第2课时 牛顿第二定律 两类动力学问题(第1课时)
3.牛顿定律-典型例题-详解

牛顿定律第2课时牛顿第二定律动力学问题题型探究题型1 区分绳与弹簧的特点【例1】如图所示,A、B两球质量相等,光滑斜面的倾角为θ,图甲中,A、B两球用轻弹簧相连,图乙中A、B两球用轻质杆相连,系统静止时,挡板C 与斜面垂直,轻弹簧、轻杆均与斜面平行,则在突然撤去挡板的瞬间有( )A.两图中两球加速度均为gsin θB.两图中A球的加速度均为0C.图乙中轻杆的作用力一定不为0D.图甲中B球的加速度是图乙中B球的加速度的2倍题型2 弹簧的动态分析【例2】如图所示,自由下落的小球下落一段时间后与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?题型3 与弹簧相连的连接体问题【例3】两个质量均为m的相同的物块叠放在一个轻弹簧上面,处于静止状态.弹簧的下端固定于地面上,弹簧的劲度系数为k.t=0时刻,给A物块一个竖直向上的作用力F,使得两物块以0.5g的加速度匀加速上升,下列说法正确的是()A.A、B分离前合外力大小与时间的平方2t成线性关系B.分离时弹簧处于原长状态C.在t 时刻A、B分离D.分离时B题型4 斜面上的自由滑动问题【例4】一间新房即将建成时要封顶,考虑到下雨时落至房顶的雨滴能尽快地流淌离开房顶,要设计好房顶的坡度(房顶的底边长度相同).设雨滴沿房顶下流时做无初速度无摩檫的运动,那么,下图所示的情况中符合要求的是()A. B.C. D.【例5】如图所示,在光滑水平面AB上,水平恒力F 推动质量为m=1kg的物体从A点由静止开始做匀加速直线运动,物体到达B点时撤去F,接着又冲上光滑斜面(设经过B点前后速度大小不变,最高能到达C.用速度传感器测量物体的瞬时速度,表中记录了部分测量数据),(1)恒力F的大小.(2)斜面的倾角α.(3)t="2.1" s时物体的速度.题型5 等时圆问题【例6】如图所示,AD是固定斜面体底边BC的高,F、G分别是光滑斜面AB、AC的中点DE垂直于AB,DH 垂直于AC,甲、乙两个小球(均视为质点)从斜面的顶点A分别沿斜面AB、AC同时由静止下滑,下列说法正确的是()A.当甲球运动到E点时,乙球可能运动到AG间某点B.当甲球运动到E点时,乙球一定运动到H点C.当甲球运动到F点时,乙球一定运动到G点D.当甲球运动到F点时,乙球一定运动到H点题型6 滑环与杆问题【例7】.如图所示,一端固定在地面上的杆与水平方向的夹角为θ,将一质量为m1的滑块套在杆上,滑块通过轻绳悬挂一质量为m2的小球,杆与滑块之间的动摩擦因数为μ.先给滑块一个沿杆方向的初速度,稳定后,滑块和小球一起以共同的加速度沿杆运动,此时绳子与竖直方向的夹角为β,且β>0,不计空气阻力,则滑块的运动情况是( )A.沿着杆减速上滑B.沿着杆减速下滑C.沿着杆加速下滑D.沿着杆加速上滑【例8】有一质量m=2kg的小球套在长L=1m的固定轻杆顶部,杆与水平方向成θ=37o角.静止释放小球,1s后小球到达杆底端.取重力加速度大小g= 10 m/s2,sin37o=0.6,cos37o=0.8.(1)求小球到达杆底端时速度为多大?(2)求小球与杆之间的动摩擦因数为多大?(3)若在竖直平面内给小球施加一个垂直于杆方向的恒力,静止释放小球后保持它的加速度大小为1m/s2,且沿杆向下云动,则这样的恒力为多大?题型7轻绳连接问题【例9】如图所示,材料相同的物体m l、m2由轻绳连接,在恒定拉力F的作用下沿斜面向上加速运动。
牛顿第二定律超全

Q:力和运动之间到底有 什么内在联系?
(1)若F合=0,则a = 0 ,物体处于 _平__衡_状__态__。
(2)若F合=恒量,v0=0,则a=__恒_量____, 物体做_匀加速直线运动。
(3)若F合变化,则a随着_变__化___,物体做 ____变__速_运__动_____。
分析:推车时小车受4个力;合力为F- FN f.加速度为1.8m/s2.
不推车时小车受几个力?由谁产生加速度?
推车时, F f ma
F
f F ma 90 451.8 9N
f
不推车时 f ma
a
f
m
9 45
0.2m / s2
G
例4:质量为8103kg的汽车,在水平的公路上沿直 线行驶,汽车的牵引力为1.45104N,所受阻力为 2.5 103N.求:汽车前进时的加速度.
