millimeter wave carrier generation based on a double brillouin frequence spaced fiber laser
测井解释难题及解决办法1

25.14 18.96 28.38 18.06 15.85 18.96 29.09 21.54 22.69 22.69 18.96 18.96
T2的偏移
模块式动态测试器(MDT)
MDT结构
组成部分: 电源模块 单、双探针模块 石英压力计 取样室(1、2.75和6加仑) 流动管线系统等
MDT的优点:
• 可测量管线中流动的流体电阻率 • 一次下井最多可取6个样品 • 可对样品进行井下光谱分析 • 能在较大范围内进行标准操作 • 提高了压力测量和动态响应的精度
四、测井技术解释评价技术
1、快速评价测井系列 2、双孔隙类型储层评价 3、大港碳酸盐岩评价技术 4、克拉2号气田气层评价 5、低电阻率油层评价技术
应变压力 流度 SG
(psi) (psi)
2967.40 21.50
2968.90 122.80
2969.90 40.20
2971.3
61.50
2972.7
14.40
2975.00 53.50
2976.60 55.00
2983.80 10.80
2989.00
1.10
2995.00
1.60
孔隙度(%) 渗透率(MD)
裂缝孔隙度:
P Wi Li / LD
裂缝识别与评价
• 分辩真假裂缝 • 把真裂缝分为天然裂缝和诱导缝 • 评价裂缝有效性,即什么样的裂缝对储
层的储量和产量贡献大 • 裂缝参数的定量计算
罗家2-1井FMI成像图上的低角度裂缝
ቤተ መጻሕፍቲ ባይዱ 裂缝与层理 的区别
切割层面的 高角度裂缝
砂砾岩剖面中的裂缝
裂缝
断层
探头数
192
96
波浪场数模

波浪场数模
波浪场数模是指在某一时间段内测量到的海浪数量的模拟或估计。
场数是一种海浪的测量单位,表示在某一特定时间内通过一点的海浪数量。
波浪场数模常用于海洋工程、航海、海上作业等领域,用于预测和评估海洋活动中的浪况。
通过模拟或估计波浪场数,可以提供对海洋状态的预测和估计,有助于船只和海上设施的安全和运营。
波浪场数模可以基于历史数据、气象数据、海洋测量数据等多种数据来源进行建模和预测。
波浪场数模一般考虑以下几个因素:波高、波长、波周期、波浪传播方向等。
这些因素会受到风速、风向、海水深度、海底地形等多种因素的影响。
波浪场数模可以通过建立数学模型或利用统计方法进行模拟,以预测未来一段时间内的波浪场数。
波浪场数模在海洋气象预报、海洋工程设计、海上作业规划等方面具有重要的应用价值。
通过准确预测和估计海洋中的波浪场数,可以提高海上活动的效率和安全性。
《越来越宽的信息之路》信息的传递PPT课件3

三、光纤通信
光是比微波频率 高得多的电磁波。
光通信的“高速公路” 更宽广。
利用频率单一、方向高度集中的激光进行 通信,效果很好。
光纤通讯技术是近几十年才发展起来的
• 1966年,华裔物理学家高锟首次利 用无线电波导通信的原理,提出了 低损耗(20 db/km)的光导纤维 (简称光纤)的概念。
• 1970年,美国康宁公司首次研制成 功损耗为20 db/km的石英光纤,它 是一种理想的传输介质。
第二十一章 信息的传递
越来越宽的信息之路
5分钟内,放电影比讲故事所包含的信息量更 多。
相同时间内,电视广播比电台广播能传递更多 的信息。
信息理论表明: 作为载体的电磁波,频率越高,相同时间内传
输的信息就越多。学科网
一、微波通信
微波信号的波长在 10 m ~1 mm之间;
微波信号的频率在30 MHz ~3 ×105 MHz 之间。
微波几乎沿直线传播
微波中继通信示意图
问题: 能否用月亮做中继站,实现微波通信?
答案: 太远,不方便
解决方案:学科网 人造卫星通信
二、卫星通信
通信卫星大多相对地球“静止”——同步卫星
三颗同步卫星可以实现全球通信
用碟形天线(大锅)接收来自卫星的信号学科
网
中国北斗卫星导航系统
中国北斗卫星导航系统
四、网络通信
计算机可以高速处理各种信息,把计算机联在 一起,可以进行网络通信。
• 1970年,贝尔实验室研制成功室温 下连续振荡的半导体激光器 (LD)。从此,开始了光纤通信 迅速发展的时代。
各种光导纤维
实验演示——光可以沿着水流传播光沿着水流传播光来自纤维光在光导纤维中的传播
光纤通信的优点:
Millimeter wave ceramic package

