的情况,并绘制了下面的折线统计图.根据该折线统计图,下面说法错误的是A .这10年中有3年的GDP 增速在9.00%以上B .从2010年开始GDP 的增速逐年下滑C .这10年GDP 仍保持6.5%以上的中高速增长D .2013年—2018年GDP 的增速相对于2009年—2012年,波动性较小4.已知向量()()1,,2,3a m b ==-,且向量,a b 满足()a b b -⊥,则m =A .2B .-3C .5D .-45.一个盒中有形状、大小、质地完全相同的5张扑克牌,其中3张红桃,1张黑桃,1张梅花.现从盒中一次性随机抽出2张扑克牌,则这2张扑克牌花色不同的概率为A .45B .710C .35D .126.已知双曲线的左、右焦点分别为F 1(,0c -),F 2(,0c ),过点F 2作x 轴的垂线,与双曲线的渐近线在第一象限内的交点为P ,线段PF 2的中点M 到原点的距离为2c ,则双曲线的渐近线方程为A .2y x =±B .12y x =±C .4y x =±D .14y x =± 7.在ABC ∆中,内角A ,B ,C 满足22sin sin B C ++21sin sin sin 02B C A -=,则cos2A =A .78B .78-C .34D .716- 8.如右图,执行程序框图,若输出结果为140,则判断框内应填 A .n ≤7? B .n>7? C .n ≤6?D .n>6? 9.如右图,在正方体ABCD-A 1B 1C 1D 1中,M ,N 分别是棱B 1C 1,C 1C 的中点,则异面直线BD 1与MN 所成的角的大小是A .30°B .45°C .60°D .90°10.已知函数()()()sin cos 0,0f x x x πωϕωϕωϕ⎛⎫=++><<的最小正周期为π,且()()f x f x -=,则A .()f x 在3,44ππ⎛⎫ ⎪⎝⎭内单调递减 B .()f x 在0,2π⎛⎫ ⎪⎝⎭内单调递减 C .()f x 在3,44ππ⎛⎫ ⎪⎝⎭内单调递增 D .()f x 在0,2π⎛⎫ ⎪⎝⎭内单调递增 11.已知椭圆C 的方程为()222210x y a b a b+=>>,焦距为2c ,直线2:4l y x =与椭圆C 相交于A ,B 两点,若2AB c =,则椭圆C 的离心率为A .32B .34C .12D .1412.已知函数()f x 满足:()()2f x f x -=,当()[)[)22,1,2,14,2,,x x x f x x x ⎧-∈⎪≥=⎨-∈+∞⎪⎩时,若不等式()6f x x a ≥+恒成立,则实数a 的取值范围是A .13a ≤-B .13a ≥C .12a ≥D .12a ≤-二、填空题:本题共4小题,每小题5分,共20分。
(完整)2019年高考全国卷3文科数学及答案(word精校版).doc

2019 年普通高等学校招生全国统一考试全国卷 3 文科数学考试时间: 2019 年 6 月 7 日 15: 00—— 17:00使用省份:云南、广西、贵州、四川、西藏本试卷分第I 卷(选择题)和第II卷(非选择题)两部分, 满分 150 分,考试时间120 分钟。
注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60 分)一、选择题:本题共12 小题,每小题 5 分,共60 分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合A { 1,0,1,2}, B { x x2 1} ,则A I B ()A .1,0,1 B.0,1 C.1,1 D.0,1,22.若z(1 i) 2i ,则z=()A .1 i B.1+i C.1 i D.1+i3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()1 1 1 1A .B.C.D.6 4 3 24.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著. 某中学为了解本校学生阅读四大名著的情况,随机调查了100 学生,其中阅读过《西游记》或《红楼梦》的学生共有90 位,阅读过《红楼梦》的学生共有80 位,阅读过《西游记》且阅读过《红楼梦》的学生共有 60 位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为()A . 0.5 B. 0.6 C. 0.7 D. 0.85.函数f ( x) 2sin x sin2 x在[0,2π]的零点个数为()A . 2 B. 3 C. 4 D. 5)6.已知各项均为正数的等比数列{ a } 的前 4 项和为 15,且 a =3a +4a ,则 a =(n 5 3 1 3A . 16 B. 8 C. 4 D. 27.已知曲线y ae x x ln x 在点(1,ae)处的切线方程为y=2x+b,则()A . a= e, b=-1 B. a= e,b=1 C. a= e-1, b=1 D. a= e-1,b18.如图,点 N 为正方形 ABCD 的中心,△ ECD 为正三角形,平面ECD ⊥平面 ABCD , M 是线段 ED 的中点,则()A. BM=EN,且直线B. BM≠EN,且直线C. BM=EN,且直线D. BM≠EN,且直线BM 、 EN 是相交直线BM , EN 是相交直线BM 、 EN 是异面直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的为,则输出 s 的值等于()0.011B.11 D. 21 A. 22C. 22724252610.已知 F 是双曲线 C :x 2 y 241 的一个焦点, 点 P 在 C 上,O 为坐标原点, 若 OP = OF ,则 △ OPF5的面积为()357 9A .B .C .D .2222x y ⋯6,D ,2 x y ⋯9 ; 命 题11 . 记 不 等 式 组y 表 示 的 平 面 区 域 为 D . 命 题 p : ( x, y)2x 0q : ( x, y) D ,2 xy, 12 .下面给出了四个命题① p q② p q③ pq④ pq这四个命题中,所有真命题的编号是()A .①③B .①②C .②③D .③④ 12.设 fx 是定义域为 R 的偶函数,且在0,单调递减,则()1)> f32A . f ( log 3 ( 2 2 )> f ( 23 )4231)> f ( 2B . f ( log 3 3 )> f ( 2 2 )3 421 )C . f ( 2 2 )> f ( 2 3 )> f ( log 32341 )D . f ( 2 3 )> f ( 2 2 )> f ( log 34第Ⅱ卷(非选择题,共 90 分)二、填空题:本题共4 小题,每小题5 分,共20 分。
2019年全国卷Ⅲ文科数学试题文档版(含答案)

1) 4
B.