2
0.3m/s
2
s1
1 at2 2
0.3 42 2
2.4m
减速阶段:物体m受力如图,以运动方向为正方向
N2 V(正) 由牛顿第二定律得:-f2=μmg=ma2
a
故 a2 =-μg=-0.2×10m/s2=-2m/s2
f2 又v=a1t1=0.3×4m/s=1.2m/s,vt=0
G
由运动学公式vt2-v02=2as2,得:
故
a2
0
v
2 2
2s2
0 152 m/s2 2 125
0.9m/s2
由牛顿第二定律得:-f=ma2
故阻力大小f= -ma2= -105×(-0.9)N=9×104N 因此牵引力
F=f+ma1=(9×104+5×104)N=1.4×105N
第二、三课时 牛顿第二定律 两类动力学问题bczx2

图3-2-1
D.木板和物块的速度都逐渐变小,直到为零
【解析】 根据受力分析可知,当撤掉拉力后,木板向右做减速运动,物
块向右做加速运动,直到两者速度相等后,一起做匀速运动.
【答案】 BC
学生P40 关于牛顿第二定律的进一步理解
1.牛顿第二定律描述了物体的受力情况和运动情况之间的定量关系, 联系物体的受力情况和运动情况的桥梁是加速度,这种关系可以从以下
学生P40
关于瞬时加速度问题的分析 (2009·广州综合测试)如图3-2-4甲所示,一质量为m
的物体系于长度分别为L1、L2的两根不可伸长的细线上,L1的一端悬挂
在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.
图3-2-4
(1)现将图甲中L2线剪断,求剪断瞬时物体的加速度;
(2)若将图甲中的细线L1改为质量不计的轻弹簧而其余情
角度进一步理解.
同向性 瞬时性 因果性
同一性
公式F=ma是矢量式,任一时刻,F合 与a同向 a与F对应同一时刻,即a为某时刻的加 速度时,F为该时刻物体所受合外力 F是产生a的原因,物体具有加速度是 因为物体受到了力 ①加速度a相对同一惯性系(一般指地 面) ②F=ma中,F、m、a对应同一物体或
2.关于瞬时加速度问题的分析
物理公式不仅决定了物理量之间的关系,也决定了物理量
单位间的关系,推导物理量的单位要借助物理公式,依据单位是否正确可 以判断物理公式是否正确.
三、两类动力学问题
可用程序图表示如下:
1.下列对牛顿第二定律的表达式F=ma及其变形公式的理解,正确的
是(
)
A.由F=ma可知,物体所受的合力与其质量成正比,与其运动的加速 9·南充模拟)某超市中一台阶式电梯与地面的夹角为θ, 一质量为m的人站在电梯的一台阶上相对电梯静止,如图3-2-3所 示.则当电梯以加速度a匀加速上升时,求:
牛顿第二定律和力学知识

第2课时牛顿第二定律两类动力学问题导学目标 1.理解牛顿第二定律的内容、表达式和适用范围.2.学会分析两类动力学问题.一、牛顿第二定律[基础导引]由牛顿第二定律可知,无论怎样小的力都可以使物体产生加速度,可是,我们用力提一个很重的箱子,却提不动它.这跟牛顿第二定律有没有矛盾?应该怎样解释这个现象?[知识梳理]1.内容:物体加速度的大小跟它受到的作用力成________、跟它的质量成________,加速度的方向跟____________相同.2.表达式:________.3.适用范围(1)牛顿第二定律只适用于________参考系(相对地面静止或____________运动的参考系).(2)牛顿第二定律只适用于________物体(相对于分子、原子)、低速运动(远小于光速)的情况.二、两类动力学问题[基础导引]以15 m/s的速度行驶的无轨电车,在关闭电动机后,经过10 s停了下来.电车的质量是4.0×103 kg,求电车所受的阻力.[知识梳理]1.动力学的两类基本问题(1)由受力情况判断物体的____________.(2)由运动情况判断物体的____________.2.解决两类基本问题的方法:以__________为桥梁,由运动学公式和____________________列方程求解.思考:解决两类动力学问题的关键是什么?三、力学单位制[基础导引]如果一个物体在力F的作用下沿着力的方向移动了一段距离l,这个力对物体做的功W=Fl.我们还学过,功的单位是焦耳(J).请由此导出焦耳与基本单位米(m)、千克(kg)、秒(s)之间的关系.[知识梳理]1.单位制由基本单位和导出单位共同组成.2.力学单位制中的基本单位有________、________、时间(s).3.导出单位有________、________、________等.