47正弦稳态时RLC元件电压电流相位关系的测试

合集下载

RLC元件电压电流关系的相量形式讲解

RLC元件电压电流关系的相量形式讲解

e j t ] Re[ 2U e j t ] u (t ) Re[U m e j t ] Re[ 2 Ie j t ] i(t ) Re[I
m
(8 21) (8 22)
将以上两式代入式8-18中,得到
e j t ] R Re[ 2I e j t ] u(t) Re[ 2U
解:根据图(a)所示电路的时域模型,画出图(b)所示的相量
模型,图中各电压电流参考方向均与时域模型相同,
仅将时域模型中各电压电流符号 iS、i、u1、u 2、u 用相应的相量符号
、I 、U 、U 、U 表示,根据相 I S 1 2
量形式的KCL求出电流相量
I I S 10 A 1A
图 8-16
由于电感元件的电压电流都是频率相同的正弦时间函
数,可以用相量分别表示,将它们代入式8-24中得到
e j t ] u (t) Re[ 2U d e jt )] L [Re( 2 I dt e jt ] Re[ j L 2 I
由此得到电感元件电压相量和电流相量的关系式
U 1 C I jC C
我们注意到,RLC元件电压相量与电流相量之间的关
系类似欧姆定律,电压相量与电流相量之比是一个与时间
无关的量,其中R,称为电阻;jL,称为电感的电抗,简 称为感抗;1/jC,称为电容的电抗,简称为容抗。为了使 用方便,我们用大写字母Z来表示这个量,它是一个复数, 称为阻抗。
i
k 1 n k 1
n
k
0 0
I
k 1 n k 1
n
k
0 0
u
k
U
k
uS (t ) U 2 cos(t ψ u ) iS (t ) U 2 cos(t ψ i ) u Ri di uL dt du iC dt i Gu 1 t i udt L 1 t u idt C

正弦稳态交流电路的研究实验报告

正弦稳态交流电路的研究实验报告

正弦稳态交流电路的研究实验报告正弦稳态交流电路的研究实验报告摘要:本实验旨在研究正弦稳态交流电路的特性。

通过构建不同类型的交流电路并测量其电流、电压以及功率等参数,我们了解到正弦稳态电路的频率响应、电流相位差、电压波形以及功率因数等重要特性。

实验结果表明,正弦稳态交流电路具有较好的稳定性和可靠性,适用于各种电力应用。

1. 引言正弦稳态交流电路是电力系统中最常见和重要的一类电路,广泛应用于发电、输电、变电等领域。

了解正弦稳态电路的特性对于电力工程师和电子技术研究者至关重要。

2. 实验原理本实验涉及了正弦稳态电路的基本原理,包括交流电路的频率响应、电流相位差、电压波形以及功率因数等。

2.1 交流电路的频率响应实验中我们构建了一个简单的RLC串联电路,通过改变输入交流信号的频率,测量电路中的电流和电压,来研究电路的频率响应。

2.2 交流电路的电流相位差通过在电路中添加电阻和电感元件,我们测量了电路中电流和电压之间的相位差,并分析了相位差对电路性能的影响。

2.3 交流电路的电压波形实验中我们使用示波器测量了电路中的电压波形,并观察了不同电路元件对电压波形的影响。

2.4 交流电路的功率因数通过测量电路中的有功功率和视在功率,我们计算了电路的功率因数,并探讨了功率因数对电路效率的影响。

3. 实验过程及结果我们按照实验原理部分所述方法搭建了正弦稳态交流电路,并进行了一系列测量。

3.1 频率响应实验在实验中,我们改变了输入交流信号的频率,测量了电路中的电流和电压。

实验结果显示,电路对不同频率的输入信号有不同的响应。

3.2 电流相位差实验通过添加电感元件和电阻元件,我们测量了电路中电流和电压之间的相位差。

实验结果表明,电路中的电感元件会导致电流滞后于电压。

3.3 电压波形实验我们使用示波器测量了电路中的电压波形,并观察了不同电路元件对电压波形的影响。

实验结果显示,电路中的电感元件会导致电压波形发生畸变。

3.4 功率因数实验通过测量电路中的有功功率和视在功率,我们计算了电路的功率因数。

正弦稳态交流电路相量实验报告

正弦稳态交流电路相量实验报告

竭诚为您提供优质文档/双击可除正弦稳态交流电路相量实验报告篇一:《模电实验报告》正弦稳态交流电路向量的研究实验四正弦稳态交流电路向量的研究班级:_计算机科学与技术五班姓名:学号:520日期:篇二:正弦稳态交流电路相量的研究电路实验报告九实验日期:20XX.12.12实验名称实验班级姓名学号同组同学指导老师一:实验目的1.研究正弦稳态交流电路中电压.电流向量之间的关系。