无人驾驶汽车英语PPT课件

Urban transportation services
1 2 3
Robotaxi
Autonomous taxi service, providing efficient and safe point-to-point travel.
Autonomous Public Transport
It enables scheduled and scheduled public transportation services by driving buses or subways automatically.
• Millimeter wave radar: Utilizing electromagnetic waves in the millimeter wave band for detection, it can operate under harsh weather conditions and measure the speed and distance of objects.
01
solves the problem of "last mile" delivery in cities
through autonomous driving.
Autonomous Trucking
02
Automated long-distance freight transportation to
• Transfer learning: Transfer the knowledge learned in one task to other related tasks, accelerating model training and improving performance.
测井曲线对应英文

测井资料常用英文代码表微梯度ML1 Microlog 1微电位ML2 Microlog 2声波时差AC Acousticlog密度DEN Density中子孔隙度CNL Compensated Dual-Spacing Neutron Log 井径CAL Caliper钻头大小BS Bit Size自然伽马GR Gamma Ray-Natural Radioactivity自然电位SP Spontaneous Potential深感应电阻率ILD Deep Investigation Induction Log中感应电阻率ILM Midium Investigation Induction Log八侧向电阻率LL8 Laterolog 8微球形聚焦电阻率MSFL Micro-Sphericlly Focused Log感应电导率COND Conductivity深侧向电阻率LLD Laterolog Deep浅侧向电阻率LLS Laterolog Shallow4米梯度电阻率RT Resistivity 4地层真电阻率RT True Formation Resistivity2.5米梯度电阻率R2.5 Resistivity 2.5中子伽马NEU Neutron中子伽马NGR Neutron Gamma Ray泥质含量SH Shale孔隙度POR Porosity渗透率PERM Permeability含水饱和度SW Water Saturation含油饱和度SO Oil Saturation of束缚水饱和度SWI Initial Water Saturation残余油饱和度SOR Residual Oil Saturation斯仑贝谢(Schlumberger)常用英文缩写数控测井系统CSU Cyber Service Units 或Computerized Logging Units 声波时差DT Delta T密度RHOB Rho Bulk中子孔隙度NPHI Neutron Phi感应电导率CILD IL-Deep Conductivity井径CALS Caliper Size自然伽马能谱NGS Natural Gamma Ray Spectrolog铀URAN Uranium钍THOR Thorium钾POTA Potassium高分辨率地层倾角仪HDT High Resolution Dipmeter Tool地层学高分辨率地层倾角仪SHDT Stratigraphy High Resolution