图1图2考点一 牛顿第二定律的理解考点解读典例剖析例1 如图1所示,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度的变化情况如何?方法突破 利用牛顿第二定律分析物体运动过程时应注意以下两点:(1)a 是联系力和运动的桥梁,根据受力条件,确定加速度,以加速度 确定物体速度和位移的变化.(2)速度与位移的变化与力相联系,用联系的眼光看问题,分析出力的变化,从而确定加速度的变化,进而确定速度与位移的变化.跟踪训练1 如图2所示,弹簧左端固定,右端自由伸长到O 点并系住物体m .现将弹簧压缩到A 点,然后释放,物体可以一直运动到B 点,如果物体受到的阻力恒定,则 ( )A .物体从A 到O 先加速后减速B .物体从A 到O 加速运动,从O 到B 减速运动C .物体运动到O 点时所受合力为0D .物体从A 到O 的过程加速度逐渐减小考点二 两类动力学问题考点解读1.由受力情况判断物体的运动状态,处理这类问题的基本思路是:先求出几个力的合力,由牛顿第二定律(F 合=ma )求出加速度,再由运动学的相关公式求出速度或位移.2.由物体的运动情况判断受力情况,处理这类问题的基本思路是:已知加速度或根据运动规律求出加速度,再由牛顿第二定律求出合力,从而确定未知力,至于牛顿第二定律中合力的求法可用力的合成和分解法(平行四边形定则)或正交分解法.图3图53.求解上述两类问题的思路,可用下面的框图来表示:分析解决这类问题的关键:应抓住受力情况和运动情况之间联系的桥梁——加速度. 典例剖析例2 如图3所示,质量为M =2 kg 的足够长的长木板,静止放置在粗糙水平地面上,有一质量为m =3 kg 可视为质点的物块,以某一水平初速度v 0从左端冲上木板.4 s 后物块和木板达到4 m/s 的速度并减速,12 s 末两者同时静止.求物块的初速度并在图4中画出物块和木板的v -t 图象.图4例3 如图5所示,物体A 放在足够长的木板B 上,木板B 静止于水平面上.已知A 的质量m A 和B 的质量m B 均为2.0 kg ,A 、B 之间的动摩擦因数μ1=0.2,B 与水平面之间的动摩擦 因数μ2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度g 取10 m/s 2.若从t =0开始,木板B 受F 1=16 N 的水平恒力作用,t =1 s 时F 1改为F 2=4 N ,方向不变,t =3 s 时撤去F 2.(1)木板B 受F 1=16 N 的水平恒力作用时,A 、B 的加速度a A 、a B 各为多少?(2)从t =0开始,到A 、B 都静止,A 在B 上相对B 滑行的时间为多少?(3)请以纵坐标表示A 受到B 的摩擦力F f A ,横坐标表示运动时间t (从t =0开始,到A 、B 都静止),取运动方向为正方向,在图6中画出F f A -t 的关系图线(以图线评分,不必写出分析和计算过程).图6方法突破 动力学问题的求解方法1.物体运动性质的判断方法(1)明确物体的初始运动状态(v 0);(2)明确物体的受力情况(F 合);(3)根据物体做各种性质运动的条件即可判定物体的运动情况、加速度变化情况及速度变化情况.2.求解两类动力学问题的方法(1)抓住物理量——加速度,按下面的思路进行;(2)认真分析题意,明确已知量与所求量;(3)选取研究对象,分析研究对象的受力情况与运动情况;(4)利用力的合成、分解等方法及运动学公式列式求解.跟踪训练2如图7所示,长12 m、质量为50 kg的木板右端有一立柱.木板置于水平地面上,木板与地面间的动摩擦因数为0.1,质量为50 kg的人立于木板左端,木板与人均静止,当人以4 m/s2的加速度匀加速向右奔跑至木板右端时,立刻抱住立柱(取g=10 m/s2),求:图7(1)人在奔跑过程中受到的摩擦力的大小和方向;(2)人在奔跑过程中木板的加速度的大小和方向;(3)人从开始奔跑至到达木板右端所经历的时间.2.建立“运动模型”解决动力学问题例4原地起跳时,先屈腿下蹲,然后突然蹬地,从开始蹬地到离地是加速过程(视为匀加速),加速过程中重心上升的距离为“加速距离”.离地后重心继续上升,在此过程中重心上升的最大距离称为“竖直高度”.某同学身高1.8 m,质量80 kg,在某一次运动会上,他参加跳高比赛时“加速距离”为0.5 m,起跳后身体横着越过(背越式)2.15 m高的横杆,试估算人的起跳速度v和起跳过程中地面对人的平均作用力.