2.掌握日光灯电路的接线。

3.理解改善电路功率因数的意义并掌握其方法。

二:原理说明1.在单相正弦交流电路中,用交流电流表测得各支路的电流值,用交流电压表测得回路各元件两端的电压值,他们之间的关系满足向量形式的基尔霍夫定律,既∑I=0和∑RuuRucu=0.9-1Rc串联电路2.图9-1所示的Rc串联电路,在正弦稳态信号u的激励下,uR与uc保持有90°的相位差,即当R阻值改变时。

uR 的向量轨迹是一个半圆。

u﹑uc与uR三者形成一个直角形的电压三角形,如图9-2所示。

R值改变时,也该表φ角的大小,从而达到移相的目的。

9-2相量图3.日光定线路如图9-3所示,图中A是日光灯管,L是镇流器,s是启辉器,c是补偿电容器,用以改善电路的功率因数(cosφ值)。

有关日光灯的工作原理请自行翻阅有关资料。

图三:实验设备四:实验内容1.按图9-1接线,R为220V﹑25w的白炽灯泡,电容器为4.7Μf/450V。

经指导老师检查后,接通试验台电源,将自耦调压器输出(即u)调至220V。

记录u﹑uR﹑uc值,验证电压三角形关系。

2.日光灯接线与测量。

按图9-4接线。

经指导教师检查后接通试验台电源,调节自耦调压器的输出,使其输出电压缓慢增大,直到日光灯刚启辉器电量为止,记下三表的指示值。

然后将电压调至220V,测量功率p,电流I,电压u,uL,uA等值,验证电压﹑电流向量关系。

4.并联电路——电路功率因数的改善。

按图9-5组成试验线路。

经指导教师检查后,接通实验台电源,将自耦调压器的输出调至220V,记录功率表,电压表读数。

教学大纲 - 电子科技大学教务处

教学大纲 - 电子科技大学教务处

《电子技术基础实验Ⅰ》课程教学大纲课程英文名称:Fundadamentals of Electronic Technology Lab Ⅰ课程代码:E0200710 学时数:20 学分数:1课程类型:实验课程适用学科专业:电子类专业先修课程:电路分析执笔者:崔红玲编写日期:2013-11-15 审核人:一、课程简介本课程是电子信息工程、通信工程等电子类专业的一门重要实验课程,以“电路分析基础”作为背景知识,在服务于理论课程的同时,注重引导学生建立工程上的感性认识,认识常用的电子元器件,学会使用常用的电子测量仪器,学会简单的电子测量方法,能够设计搭建简单的单元电路。

一、IntroductionThis course is an important experiment course in electronic and communication engineering. Based on the “Basic Theories of Circuit Analysis”, this course not only serves for the theory courses, but also aims at helping students have a perceptual cognition on electronic engineering projects. Students in this course will be able to know about basic electronic components, use electronic measurement devices, handle simple electronic measurement methods, and design and build the basic circuit unit.二、课程目标引导学生建立工程上的感性认识,增强培养学生实践动手能力。

正弦稳态时R、L、C电压电流相位关系的测试

正弦稳态时R、L、C电压电流相位关系的测试
实验中可能存在的误差来源包括测量 设备的精度问题、电路连接的接触不 良以及环境噪声等。
对实验结果的理解与讨论
实验结果有助于深入理解r、l、c元件在正弦稳态下的电压电流相位关系,为电路分 析和设计提供了重要的理论依据。
对于实际应用中可能出现的复杂电路,掌握r、l、c元件的相位关系有助于分析电路 的工作状态和性能。
改变函数信号发生器的频 率,重复上述步骤,记录 多组数据。
通过示波器上的测量工具, 测量电压和电流的相位差, 并记录下来。
分析实验数据,得出r、l、 c元件的电压电流相位关 系结论。
04 实验结果与分析
r、l、c元件的电压电流相位关系
电阻(r)的相位关系
电容(c)的相位关系
在正弦稳态下,电阻的电压和电流相 位相同,即同相位。这意味着电压和 电流同时达到峰值,同时为零。
详细描述
电容器是一种电子元件,其特点是电 压在正弦稳态下滞后于电流90度。在 测试中,我们使用电容器来模拟纯电 容负载,以便研究电压和电流之间的 关系。
函数信号发生器
总结词
函数信号发生器用于产生测试所需的交流信号。
详细描述
函数信号发生器是一种电子设备,能够产生各种波形和频率的信号,如正弦波、方波等。在测试中,我们使用函 数信号发生器来提供交流信号源,以便对电阻器、电感器和电容器进行测试。
感谢您的观看
实验结果与理论分析的对比也提醒我们,理论与实践之间可能存在的偏差,需要在 实践中不断修正和完善理论。
05 结论与展望
总结实验结果
实验结果表明,电阻(r)元件的电压和电流相位相同,电感(l)元件的电压相位滞 后电流相位90度,电容(c)元件的电压相位超前电流相位90度。
通过实验数据,验证了正弦稳态时r、l、c元件的电压电流相位关系,进一步加深 了对电路理论的理解。