f
(log3
1) 4
f
−2
(2 3 )
f
−3
(2 2 )
D.
−2
f (2 3 )
−3
f (2 2 )
f (log3
1) 4
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.已知向量 a,b , a = (2, 2) , b = (−8, 6) ,则 cos a,b = __________.
B. a = e,b = 1
C. a = e-1,b = 1
D. a = e-1,b = −1
8. 如图,点 N 为正方形 ABCD 的中心,△ECD 为正三角形,平面 ECD⊥平面 ABCD,M
是线段 ED 的中点,则
A.BM=EN,且直线 BM,EN 是相交直线
B.BM≠EN,且直线 BM,EN 是相交直线
3
故 f (x) 在 (−, 0) , ( a , +) 单调递增,在 (0, a ) 单调递减;
3
3
若 a = 0 , f (x) 在 (−, +) 单调递增;
若 a 0 ,则当 x (−, a) U (0, +) 时, f (x) 0 ;当 x ( a ,0) 时, f (x) 0 .
20.(12 分) 已知 f (x) = 2x3 − ax2 + 2 . (1)讨论 f (x) 的单调性; (2)当 0 a 3 时,记 f (x) 在区间[0,1] 的最大值为 M,最小值为 m,求 M − m 的取值
范围.
21.(12 分)
2019年全国卷3文科数学试题及参考答案

.12019 年普通高等学校招生全国统一考试文科数学参考答案注意事项:1. 答题前,考生先将自己的姓名、准考证号填写在答题卡上2. 回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑. 如需改动,用橡皮擦干净后,再选涂其他答案标号. 回答非选择题时,将答案写在答题卡上. 写在本试卷上无效.3. 考试结束后,将本试卷和答题卡一并交回.一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的.1.已知集合 A = {x | x - 1 ≥ 0}, B = {0, 1, 2},则 A I B = ()A . {0}B . { }C . {1, 2}D . {0, 1, 2}【答案】C【解析】 A : x ≥ 1,∴ A I B = {1, 2}【考点】交集2. (1 + i )(2 - i ) = ()A . -3 - iB . -3 + iC . 3 - iD . 3 + i【答案】D【解析】 (1 + i )(2 - i ) = 2 + i - i 2 = 3 + i【考点】复数的运算3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫做榫头,凹进部分叫做卯 眼,图中的木构件右边的小长方体是榫头. 若如图摆放的木构件与某一带卯眼的木构件咬 合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A.8俯视方向A. B. C. D.【答案】A【解析】注意咬合,通俗点说就是小长方体要完全嵌入大长方体中,嵌入后最多只能看到小长方体的一个面,而B答案能看见小长方体的上面和左面,C答案至少能看见小长方体的左面和前面,D答案本身就不对,外围轮廓不可能有缺失【考点】三视图4.若sinα=1,则cos2α=()3778 B.C.-D.-9999【答案】B【解析】cos2α=1-2sin2α=7 9【考点】余弦的二倍角公式5.某群体中的成员只用现金支付的概率为0.45,既用现金也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3B.0.4C.0.6D.0.7【答案】B【解析】1-0.45-0.15=0.4【考点】互斥事件的概率6.函数f(x)=tan x1+tan2x的最小正周期为()A.π=(1+tan2x)cos2x=sin x cos x=sin2x x≠+kπ⎪,1+tan x222π⎦⎣⎦4+2sin θ+==22+2sin θ+⎪∈⎡⎣2,32⎤⎦⎭πB.C.πD.2π42【答案】C【解析】f(x)=tan x tan x⨯cos2x1⎛⎫⎝⎭T=2π=π(定义域并没有影响到周期)2【考点】切化弦、二倍角、三角函数周期7.下列函数中,其图像与函数y=ln x的图像关于直线x=1对称的是A.y=ln(1-x)B.y=ln(2-x)C.y=ln(1+x)D.y=ln(2+x)【答案】B【解析】采用特殊值法,在y=ln x取一点A(3,ln3),则A点关于直线x=1的对称点为A'(-1,ln3)应该在所求函数上,排除A,C,D【考点】函数关于直线对称8.直线x+y+2=0分别与x轴、y轴交于点A,B两点,点P在圆(x-2)2+y2=2上,则∆ABP面积的取值范围是()A.[2,6]B.[4,8]【答案】AC.⎡⎣2,32⎤D.⎡22,32⎤【解析】A(-2,0),B(0,-2),∴AB=22,可设P(2+2cosθ,2sinθ),则dP-AB⎛π⎫⎝4⎪⎛π2⎝4⎭P-A B=2dP-AB∈[2,6]注:dP-AB的范围也可以这样求:设圆心为O,则O(2,0),故dP-AB∈⎡d O-AB+2⎤,而d O-AB=42=22,∴d P-AB∈⎡2,32⎤【考点】点到直线距离、圆上的点到直线距离最值模型(圆的参数方程、三角函数) 2018年全国卷3文科数学试题及其参考答案第3页(共13页)⎣-2,dO-AB⎦⎣⎦O1()2⎫f(1)=2,排除A、B;y'=-4x3+2x=2x1-2x2,故函数在 0,2⎪⎭【解析】e==1+2=229.y=-x4+x2+2的图像大致为()y1A.O1xy1B.O1xyC.1D.y 1O1x x【答案】D【解析】⎛⎝⎪单增,排除C【考点】函数图像辨识(按照奇偶性、特殊点函数值正负、趋势、单调性(导数)的顺序来考虑)10.