(g取10 m/s2)运动建模可以把跳高过程分为起跳和腾空两个阶段.把该同学看成质量集中于重心的质点,把起跳过程等效成匀加速运动,腾空过程看成竖直上抛运动模型.建模感悟实际问题模型化是高中阶段处理物理问题的基本思路和方法.当我们遇到实际的运动问题时,要建立我们高中阶段学习过的熟知的物理模型,如匀变速直线运动模型、类平抛运动模型等,运用相应的物理规律来处理.跟踪训练3“引体向上运动”是同学们经常做的一项健身运动.如图8所示,质量为m的某同学两手正握单杠,开始时,手臂完全伸直,身体呈自然悬垂状态,此时他的下颚距单杠面的高度为H,然后他用恒力F向上拉,下颚必须超过单杠面方可视为合格.已知H =0.6 m,m=60 kg,重力加速度g=10 m/s2.不计空气阻力,不考虑因手臂弯曲而引起的人的重心位置的变化.图9图10图12图8(1)第一次上拉时,该同学持续用力,经过t =1 s 时间,下颚到达单杠面,求该恒力F 的大小及此时他的速度大小;(2)第二次上拉时,用恒力F ′=720 N 拉至某位置时,他不再用力,而是依靠惯性继续向上运动,为保证此次引体向上合格,恒力F ′的作用时间至少为多少?A 组 由运动情况确定受力问题1.建筑工人用如图9所示的定滑轮装置运送建筑材料.质量为70.0 kg 的建筑工人站在地面上,通过定滑轮将20.0 kg 的建筑材料以0.5 m/s 2的加速度上升,忽略绳子和定滑轮的质量及定滑轮的摩擦,则建筑工人对地面的压力大小为(g 取10 m/s 2) ( )A .510 NB .490 NC .890 ND .910 N2.(2011·上海单科·19)受水平外力F 作用的物体,在粗糙水平面上做直线运动,其v -t 图线如图10所示,则 ( )A .在0~t 1秒内,外力F 大小不断增大B .在t 1时刻,外力F 为零C .在t 1~t 2秒内,外力F 大小可能不断减小D .在t 1~t 2秒内,外力F 大小可能先减小后增大3.如图11所示,光滑的电梯壁上挂着一个质量m =2 kg 的球,悬绳与竖直壁夹角θ=37°,当电梯以a =2 m/s 2的加速度竖直向上做匀加速直线运动时,悬绳受到的拉力是多大?电梯壁受到的压力是多大?(取g =10m/s 2)B 组 由受力情况确定运动情况4.如图12甲所示,物体原来静止在水平面上,用一水平力F 拉物体,在F 从0开始逐渐增大的过程中,物体先静止后又做变加速运动,其加速度a 随外力F变化的图象如图乙所示,根据图乙中所标出的数据能计算出来的有 ( )A .物体的质量图13 B .物体与水平面间的滑动摩擦力C .在F 为10 N 时,物体的加速度大小D .在F 为14 N 时,物体的速度大小5.利用传感器和计算机可以测量快速变化的力的瞬时值,如图13所示是用这种方法获得的弹性细绳中拉O力F 随时间t 变化的图线.实验时,把小球举到悬点处,然后放手让小球自由落下,由图线所提供的信息可以判断 ( )A .绳子的自然长度为gt 212B .t 2时刻小球的速度最大C .t 1时刻小球处在最低点D .t 1时刻到t 2时刻小球的速度先增大后减小6.为了减少战斗机起飞时在甲板上加速的时间和距离,现代航母大多采用了蒸汽弹射技术.一架总质量M =5.0×103 kg 的战机.如果采用滑行加速(只依靠自身动力系统加速),要达到v 0=60 m/s 的起飞速度,甲板水平跑道的长度至少为120 m .采用蒸汽弹射技术,战机在自身动力和持续的蒸汽动力共同作用下只要水平加速60 m 就能达到起飞速度.假设战机起飞过程是匀加速直线运动,航母保持静止,空气阻力大小不变,取g =10 m/s 2.(1)采用蒸汽弹射技术,求战机加速过程中加速度大小以及质量m =60 kg 的飞行员受到座椅作用力的大小.(2)采用蒸汽弹射技术,弹射系统的弹力为多大?弹力在加速60 m 的过程中对战机做的功是多少?图1图2 图3 课时规范训练(限时:30分钟)一、选择题1.如图1甲所示,一轻质弹簧的下端固定在水平面上,上端放置一物体(物体与弹簧不连接),初始时物体处于静止状态.现用竖直向上的拉力F 作用在物体上,使物体开始向上(g做匀加速运动,拉力F 与物体位移x 之间的关系如图乙所示=10m/s 2),则下列结论正确的是 ( )A .物体与弹簧分离时,弹簧处于压缩状态B .弹簧的劲度系数为7.5 N/cmC .物体的质量为3 kgD .物体的加速度大小为5 m/s 22.质量为0.3 kg 的物体在水平面上运动,图2中两直线分别表示物体受水平拉力和不受水平拉力时的速度—时间图象,则下列说法正确的是 ( )A .