中国大学mooc《电子技术实验基础(一:电路分析)(电子科技大学) 》满分章节测试答案

中国大学mooc《电子技术实验基础(一:电路分析)(电子科技大学) 》满分章节测试答案

title电子技术实验基础(一:电路分析)(电子科技大学)中国大学mooc答案100分最新版content实验1-1 常用电子测量仪器的使用——数字示波器的使用数字示波器的使用单元测试题1、如图所示示波器的面板旋钮中,标出哪个按键是垂直通道的菜单按键A:AB:BC:CD:D答案: A2、如图所示示波器的面板旋钮中,标出哪个旋钮是水平通道的位移旋钮A:AB:BC:CD:D答案: C3、若被测试的信号是交直流叠加信号,示波器的垂直耦合方式应该选择哪一挡A:AC耦合B:DC耦合C:接低耦合D:AC、DC均可答案: DC耦合4、如图所示示波器的探头,测试信号时,探头应该与测试端应如何连接A:探勾接信号端钮,黑色鳄鱼夹接地B: 探勾接地,黑色鳄鱼夹接信号端钮C: 可以任意连接D:以上均不正确答案: 探勾接信号端钮,黑色鳄鱼夹接地5、如下图所示第四个菜单栏中,如果测量时发现该菜单栏显示不是电压1X,而是电压10X,应该调节哪个按键或旋钮使其为电压1XA:旁边的按键切换选择B:VARIABLE旋钮C:AUTOSETD:关机重启答案: VARIABLE旋钮6、下图是所示是示波器探头的手柄阻抗拨动开关细节图,若手柄放在1X端,垂直菜单栏中第四栏应怎么调节?若手柄放在10X端,又该怎样调节?A:电压1X、电压10XB:电压10X、电压1XC:电压1X、电压1XD:任意选择不影响结果答案: 电压1X、电压10X7、如图所示示波器的显示屏上,哪个标示的是通道1的零基线位置A:AB:BC:CD:D答案: C实验1-2 常用电子测量仪器的使用——函数发生器和晶体管毫伏表的使用函数发生器和晶体管毫伏表单元测验1、信号源输出周期信号时频率显示如图所示,当前输出信号的频率是多少?A:1HzB:10HzC:1KHzD:10KHz答案: 1KHz2、信号源给后级网络提供正弦信号,如果信号源幅度显示窗口显示如图所示,表明现在后级网络得到的信号电压大小是?A:不确定B:电压峰值是111mVC:电压峰峰值是111mVD:电压有效值是答案: 不确定3、下列说法正确的是?A: 数字万用表可以测量函数发生器输出信号中的直流分量B: 函数发生器只用“输出幅度调节”旋钮进行幅度调节C:函数发生器可用“直流偏移”旋钮输出直流电压信号D:函数发生器输出信号电压的最大值和最小值之间相差60dB答案: 数字万用表可以测量函数发生器输出信号中的直流分量4、列说法正确的是?A:毫伏表是用来测量包括直流电压在内的电压值的仪表B:使用毫伏表测量正弦信号的有效值时需要考虑正弦信号的频率C:毫伏表和万用表作为交流电压表都可以测量正弦信号的有效值,在没有毫伏表时,可以临时用万用表替代D:三角波信号和方波信号不能送入毫伏表测量答案: 使用毫伏表测量正弦信号的有效值时需要考虑正弦信号的频率5、某个正弦交流信号的有效值是0.8V,毫伏表应选择哪一档进行测量?A:10VB:3VC:1VD:300mV答案: 1V实验2 正弦稳态时RLC元件电压电流相位关系的测试正弦稳态时RLC元件电压电流相位关系的测试1、采用课程实验方案测量电感元件的电压电流相位关系时,为了获得近似90°的电压、电流波形相位差,信号源的频率应:A:适当增大信号源的频率;B:适当减小信号源的频率;C:调节信号源的频率不会影响相位差的测试;D:以上措施都不会改善测量结果答案: 适当增大信号源的频率;2、采用课程实验方案测量电容元件的电压电流相位关系时,示波器测量波形如图所示,下面哪种说法正确:A:CH1通道为取样电阻的电压信号, CH2通道为信号源信号;B:CH1通道为信号源信号, CH2通道为取样电阻的电压信号;C:CH2通道为电容元件的电压信号, CH1通道为取样电阻的电压信号;D:无法判断答案: CH1通道为信号源信号, CH2通道为取样电阻的电压信号;3、测量示波器相位差时显示的两路波形如图所示,为了能正确测量,应适当调节面板中哪个旋钮:A:A;B:B;C:C;D:D答案: A;4、测量示波器相位差时显示的两路波形如图所示,为了减小读数误差,需要适当应适当调节面板中哪个旋钮 :A:A;B:B;C:C;D:D答案: D5、采用课程实验方案正确测量元件的电压电流相位关系时,示波器测量波形如图所示,由此可以判断当前测试的是哪种元件:A:电感;B:电容;C:电阻;D:无法判断答案: 电阻;实验3 一阶RC电路频率特性研究一阶RC电路频率特性研究1、关于一阶RC低通滤波器的截止频率fc,如下描述中哪一项是正确的?A:电阻保持不变,减小电容值, fc降低B:电阻保持不变,增大电容值, fc降低C:截止频率处的输出电压是最大输出电压的50%D:低通滤波器的带宽是fc ~∞答案: 电阻保持不变,增大电容值, fc降低2、根据一阶RC低通滤波器的相频特性公式,随着频率从低到高,相位差的正确变化规律是:A:从0°~ -90°B:从0°~90°C:从-45°~+45°D:从0°~-180°答案: 从0°~ -90°3、测试低通滤波器的幅频特性曲线时,此处假设截止频率是大于500Hz的,如下哪种说法不正确:A: 测试过程中保持电路的输入信号幅度一致B:在大于20Hz的较低频率处找到最大输出电压后,再以此为参照开始测试C: 以输入电压为参照,调节频率至输出电压下降3dB就是截止频率D:在各个频率点测试时,应当保证测试输出电压的毫伏表的指针偏转超过刻度线的⅓答案: 以输入电压为参照,调节频率至输出电压下降3dB就是截止频率。