已知双曲线的C:距离为x2y2-a2b2=1(a>0,b>0)的离心率为2,则点(4,0)到C的渐近线的A.2B.2C.【答案】D 322D.22c b2a a2=2⇒a=b∴渐近线为x-y=0故d=4【考点】双曲线的离心率、渐近线之间的互相转化11.∆ABC的内角A,B,C的对边分别为a,b,c,若∆ABC的面积为,则C= A.π,而cos C==93⎪⎭BE=AB=23,13.已知向量a=(1,2),b=(2,-2),c=(1,λ).若c//2a+b,则λ=_______.()a2+b2-c24()πππB.C.D.2346【答案】C【解析】S∆ABC1a2+b2-c2a2+b2-c2 =ab s in C=242ab故1absin C=22abcosC1π=abcosC,∴C=424【考点】三角形面积公式、余弦定理12.设A,B,C,D是同一个半径为4的球的球面上四点,∆ABC为等边三角形且其面积为93,则三棱锥D-ABC的体积最大值为()A.123B.183C.243D.543【答案】B【解析】如图,O为球心,F为等边∆ABC的重心,易知OF⊥底面ABC,当D,O,F三点共线,即DF⊥底面ABC时,三棱锥D-ABC的高最大,体积也最大.此时:∆ABC等边⎫⎪⎬⇒AB=6,S∆ABC23在等边∆ABC中,BF=33BODFAEC在Rt∆OFB中,易知OF=2,∴DF=6,故(VD-ABC )max1=⨯93⨯6=1833【考点】外接球、椎体体积最值二、填空题:本大题共4小题,每小题5分,共20分r r r r r r15.若变量 x, y 满足约束条件 ⎨ x - 2 y + 4 ≥ 0 ,则 z = x + y 的最大值是_________.⎪ x - 2 ≤ 0分别代入目标函数得到 - , 3 , - ,故最大值为 3(为了严谨可以将最大值点 (2, 3)代入【答案】12r r【解析】 2a + b = (4, 2 ) ,故 2 = 4λ【考点】向量平行的坐标运算14. 某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异,为了解客户的评 价,该公司准备进行抽样调查,可供选择的抽样方式有简单随机抽样,分层抽样和系统抽 样,则最适合的抽样方法是______.【答案】分层抽样【解析】题干中说道“不同年龄段客户对其服务的评价有较大差异”,所以应该按照年龄 进行分层抽样【考点】抽样方法的区别⎧2 x + y + 3 ≥ 0⎪ 1 3 ⎩【答案】 3【解析】采用交点法:(1)(2)交点为 (-2, 1),(2)(3)交点为 (2, 3),(1)(3)交点为 (2, - 7 )5 13 3方程(1)检验一下可行域的封闭性)本题也可以用正常的画图去做 【考点】线性规划16. 已知函数 f (x ) = ln【答案】 -2(1 + x2 - x )+ 1 , f (a ) = 4 ,则 f (-a ) = _______.【解析】令 g (x ) = ln( 1 + x 2 - x ),则 g (- x ) = ln ( 1 + x 2 + x )= - g (x ) ,∴ f (a ) = g (a ) + 1 = 4 ,而 f (-a ) = g (-a ) + 1 = - g (a ) + 1 = -2【考点】对数型函数的奇偶性1 ( )1 1 - (-2)m= 63 ,得 -2 三.解答题:共 70 分. 解答应写出文字说明,证明过程或演算步骤.. 第 17~21 题为必考 题,每个试题考生必须作答. 第 22、23 题为选考题,考生根据要求作答.(一)必考题:共 60 分. 17. (12 分)等比数列 {a n}中, a = 1, a = 4a .1 5 3(1)求 {a n}的通项公式;(2)记 S 为 {a n n}的前 n 项和. 若 S = 63,求 m .m【答案】(1) a = 2n -1 或 a = (-2)n -1 ;(2) m = 6nn【解析】(1) a = 4a = a q 2 ,∴q = ±2 ,∴ a = 2n -1 或 a = (-2)n -153 3 n n(2) 当 q = 2 时, S =m1( - (2)m)= 63 ,解得 m = 6-1当 q = -2 时, S =m3( )m= -188 无解综上: m = 6【考点】等比数列通项公式与前 n 项和公式18. (12 分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生 产方式. 为比较两种生产方式的效率,选取 40 名工人,将他们随机分成两组,每组 20 人. 