物体所受摩擦力一定等于0.1 NB .水平拉力一定等于0.1 NC .物体不受水平拉力时的速度—时间图象一定是aD .物体不受水平拉力时的速度—时间图象一定是b3.如图3所示,静止在光滑水平面上的物体A ,一端靠着处于自然状态的弹簧.现对物体作用一水平恒力,在弹簧被压缩到最短的过程中,物体的速度和加速度的变化情况是 ( )A .速度增大,加速度增大B .速度增大,加速度减小C .速度先增大后减小,加速度先增大后减小D .速度先增大后减小,加速度先减小后增大4.如图4甲所示,在粗糙水平面上,物块A 在水平向右的外力F 的作用下做直线运动,其速度—时间图象如图乙所示,下列判断正确的是 ()甲 乙图4A .在0~1 s 内,外力F 不断增大B .在1~3 s 内,外力F 的大小恒定C .在3~4 s 内,外力F 不断减小D .在3~4 s 内,外力F 的大小恒定5.质量为m 的物体从高处静止释放后竖直下落,在某时刻受到的空气阻力为F f ,加速度为图5图6图7 a =13g ,则F f 的大小是 ( ) A .F f =13mg B .F f =23mg C .F f =mg D .F f =43mg 6.如图5所示,bc 是固定在小车上的水平横杆,物块M 中心穿过横杆,M 通过细线悬吊着小物体m ,当小车在水平地面上运动的过程中,M 始终未相对杆bc 移动,M 、m 与小车保持相对静止,悬线与竖直方向夹角为α.则M 受到横杆的摩擦力为 ( )A .大小为(m +M )g tan α,方向水平向右B .大小为Mg tan α,方向水平向右C .大小为(m +M )g tan α,方向水平向左D .大小为Mg tan α,方向水平向左7.如图6所示,质量为m 2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m 1的物体1,与物体1相连接的绳与竖直方向保持θ角不变,则( )A .车厢的加速度为g sin θB .绳对物体1的拉力为m 1g cos θC .底板对物体2的支持力为(m 2-m 1)gD .物体2所受底板的摩擦力为m 2g sin θ二、非选择题8.如图7所示,一轻绳上端系在车的左上角的A 点,另一轻绳一端系在车左端B 点,B 点在A 点正下方,A 、B 距离为b ,两轻绳另一端在C 点相结并系一质量为m 的小球,轻绳AC 长度为2b ,轻绳BC 长度为b .两轻绳能够承受的最大拉力均为2mg .问:(1)轻绳BC 刚好被拉直时,车的加速度是多大?(要求画出受力图)(2)在不拉断轻绳的前提下,求车向左运动的最大加速度是多大?(要求画出受力图)复习讲义基础再现一、基础导引没有矛盾.牛顿第二定律公式F=ma中的F指的是物体所受的合力,而不是其中的某一个力.我们用力提一个放在地面上的很重的物体时,物体受到的力共有三个:手对物体向上的作用力F1、竖直向下的重力G以及向上的支持力F2.这三个力的合力F=0,故物体的加速度为零,物体保持不动.知识梳理 1.正比反比作用力的方向2.F=ma 3.(1)惯性匀速直线(2)宏观二、基础导引 6.0×103 N,方向与电车初速度方向相反知识梳理 1.(1)运动情况(2)受力情况2.加速度牛顿第二定律思考:解答动力学两类问题的关键:(1)做好受力分析,正确画出受力图,求出合力.(2)做好运动过程分析,画出运动过程简图,确定各物理量间的关系.三、基础导引 1 J=1 N·1 m,又由1 N=1 kg·1 m/s2则1 J=1 kg·1 m/s2·1 m=1 kg·m2/s2知识梳理 2.长度(m)质量(kg)3.力(N)速度(m/s)加速度(m/s2)课堂探究例1见解析解析小球接触弹簧上端后受到两个力作用:向下的重力和向上的弹力.在接触后的前一阶段,重力大于弹力,合力向下,因为弹力F=kx不断增大,所以合力不断减小,故加速度不断减小,由于加速度与速度同向,因此速度不断变大.当弹力逐步增大到与重力大小相等时,合力为零,加速度为零,速度达到最大.在接触后的后一阶段,即小球达到上述位置之后,由于惯性小球仍继续向下运动,但弹力大于重力,合力竖直向上,且逐渐变大,因而加速度逐渐变大,方向竖直向上,小球做减速运动,当速度减小到零时,达到最低点,弹簧的压缩量最大.跟踪训练1A例210 m/s木板的v-t图象见解析图例3(1)2 m/s2 4 m/s2(2)1.5 s(3)见解析跟踪训练2(1)200 N向右(2)2 m/s2向左(3)2 s例4 5 m/s 2 800 N跟踪训练3 (1)672 N 1.2 m/s (2)22s 分组训练1.B 2.CD3.30 N 18 N4.ABC 5.AD 6.