RLC正弦交流电路参数测量

RLC正弦交流电路参数测量

实验十:RLC 正弦交流电路参数测量 一:实验目的1、学习使用功率表、电压表和电流表测定交流电路元件参数的方法。

2、加强对正弦稳态电路中电压、电流相量分析的理解3、深入理解R 、L 、C 元件在交流电路中的作用及分析方法。

二、实验器材1k Ω的电阻一个、49Ω电阻一个、10mH 的电感一个、10uF 的电容一个、函数信号发生器、示波器、数字万用表、面包板、导线若干。

三、实验原理1. 正弦交流电的三要素2. 电路参数在正弦交流电路的负载中,可以是一个独立的电阻器、电感器或电容器,也可由它们相互组合(这里仅采用串联组合方式,如图4.1-2所示)。

电路里元件的阻抗特性为1()()L C Z R j X X R j L Cωω=+-=+-当采用交流电压表、电流表和有功功率表对电路测量时(简称三表法),可用下列计算公式来表述Z P 与、U 、I 相互之间的关系:负载阻抗的模/Z U I=;负载回路的等效电阻2cos R P I Z ϕ==;负载回路的等效电抗sin X Z ϕ;功率因数cos P UI ϕ=;电压与电流的相位差 1arctan arctanL C XR R ωωϕ-==;当ϕ>0时,电压超前电流;当ϕ<0时,电压滞后电流。

四、实验过程1、电阻与电感并联电路图波形图:2、电阻与电容并联电路图3、电阻和电容、电感并联实验数据记录:数据分析:有数据可得,当1k Ω电阻并上电容时,功率因数显著提高,减少其无功功率。

五、实验总结这次实验让我更加深刻了解了电容电感等元件上的电压和电流存在相位差,以及其对功率因数的影响,也加深了对相量的概念,电容和电感的特性的理解。

RLC正弦交流电路参数测量实验报告(一)

RLC正弦交流电路参数测量实验报告(一)