第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的 工作时间(单位:min)绘制了如下茎叶图:第一种生产方式第二种生产方式8 6 5 5 6 8 997 6 2 7 0 1 2 2 3 4 5 6 6 8 9877 6 5 43 3 2 8 1 44 52 119(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求 40 名工人完成生产任务所需时间的中位数 m ,并将完成生产任务所需时间超过 m 和不超过 m 的工人数填入下面的列联表:超过 m不超过 m第一种生产方式(3)由(2)可知 K 2 = 40 (152 - 52 )2如图,边长为 2 的正方形 ABCD 所在的平面与半圆弧 C D 所在的平面垂直, M 是 CD 第二种生产方式(3)根据(2)中的列联表,能否有 99% 的把握认为两种生产方式的效率有差异?附: K 2 =n (ad - bc )2(a + b )(c + d )(a + c )(b + d ) ,P (K 2 ≥ k )0.050 0.0100.001 k3.8416.63510.828【答案】(1)第二组生产方式效率更高;(2)见解析;(3)有;【解析】(1)第二组生产方式效率更高;从茎叶图观察可知,第二组数据集中在70min~80min 之间,而第一组数据集中在 80min~90min 之间,故可估计第二组的数据平均 值要小于第一组数据平均值,事实上E = 168 + 72 + 76 + 77 + 79 + 82 + 83 + 83 + 84 + 85 + 86 + 87 + 87 + 88 + 89 + 90 + 90 + 91+ 91+ 9220 = 84同理 E = 74.7,Q E < E ,故第二组生产方式效率更高2 21(2)由茎叶图可知,中位数 m = 79 + 81 2= 80 ,且列联表为:超过 m不超过 m第一种生产方式第二种生产方式15551520 ⨯ 20 ⨯ 20 ⨯ 20 = 10 > 6.635 ,故有 99% 的把握认为两种生产方式的效率有差异【考点】茎叶图、均值及其意义、中位数、独立性检验19.(12 分)» »上异于 C, D 的点.(1)证明:平面 AMD ⊥ 平面 BMC ;(2)在线段 AM 上是否存在点 P ,使得 MC / / 平面 PBD ?说明理由.BC ⊥ CD ⎭ 已知斜率为 k 的直线 l 与椭圆 C : + = 1交于 A, B 两点,线段 AB 的中点为MDCAB【答案】(1)见解析;(2) P 为 AM 中点ABCD ⊥ CDM ⎫ ⎫⎬ ⇒ BC ⊥ DCM ⇒ BC ⊥ DM ⎪ 【解析】(1) ⎬ ⇒ DM ⊥ BMC ⇒ ADN ⊥ BMCMC ⊥ DM ⎪⎭(这边只给出了证明的逻辑结构,方便大家阅读,考试还需要写一些具体的内容)(2)当 P 为 AM 的中点时, MC / / 平面 PBD . 证明如下连接 BD , AC 交于点 O ,易知 O 为 AC 中点,取 AM 中点 P ,连接 PO ,则 PO / / AC , 又 MC ⊄ 平面 PBD , PO ⊂ 平面 PBD ,所以 MC / / 平面 PBDMDPOCAB【考点】面面垂直的判定、线面垂直、存在性问题20. (12 分)x 2 y 24 3M (1, m )(m > 0) .(1)证明: k < - 12;uuur uuur uuur ruuur uuur uuur (2)设 F 为 C 的右焦点, P 为 C 上一点,且 FP + FA + FB = 0 . 证明 2 FP = FA + FB .【答案】(1)见解析;(2)见解析⎪⎪ 4 3x 2 y 2 ⎪ 2 + 2 = 1 ⎩ 1 2 ⋅ 1 2 =- , k ⋅ k = - (此公式可以作为点差法的二级结论在选填题中直接 用),∴m = - ,易知中点 M 在椭圆内, + < 1 ,代入可得 k < - 或 k > ,又 OM AB 联立法:设直线方程为 y = kx + n ,且 A (x , y ), B (x , y ) ,联立 ⎨ 4 可得,⎪⎩ y = kx + n⎪⎪ 1) 4k 2 + 3 6n, y + y = k (x + x ) + 2n =2 +3 x 2+ 8knx + 4n 2-12 = 0 ,则 ⎨⎪ x x = 4n 2- 12 4k 2 + 3⎩⎪⎪ M ∴⎨,两式相除可得 m = - ,后续过程和点差法一样(如果用 ∆ 算的话⎪ y = m = uuur uuur uuur r uuur uuuur r(2) Q FP + FA + FB = 0 ,∴ F P + 2FM = 0 ,即 P (1, - 2m ) ,∴ + = 1 ,∴m = 3( m > 0)∴ k = -1, n = m - k = ,⎩- x ⎪+ - x ⎪ = 2a - (x + x ) = 3 (椭圆的第二定义) a c ⎭ a ⎝ c ⎭2019 年全国卷 3 文科数学试题及参考答案⎧ x 2 y 21 + 1 = 1 【解析】(1) 点差法:设 A (x , y ), B (x , y ) ,则 ⎨ 1 12 2⎪ 43 相减化简可得:y - y y + y 3 3x - x x + x 4 4 1 2 1 23 1 m 2 1 1 4k4 3 2 2m > 0 ,∴k < 0 ,综上 k < - 12⎧ x 2 y 2 ⎪ + = 1 3 1 1 2 2(4k⎧ -8kn 1 2 1 2⎧-4kn x = 1 =4k 2 + 33 3n 4k⎪ M 4k 2 + 3 比较麻烦)1 4m2 4 37 44由(1)得联立后方程为 7x 2 -14x + 1 4= 0 ,uuur uuur ∴ FA + FB =- 1)2 + 3 1 - 1 ⎪ = 2 - 1 代入椭圆方程消掉 y4 ⎭2x x + xc ⎛ a 2 ⎫ c ⎛ a 2⎫ c1 2a 1 2uuur(或者 FA =(x 1- 1)2 + y 2 = (x1 1⎛ x 2 ⎫ x⎝1uuur uuur uuur同理 FB = 2 - 2 ,∴ FA + FB = 4 -12= 3 )22uuur 而 FP =3 22018 年全国卷 3 文科数学试题及其参考答案 第10页(共13页)e x,f'(0)=2 ()在平面直角坐标系xOy中,e O的参数方程为⎨y=sinθ()2019年全国卷3文科数学试题及参考答案uuur uuur uuur∴FA+FB=2FP【考点】点差法、直线与椭圆联立求解、向量的坐标运算、利用椭圆方程消y,y121.