(1)30 m/s 2 1.9×103 N (2)7.5×104 N4.5×106 J课时规范训练1.D2.B3.D4.BC5.B6.A7.B8.见解析解析 (1)轻绳BC 刚好被拉直时,小球受力如图甲所示,因为AB =BC =b ,AC =2b ,故轻绳BC 与AB 垂直,cos θ=22,θ=45° 由牛顿第二定律,得mg tan θ=ma可得a =g(2)小车向左的加速度增大,轻绳AC 、BC 方向不变,所以轻绳AC 拉力不变,为2mg ,当BC 轻绳拉力最大时,小车向左的加速度最大,小球受力如图乙所示由牛顿第二定律得F Tm +mg tan θ=ma m因这时F Tm =2mg ,所以最大加速度为a m =3g。
第2讲 牛顿第二定律 两类动力学问题

一站过 1.牛顿第二定律的五个特性
2.合力、加速度、速度之间的决定关系 (1)不管速度是大是小,或是零,只要合力不为零,物体都有加速度。 (2)a=ΔΔvt 是加速度的定义式,a 与 Δv、Δt 无必然联系;a=mF是加速度的决定式,
(1)分析瞬时变化前、后物体的受力情况; (2)根据牛顿第二定律列方程; (3)求瞬时加速度。 2.轻绳、轻杆、硬接触面模型的特点 对于轻绳、轻杆和硬接触面这类物体认为是一种不发生明显形变就能产生弹力 的物体,剪断(或脱离)后,其弹力立即改变或消失,不需要形变恢复时间。 (1)在瞬时问题中,其弹力可以看成是瞬间改变的。 (2)一般题目中所给细绳、轻杆和接触面等在不加特殊说明时,均可按此模型处理。
C.在 BC 被突然剪断的瞬间,小球的加速度大小为cogs θ D.在 BC 被突然剪断的瞬间,小球的加速度大小为 gsin θ
解析:据题意,在 AC 剪断前有:TBC=cmosgθ,AC 剪断后有:TBC′=mgcos θ,
且 mgsin θ=ma,所以 A 错误、B 正确;在 BC 剪断前:TAC=mgtan θ,BC 剪断之后瞬间据橡皮筋弹力保持原值的特性,有:TAC′=TAC=mgtan θ,其
解析:物体的速度大小和加速度大小没有必然联系,一个很大,另一个可以很 小,甚至为 0,物体所受合外力的大小决定加速度的大小,同一物体所受合外 力越大,加速度一定也越大,故选项 C 正确。 答案:C
3.[牛顿第二定律与力的合成的综合问题] (2021·贵阳质检)(多选)如图所示,某杂技演员在做手指玩 耍盘子的 高难度表演。若盘的质量为 m,手指与盘之间 的动摩擦因数为 μ,重力加速度为 g,设最大静摩擦力等 于滑动摩擦力,盘底处于水平状态且不考虑盘的自转。则下列说法正确的是 ()
牛顿第二定律 两类动力学问题

题型二
建立“运动模型”解决 动力学问题
例 2 原地起跳时,先屈腿下蹲,然后突然蹬地,从开始 蹬地到离地是加速过程(视为匀加速),加速过程中重 心上升的距离为“加速距离”.离地后重心继续上 升,在此过程中重心上升的最大距离称为“竖直高 度”.某同学身高 1.8 m,质量 80 kg,在某一次运 动会上,他参加跳高比赛时“加速距离”为 0.5 m, 起跳后身体横着越过(背越式)2.15 m 高的横杆, 试估 算人的起跳速度 v 和起跳过程中地面对人的平均作 用力.(g 取 10 m/s2)
第 2 课时
牛顿第二定律
两类动力学问题
课前考点自清
一、牛顿第二定律 1.内容:物体加速度的大小跟作用力成 正比 ,跟物体的 质量成 反比 。加速度的方向与作用力方向 相同.
2.表达式: F=ma 3.适用范围
.
(1) 牛顿第二定律只适用于 惯性 参考系 ( 相对 地面静止或 匀速直线运动 运动的参考系). (2)牛顿第二定律只适用于宏观 物体 (相对于分 子、原子)、低速运动(远小于光速)的情况.
答案 C
题型互动探究
题型一 牛顿运动定律在动力学两类基本问题中的应用 例 1 科研人员乘气球进行科学考察,气球、座舱、压舱物 和科研人员的总质量为 990 kg.气球在空中停留一段时间 后,发现气球漏气而下降,及时堵住,堵住时气球下降 速度为 1 m/s,且做匀加速运动,4 s 内下降了 12 m,已 知气球安全着陆的速度为 2 m/s.为使气球安全着陆. 向舱 外缓慢抛出重 101 kg 的重物.若空气阻力和泄漏气体的 质量可忽略,重力加速度 g 取 9.89 m/s2,求抛掉重物后 气球达到安全着陆速度的时间.