RLC正弦交流电路参数测量实验报告(一)RLC正弦交流电路是电子学和通信工程中常用的一种电路,它由电阻、电感、电容三种元件组成。

为了准确地测量电路的参数,通常会进行RLC正弦交流电路参数测量实验。

本文将对此实验进行介绍和分析。

一、实验目的本实验的目的在于通过测量RLC正弦交流电路的电压、电流和相位差等参数,计算出电路中的电阻、电感和电容值,并验证实验结果的正确性。

二、实验原理在RLC正弦交流电路中,电阻元件呈现线性特性,电感和电容元件具有非线性特性。

因此,当电压为正弦交流电压时,电路中的电流也呈现正弦交流特性,其相位角度可以通过电流和电压之间的正弦函数来表示。

同时,电阻、电感和电容元件的阻值、电感值和电容值可以通过测量电压、电流和相位差进行计算。

三、实验步骤1. 按图连接电路,调节稳压电源输出电压和电流;2. 使用数字万用表测量电路中各元件的电阻值;3. 使用示波器测量电路中的电压和电流,并记录相位差;4. 根据实验数据,计算电路中的电阻、电感和电容值;5. 对比实验结果,验证测量的正确性。

四、实验结果在本次实验中,我们测得电路中的电阻为100Ω,电感为0.5H,电容为0.01μF。

同时,我们还记录下了电压和电流的波形,并计算出相位差为30度。

通过实验计算,我们得到的电阻值为97Ω,电感值为0.48H,电容值为0.009μF。

可以看出我们的实验结果与实际值非常接近,表明了测量参数的准确性和实验结果的可靠性。

五、实验分析在实际电路中,电感和电容元件往往会对信号的相位产生影响,从而影响电路的性能。

因此,在进行RLC正弦交流电路参数测量实验时要注意测量精度和误差控制。

同时,在实验中还要注意使用合适的仪器和正确的操作步骤,以免影响实验结果的准确性和可靠性。

六、实验总结本次实验通过测量RLC正弦交流电路的电压、电流和相位差等参数,计算出电路中的电阻、电感和电容值,并验证实验结果的正确性。

本实验的目的在于让学生更加深入地了解RLC正弦交流电路的特性和组成,提高其电路分析和设计的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

下次预习ห้องสมุดไป่ตู้
4.8 RC低通滤波器的设计与测试 ……………………P132
U& jLI&
电压超前电流90° 3. 电容电压电流的相位关系:
电压滞后电流90°
U& 1 I&
jC
二、实验原理
4. 电压电流相位关系的测试方法
其中X是被测元器件, Ro是测量电流用的取样电阻。
二、实验原理
4. 电压电流相位关系的测试方法 垂直方式 双踪观测方式
二、实验原理
5. 相位差的测试方法 双迹法(截距法)测量相位差 超前
3.电容元件电压电流相位关系的测试 自拟实验电路,测试电容元件的电压电流相位
关系,测量该相位差,并在同一坐标下绘出电容元件 的电压与电流波形。
正弦激励 f =10kHz,取样电阻 24Ω 被测元件 电容0.047µF。
四、实验报告要求
1、认真记录实验数据 2、用坐标纸定量描绘测试波形,正确标明相应坐标。 3、根据测量数据和波形,分析测试结果总结相关内容。
X1 360
X
X1 X
二、实验原理
所选元件要求
正弦激励: f =10kHz,取样电阻 24Ω 被测元件: 电阻 1kΩ 电感 10mH 电容 0.047µF
三、实验内容
1.电阻元件电压电流相位关系的测试 自拟实验电路,测试电阻元件的电压电流相位
关系,测量该相位差,并在同一坐标下绘出电阻元件 的电压与电流波形。
4.7 正弦稳态时R、L、C电压电流
相位关系的测试
一.实验目的
1.进一步掌握正弦稳态电路中R、L、C元件的电压电
流关系;
2.掌握相位差的测试方法;
3.进一步熟练掌握示波器的双踪 测试方法。
二、实验原理
1. 电阻电压电流的相位关系:
U& RI&
电压、电流同相,即相位差为0
2. 电感电压电流的相位关系:
正弦激励 f =10kHz,取样电阻 24Ω 被测元件 电阻1kΩ。
三、实验内容
2.电感元件电压电流相位关系的测试
自拟实验电路,测试电感元件的电压电流相位 关系,测量该相位差,并在同一坐标下绘出电感元件 的电压与电流波形。
正弦激励 f =10kHz,取样电阻 24Ω 被测元件 电感10mH 。
三、实验内容
相关文档
最新文档