(12分)2已知函数f(x)=ax2+x-1e x.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.【答案】(1)2x-y-1=0;(2)见解析【解析】(1)f'(x)=-ax2+(2a-1)x+2因此曲线y=f(x)在点(0,-1)处的切线方程为:2x-y-1=0(2)当a≥1时,f(x)+e≥x2+x-1+e x+1e-x(利用不等式消参)令g(x)=x2+x-1+e x+1则g'(x)=2x+1+e x+1,g''(x)=2+e x+1>0,∴g'(x)单调增,又g'(-1)=0,故当x<-1时,g'(x)<0,g(x)单减;当x>-1时,g'(x)>0,g(x)单增;故g(x)≥g(-1)=0因此f(x)+e≥0【考点】切线方程、导数的应用(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.22.选修4-4:坐标系与参数方程(10分)⎧x=cosθ⎩(θ为参数),过点0,-2且倾斜角为α的直线l与e O交于A,B两点.(1)求α的取值范围;2018年全国卷3文科数学试题及其参考答案第11页(共13页)⎛ π 3π ⎫⎪ ⎛ 【答案】(1) α ∈ , ;(2) ⎨ ⎪2 2 ⎝ 4 4 ⎪ y = -α ∈ ⎛ , ⎭ ⎭ k ∈ (-∞, - 1)U (1, + ∞ ) ,又 k = tan α ,∴α ∈ , ⎪ U 2 , 4 ⎪综上, α ∈ , ⎭α ∈ ⎛ , α ∈ ⎛ ,⎪ ⎩ ⎪⎭ ⎭ ⎭ ⎭ ⎪ x =sin 2αα ∈ ⎛ ,⎩⎭ ⎭2019 年全国卷 3 文科数学试题及参考答案(2) 求 AB 中点 P 的轨迹的参数方程.⎧ x = 2 sin 2α ⎭ - cos2α ⎝⎩ 2 2【解析】(1)当 α =π时,直线 l : x = 0 ,符合题意;2,π 3π ⎫ ⎫ ⎝ 4 4 ⎪ ⎪当 α ≠π 2时,设直线 l : y = kx - 2 ,由题意得 d = 2 k 2 + 1< 1 ,即⎛ π π ⎫ ⎛ π 3π ⎫ ⎝ 42 ⎭ ⎝⎭⎛ π 3π ⎫⎝ 4 4 ⎪⎧ x = t cos α ⎛ (2)可设直线参数方程为 ⎨ ⎪ y = - 2 + t sin α ⎝t 2 - 2 2t sin α + 1 = 0∴t = t 1 + t2= 2 sin αP2⎧ x = 2 sin α cos α ⎛ π3π ⎫ ⎫ ⎨⎝ 44 ⎪ ⎪ ⎪⎩ y = - 2 + 2 sin α sin α ⎝ π 3π ⎫ ⎫ ⎝ 4 4 ⎪ ⎪ ,代入圆的方程可得:⎧ 2即点 P 的轨迹的参数方程为 ⎨ 2 ⎪ y = - 2 cos 2α, ⎛⎝π 3π ⎫ ⎫⎝ 4 4 ⎪ ⎪(也可以设直线的普通方程联立去做,但是要注意讨论斜率不存在的情况)【考点】参数方程、直线的斜率,轨迹方程23. 选修 4 - 5 :不等式选讲(10 分)已知函数 f (x ) = 2x + 1 + x - 1 .(1)画出 y = f (x )的图像;2018年全国卷3文科数学试题及其参考答案第12页(共13页)⎪ 2 1 【解析】(1) f (x ) = ⎨ x + 2, -≤ x ≤ 1 ,图象如下 22019 年全国卷 3 文科数学试题及参考答案(2)当 x ∈ [ 0, + ∞ ) 时, f (x ) ≤ ax + b ,求 a + b 的最小值.【答案】(1)见解析;(2)5⎧1 -3x, x < - ⎪ ⎪ ⎪⎪3x, x > 1 ⎪⎩y3 21.5-0.5 O 1x(2)由题意得,当 x ≥ 0 时, ax + b 的图象始终在 f (x ) 图象的上方,结合(1)中图象可知, a ≥ 3, b ≥ 2 ,当 a = 3, b = 2 时, a + b 最小,最小值为 5,【考点】零点分段求解析式、用函数图象解决恒成立问题2018 年全国卷 3 文科数学试题及其参考答案 第13页(共13页)。
2019年高考全国卷3文科数学及答案(word精校版)(汇编)

2019年普通高等学校招生全国统一考试全国卷3文科数学考试时间:2019年6月7日15:00——17:00 使用省份:云南、广西、贵州、四川、西藏本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷(选择题,共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给的四个选项中,只有一项是符合题目要求的。