【高考佐证 1】质量为 1 kg 的物体静止在水平面上, 物体与水平面之间的动摩擦因数为 0.2.对物体施加一 个大小变化、方向不变的水平拉力 F,使物体在水平 面上运动了 3t0 的时间.为使物体在 3t0 时间内发生的 位移最大,力 F 随时间的变化情况应该为下面四个图 中的 ( )
(复习指导)第3章第2节 牛顿第二定律、两类动力学问题含解析

第2节牛顿第二定律、两类动力学问题一、牛顿第二定律、单位制1.牛顿第二定律(1)内容物体加速度的大小跟它受到的作用力成正比,跟它的质量成反比。
加速度的方向与作用力的方向相同。
(2)表达式a=Fm或F=ma。
(3)适用范围①只适用于惯性参考系(相对地面静止或做匀速直线运动的参考系)。
②只适用于宏观物体(相对于分子、原子)、低速运动(远小于光速)的情况。
2.单位制(1)单位制由基本单位和导出单位组成。
(2)基本单位基本量的单位。
力学中的基本量有三个,它们分别是质量、时间、长度,它们的国际单位分别是千克、秒、米。
(3)导出单位由基本量根据物理关系推导出的其他物理量的单位。
二、超重与失重1.实重和视重(1)实重:物体实际所受的重力,与物体的运动状态无关,在地球上的同一位置是不变的。
(2)视重①当物体挂在弹簧测力计下或放在水平台秤上时,弹簧测力计或台秤的示数称为视重。
②视重大小等于弹簧测力计所受物体的拉力或台秤所受物体的压力。
2.超重、失重和完全失重的比较超重现象失重现象完全失重概念物体对支持物的压物体对支持物的压力物体对支持物的压1.两类动力学问题(1)已知物体的受力情况求物体的运动情况。
(2)已知物体的运动情况求物体的受力情况。
2.解决两类基本问题的方法以加速度为“桥梁”,由运动学公式和牛顿第二定律列方程求解,具体逻辑关系如下:1.思考辨析(正确的画“√”,错误的画“×”)(1)牛顿第二定律的表达式F=ma在任何情况下都适用。
(×)(2)物体只有在受力的前提下才会产生加速度,因此,加速度的产生要滞后于力的作用。
(×)(3)物理公式不仅确定了物理量之间的数量关系,同时也确定了物理量间的单位关系。
(√)(4)失重说明物体的重力减小了。
(×)(5)物体超重时,加速度向上,速度也一定向上。
(×)(6)研究动力学两类问题时,做好受力分析和运动分析是关键。
(√)2.(鲁科版必修1P134T3)在粗糙的水平面上,物体在水平推力作用下由静止开始做匀加速直线运动。
第三章 第2课时 牛顿第二定律的基本应用

3.(2023·广东茂名市一模)电动平衡车是一种新的短途代步工具。已知人 和平衡车的总质量是60 kg,启动平衡车后,车由静止开始向前做直线运 动,某时刻关闭动力,最后停下来,其v-t图像如图所示。假设平衡车 受到的阻力是其重力的k倍,g=10 m/s2,则 A.k=0.6
考点二 动力学图像问题
解得 F2=m2mm1+1 m2(μ2-μ1)g, 可知 μ2>m1m+2m2μ1,故 B、C 正确; 由题图(c)可知,0~t2时间段物块与木板相对静止,所以有相同的加速 度,故D正确。
考点二 动力学图像问题
总结提升
分析动力学图像问题的方法技巧 1.分清图像的类别:即分清横、纵坐标所代表的物理量,明确其 物理意义,掌握物理图像所反映的物理过程。 2.建立图像与物体运动间的关系:把图像与具体的题意、情景结 合起来,明确图像反映的是怎样的物理过程。
考点一 动力学两类基本问题
总结提升
动力学问题的解题思路
考点一 动力学两类基本问题
例3 (多选)如图所示,Oa、Ob和ad是竖直平面内三根固定的光滑细杆,
O、a、b、c、d位于同一圆周上,c为圆周的最高点,a为最低点,O′
为圆心。每根杆上都套着一个小滑环(未画出),两个滑环从O点无初速
度释放,一个滑环从d点无初速度释放,用t1、t2、 t3分别表示滑环沿Oa、Ob、da到达a或b所用的时 间。下列关系正确的是
1 2 3 4 5 6 7 8 9 10
根据运动学公式,小车2 s末的速度大小v=at1=3 m/s,故A错误; 根据牛顿第二定律得 F-Ff=ma,解得 Ff=15 N,撤去推力后,加速度 大小为 a′=Fmf=0.5 m/s2,减速时间为 t2=av′=03.5 s=6 s,小车运动 的总时间为 t=t1+t2=2 s+6 s=8 s,故 B 正确,C、D 错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三导学案学科:物理编号:高三1030201 编写人:黄伟鑫审核人:刘东权
班级:小组:姓名:小组评价:教师评价:
第2课时牛顿第二定律两类动力学问题(第一课时)
【学习目标】
1、能理解牛顿第二定律的内容、公式;
2、理解合外力、加速度和速度的关系;
3、会运用牛顿第二定律的公式进行简单的分析和计算;
【重点难点】
重点:能理解牛顿第二定律的内容和公式。
难点:能应用牛顿第二定律来分析和解决相关问题。
预习案
一、考点知识梳理:
1.内容:物体加速度的大小跟它所受到的作用力成,跟物体的质量成。
加速度的方向与相同.
2.表达式:.
3. 牛顿第二定律的理解:
矢量性公式F=ma是矢量式,任一时刻,F与a的方向总是
瞬时性a与F对应同一时刻,即a为某时刻的加速度时,F为该时刻物体所受的力
因果性是产生加速度a的原因,加速度a是F作用的结果
同一性有三层意思:(1)加速度a是相对同一个惯性系的(一般指地面);(2)F=ma中,F、m、a对应同一个或同一个;(3)F=ma中,各量统一使用单位
独立性(1)作用于物体上的每一个力各自产生的加速度都满足F=ma;
(2)物体的实际加速度等于每个力产生的加速度的和;
(3)力和加速度在各个方向上的分量也满足F=ma即F x=ma x,F y=ma y
二、基础自测:
1、(双选)由牛顿第二定律表达式F=ma可知( )
A.质量m与合外力F成正比,与加速度a成反比
B.合外力F与质量m和加速度a都成正比
C.物体的加速度的方向总是跟它所受合外力的方向一致
D.物体的加速度a跟其所受的合外力F成正比,跟它的质量m成反比
2、某个质量为m的物体在水平面上受到斜向上的力F的作用,其与水平面的夹角为θ,在水平面上做匀加速直线运动,物体与水平面间的动摩擦因数为μ,求其运动的加速度。
探究案
一、合作探究
探究一利用牛顿第二定律求加速度
【例1】如图所示,沿水平方向做匀加速直线运动的车厢中,小球的悬线偏离竖直方向37°,球和车厢相对静止,球的质量为1 kg。
(1)求车厢运动的加速度大小,并说明车厢的运动情况;
(2)求悬线对球的拉力大小。
(g取10 m/s2)
探究二瞬时加速度的分析
【例2】(单选)如图所示,天花板上用细绳吊起两个用轻弹簧相连的质量相同的小球,
两小球均保持静止.当突然剪断细绳的瞬间,上面小球A与下面小球B的加速度分别为
(以向上为正方向)().
A.a1=g a2=g B.a1=2g a2=0
C.a1=-2g a2=0 D.a1=0a2=g
【小结】1、力和加速度具有对应关系;
2、瞬时问题的分析:题目中同时有轻绳和弹簧,剪断轻绳时,弹簧的弹力瞬间发生变化.剪断弹簧时,绳上的拉力瞬间发生变化.(若上题中的弹簧改为轻绳,答案应选)
探究三加速度的动态分析——弹簧类问题
【例3】(单选)如图所示,自由下落的小球开始接触竖直放置的弹簧到弹簧被压缩到最短的过程中,小球
的速度和所受合力的变化情况是()
A.合力变小,速度变小
B.合力变小,速度变大
C.合力先变小后变大,速度先变大后变小
D.合力先变小后变大,速度先变小后变大
【小结】小球平衡位置的确定:
训练案
一、课中训练检测
1、(单选)竖直向上飞行的子弹,达到最高点后又返回原处,假设整个运动过程中,子弹受到的阻力与速度的大小成正比,则子弹在整个运动过程中,加速度大小的变化是()
A.始终变大B.始终变小C.先变大后变小D.先变小后变大
2、(单选)如图所示,A、B两木块间连一轻杆,A、B质量相等,一起静止地放在一块
光滑木板上,若将此木板突然抽去,在此瞬间,A、B两木块的加速度分别是()A.a A=0,a B=2g B.a A=g,a B=g
C.a A=0,a B=0 D.a A=g,a B=2g
3、(单选)如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点,今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦
因数恒定,试判断下列说法正确的是()
A.物体从A到B速度越来越大,从B到C速度越来越小
B.物体从A到B速度越来越小,从B到C加速度不变
C.物体从A到B先加速后减速,从B到C一直减速运动
D.物体在B点受合外力为零
4、如图所示,一质量为m的小球,图甲中用两根细绳悬吊,图乙中用一根细绳和一根轻弹簧悬吊,两者均处于静止状态,其中AB绳水平,OB部分与竖直方向成θ角,如果突然把两水平细绳剪断,则剪断绳的瞬间,甲、乙两图中小球的加速度大小各为多少?
二、课后巩固提升:完成《优化探究》第2课时相应的各题。