1.已知集合2{1,0,1,2}{1}A B x x =-=≤,,则A B =I ( ) A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,22.若(1i)2i z +=,则z =( )A .1i --B .1+i -C .1i -D .1+i 3.两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( ) A .16B .14C .13D .124.《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.8 5.函数()2sin sin2f x x x =-在[0,2π]的零点个数为( )A .2B .3C .4D .56.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( ) A . 16 B . 8 C .4 D . 27.已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则( ) A .a=e ,b =-1 B .a=e ,b =1 C .a=e -1,b =1 D .a=e -1,1b =-8.如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM 、EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM 、EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线9.执行下边的程序框图,如果输入的ε为0.01,则输出s 的值等于( )A.4122-B. 5122-C. 6122-D. 7122-10.已知F 是双曲线C :22145x y -=的一个焦点,点P 在C 上,O 为坐标原点,若=OP OF ,则OP F △的面积为( )A .32B .52 C .72 D .92 11.记不等式组6,20x y x y +⎧⎨-≥⎩…表示的平面区域为D .命题:(,),2p x y D x y ∃∈+…;命题:(,),212q x y D x y ∀∈+….下面给出了四个命题 ①p q ∨ ②p q ⌝∨ ③p q ∧⌝ ④p q ⌝∧⌝这四个命题中,所有真命题的编号是( )A .①③B .①②C .②③D .③④12.设()f x 是定义域为R 的偶函数,且在()0,+∞单调递减,则( )A .f (log 314)>f (322-)>f (232-)B .f (log 314)>f (232-)>f (322-)C .f (322-)>f (232-)>f (log 314)D .f (232-)>f (322-)>f (log 314)第Ⅱ卷(非选择题,共90分)二、填空题:本题共4小题,每小题5分,共20分。
2019年高考全国Ⅲ文科数学模拟试题及答案(word解析版)

2019年普通高等学校招生全国统一考试(全国Ⅲ)数学(文科)一、 选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要 求的. (1)【2017年全国Ⅲ,文1,5分】已知集合{}1,2,3,4A =,{}2,4,6,8B =,则A B 中的元素的个数为( ) (A )1 (B )2 (C )3 (D )4 【答案】B【解析】集合A 和集合B 有共同元素2,4,则{}2,4A B =I 所以元素个数为2,故选B .(2)【2017年全国Ⅲ,文2,5分】复平面内表示复数i(2i)z =-+的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】C【解析】化解i(2i)z =-+得22i i 2i 1z =-+=--,所以复数位于第三象限,故选C . (3)【2017年全国Ⅲ,文3,5分】某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是( )(A )月接待游客量逐月增加 (B )年接待游客量逐年增加 (C )各年的月接待游客量高峰期大致在7,8月(D )各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由折线图可知,每年月接待游客量从8月份后存在下降趋势,故选A .(4)【2017年全国Ⅲ,文4,5分】已知4sin cos ,3αα-=,则sin2α=( )(A )79- (B )29- (C )29(D )79【答案】A【解析】()2167sin cos 12sin cos 1sin 2,sin 299αααααα-=-=-=∴=-,故选A .(5)【2017年全国Ⅲ,文5,5分】设,x y 满足约束条件3260,0,0,x y x y +-≤⎧⎪≥⎨⎪≥⎩则z x y =-的取值范围是( ) (A )[]3,0- (B )[]3,2- (C )[]0,2 (D )[]0,3【答案】B【解析】由题意,画出可行域,端点坐标()0,0O ,()0,3A ,()2,0B .在端点,A B 处分别取的最 小值与最大值. 所以最大值为2,最小值为3-,故选B .(6)【2017年全国Ⅲ,文6,5分】函数1()sin()cos()536f x x x ππ=++-的最大值为( )(A )65 (B )1 (C )35 (D )15【答案】A【解析】11113()sin()cos()(sin cos cos sin sin 5365225f x x x x x x x x xππ=++-=⋅++⋅=6sin()53x π=+,故选A .(7)【2017年全国Ⅲ,文7,5分】函数2sin 1xy x x=++的部分图像大致为( ) (A )(B )(C )(D ) 【答案】D【解析】当1x =时,()111sin12sin12f =++=+>,故排除A ,C ,当x →+∞时,1y x →+,故排除B ,满足条件的只有D ,故选D .(8)【2017年全国Ⅲ,文8,5分】执行右面的程序框图,为使输出S 的值小于91,则输入的正整数N 的最小值为( )(A )5 (B )4 (C )3 (D )2 【答案】D【解析】若2N =,第一次进入循环,12≤成立,100100,1010S M ==-=-,2i =2≤成立,第二次进入循环,此时101001090,110S M -=-==-=,3i =2≤不成立,所以输出9091S =<成立,所以输入的正整数N 的最小值是2,故选D .(9)【2017年全国Ⅲ,文9,5分】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )(A )π (B )3π4(C )π2 (D )π4【答案】B【解析】如果,画出圆柱的轴截面,11,2AC AB ==,所以r BC ==22314V r h πππ==⨯⨯=⎝⎭,故选B . (10)【2017年全国Ⅲ,文10,5分】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )(A )11A E DC ⊥ (B )1A E BD ⊥ (C )11A E BC ⊥ (D )1A E AC ⊥ 【答案】C【解析】11A B ⊥平面11BCC B 111A B BC ∴⊥,11BC B C ⊥又1111B C A B B =,1BC ∴⊥平面11A B CD ,又1A E ⊂平面11A B CD 11A E BC ∴⊥,故选C .(11)【2017年全国Ⅲ,文11,5分】已知椭圆()2222:10x y C a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )(A(B(C(D )13【答案】A【解析】以线段12A A 为直径的圆是222x y a +=,直线20bx ay ab -+=与圆相切,所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,c e a =选A .(12)【2017年全国Ⅲ,文12,5分】已知函数()()2112x x f x x x a e e --+=-++有唯一零点,则a =( ) (A )12- (B )13 (C )12 (D )1【答案】C【解析】()()11220x x f x x a e e --+'=-+-=,得1x =,即1x =为函数的极值点,故()10f =,则1220a -+=,12a =,故选C . 二、填空题:本大题共4小题,每小题5分,共20分.(13)【2017年全国Ⅲ,文13,5分】已知向量()2,3a =-,()3,b m =,且a b ⊥,则m =______. 【答案】2【解析】因为a b ⊥0a b ∴⋅=,得630m -+=,2m ∴=.(14)【2017年全国Ⅲ,文14,5分】双曲线2221(0)9x y a a -=>的一条渐近线方程为35y x =,则a =__ ____. 【答案】5【解析】渐近线方程为by x a=±,由题知3b =,所以5a =.(15)【2017年全国Ⅲ,文15,5分】ABC ∆内角C B A ,,的对边分别为c b a ,,,已知3,6,600===c b C ,则=A _______. 【答案】075【解析】根据正弦定理有:3sin 60=sin B ∴,又b c > 045=∴B 075=∴A . (16)【2017年全国Ⅲ,文16,5分】设函数1,0,()2,0,xx x f x x +≤⎧=⎨>⎩,则满足1()()12f x f x +->的x 的取值范围是_______.【答案】1(,)4-+∞【解析】由题意得:当12x >时12221x x-+> 恒成立,即12x >;当102x <≤时12112x x +-+> 恒成立,即102x <≤;当0x ≤时1111124x x x ++-+>⇒>-,即104x -<≤;综上x 的取值范围是1(,)4-+∞. 三、解答题:共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017届全国各地高三文科数学模拟试卷精彩试题汇编(17)
1. (广东省2017届高三上学期阶段性测评(一)文数试题第12题) 已知椭圆22
:154x y E +=的
一个顶点为()0 2C -,,直线l 与椭圆E 交于 A B ,两点,若E 的左焦点为ABC △的重心,则
直线l 的方程为( )
A .65140x y --=
B .65140x y -+= C.65140x y ++= D .65140x y +-=
2. (广东省惠州市2017届高三第三次调研考试数学文试题第12题) 已知
2cos sin )(x x x x x f ++=,则不等式1
(ln )(ln )2(1)f x f f x
+<的解集为( )A .),(+∞e
B .(0,)e C.1(0,)(1,)e e
D .),1(e e
解:
,因为()f x -=()f x 所以()f x 是偶函数.所以
所以
变形为:
又
所以()f x 在
单调递增,在单调递减.所以
等价于
故选D.
3. (吉林省实验中学2017届高三上学期第四次模拟考试数学(文)试题第11题) 已知,A B 是单位圆O 上的两点(O 为圆心),120AOB ∠=,点C 是线段AB 上不与A B 、重合的动点.MN 是圆O 的一条直径,则CM CN 的取值范围是( )A .1
[,1)2
- B .[1,1)- C . 3
[,0)4
-
D .[1,0)-
3[,)2+∞3[,)2+∞ C. 5[,)2
+∞ D.
5
[,)2
+∞
数学文卷·2017届福建省惠安惠南中学高三上学期期中考试第如图,是棱长
顶点在平面内的正投影为点,在平面
内的正投影为点,
则
解:
9. (数学(文)卷·2017江西省南昌二中高三上学期第四次考试第16题) 某同学的作业不小心被墨水玷污,经仔细辨认,整理出以下两条有效信息:①题目:“在平面直角坐标系xOy 中,已知椭圆2
2
21x y +=的左顶点为A ,过点A 作两条斜率之积为2的射线与椭圆交于
,B C ,…”②解:“设AB 的斜率为k ,…点222
122(,)1212k k B k k -++,5
(,0)3
D -,…”据此,请你写出直线CD 的斜率为 .(用k 表示)
解:2
324k
k +
10. (辽宁省沈阳二中2017届高三上学期12月月考试卷 数学文科第21题) 设函数
()1x f x e -=-.
(Ⅰ)证明:当x >-1时,()1
x f x x ≥+; (Ⅱ)设当0x ≥时,()1
x
f x ax ≤
+,求a 的取值范围.
(II)由题设.0)(,0≥≥x f x 此时 当
1)(,01,1,0+≤
<+-><ax x
x f ax x a x a 则若时不成立;
当0,()()(),a h x axf x f x x ≥=+-时令则
1)(+≤
ax x
x f 当且令当.0)(≤x h
).()()(1)(')(')()('x f ax x axf x af x f x af x af x h -+-=-++=
(i)当
21
0≤
≤a 时,由(I)知),()1(x f x x +≤
),()()1()()()('x f x f x a x axf x af x h -++-≤,0)()12(≤-=x f a
[)+∞,0)(在x h 是减函数,
.1)(,0)0()(+≤
=≤ax x x f h x h 即
(ii)当
21
>
a 时,由(I)知).(x f x ≥
),()()()('x f ax x axf x af x h -+-=)()()()(x f x af x axf x af -+-≥).()12(x f ax a --=
当
a a x 120-<
<时,.
1)(,0)0()(,0)('+>=>>ax x
x f h x h x h 即所以
综上,a 的取值范围是
].21
,0[ 11. (数学(文)卷·2017届福建省莆田六中高三上学期第二次月考第19题) 在如图所示的四棱锥S ABCD -中,90DAB ABC ︒∠=∠=,1SA AB BC ===,3AD =.
(1)在棱SA 上确定一点M ,使得BM ∥平面SCD ,保留作图痕迹,并证明你的结论。
(2)当SA ⊥平面ABCD 且点E 为线段BS 的三等分点(靠近B )时,求三棱锥S AEC -的体积.
证法二:取AS ,AD 上的点M ,N ,使得2
3AM AN AS
AD ==
.连结BM ,MN ,BN .在△SAD 中,2
3AM AN AS AD ==,所以MN ∥SD . 在四边形BCDN 中,BC=DN ,BC ∥DN ,所以四边形为平行四
边形,则BN ∥CD . 又MN ∥SD ,MN ∩BN=N ,SD ∩CD=D ,所以平面MNB ∥平面SCD , 又BM ⊂平面MNB ,所以BM ∥平面SCD .
(2)∵SA ⊥底面ABCD ,所以SA BC ⊥,又已知90ABC ∠=︒,即AB BC ⊥. 又SA
AB A =,所以BC ⊥平面S A C .由Rt SAB ∆及1
3BE BS =可得
2211113323SAE SAB S S ∆∆=
=⨯⨯⨯=.所以1139
S AEC C SAE SAE V V S BC --∆==⨯⨯=.。