Dipmeter Tool 地层压力RFT Repeat Formation Tester波形WF Wave Form微电阻率成像FMI Fullbore Formation Micro Imager Tool阵列感应成像AIT Array Induction Imager Tool方位侧向成像ARI Azimuthal Resistivity Imager Tool偶极声波成像DSI Dipole Shear Sonic Image Tool超声波成像USI Ultrasonic Imager Tool核磁共振CMR Combination Magnetic Resonance模块式地层动态测试仪MDT Modular Formation Dynamics Tester测井曲线名称汇总GRSL—能谱自然伽马POR 孔隙度NEWSANDPORW 含水孔隙度NEWSANDPORF 冲洗带含水孔隙度NEWSANDPORT 总孔隙度NEWSANDPORX 流体孔隙度NEWSANDPORH 油气重量NEWSANDBULK 出砂指数NEWSANDPERM 渗透率NEWSANDSW 含水饱和度NEWSANDSH 泥质含量NEWSANDCALO 井径差值NEWSANDCL 粘土含量NEWSANDDHY 残余烃密度NEWSANDSXO 冲洗带含水饱和度NEWSANDDA 第一判别向量的判别函数NEWSANDDB 第二判别向量的判别函数NEWSANDDAB 综合判别函数NEWSANDCI 煤层标志NEWSANDCARB 煤的含量NEWSANDTEMP 地层温度NEWSANDQ 评价泥质砂岩油气层产能的参数NEWSAND PI 评价泥质砂岩油气层产能的参数NEWSAND SH 泥质体积CLASSSW 总含水饱和度CLASSPOR 有效孔隙度CLASSPORG 气指数CLASSCHR 阳离子交换能力与含氢量的比值CLASS CL 粘土体积CLASSPORW 含水孔隙度CLASSPORF 冲洗带饱含泥浆孔隙度CLASSCALC 井径差值CLASSDHYC 烃密度CLASSPERM 绝对渗透率CLASSPIH 油气有效渗透率CLASSPIW 水的有效渗透率CLASSCLD 分散粘土体积CLASSCLL 层状粘土体积CLASSCLS 结构粘土体积CLASSEPOR 有效孔隙度CLASSESW 有效含水饱和度CLASSTPI 钍钾乘积指数CLASSPOTV 100%粘土中钾的体积CLASSCEC 阳离子交换能力CLASSQV 阳离子交换容量CLASSBW 粘土中的束缚水含量CLASSEPRW 含水有效孔隙度CLASSUPOR 总孔隙度,UPOR=EPOR+BW CLASSHI 干粘土骨架的含氢指数CLASSBWCL 粘土束缚水含量CLASSTMON 蒙脱石含量CLASSTILL 伊利石含量CLASSTCHK 绿泥石和高岭石含量CLASSVSH 泥质体积CLASSVSW 总含水饱和度CLASSVPOR 有效孔隙度CLASSVPOG 气指数CLASSVCHR 阳离子交换能力与含氢量的比值CLASS VCL 粘土体积CLASSVPOW 含水孔隙度CLASSVPOF 冲洗带饱含泥浆孔隙度CLASSVCAC 井径差值CLASSVDHY 烃密度CLASSVPEM 绝对渗透率CLASSVPIH 油气有效渗透率CLASSVPIW 水的有效渗透率CLASS VCLD 分散粘土体积CLASS VCLL 层状粘土体积CLASS VCLS 结构粘土体积CLASS VEPO 有效孔隙度CLASSVESW 有效含水饱和度CLASS VTPI 钍钾乘积指数CLASSVPOV 100%粘土中钾的体积CLASS VCEC 阳离子交换能力CLASS VQV 阳离子交换容量CLASS VBW 粘土中的束缚水含量CLASS VEPR 含水有效孔隙度CLASS VUPO 总孔隙度 CLASSVHI 干粘土骨架的含氢指数CLASS VBWC 粘土束缚水含量CLASS VTMO 蒙脱石含量CLASSVTIL 伊利石含量CLASSVTCH 绿泥石和高岭石含量CLASS QW井筒水流量PLIQT井筒总流量PLISK射孔井段PLIPQW单层产水量PLIPQT单层产液量PLIWEQ 相对吸水量ZRPMPEQ 相对吸水强度ZRPM POR 孔隙度PRCOPORW 含水孔隙度PRCO PORF 冲洗带含水孔隙度PRCO PORT 总孔隙度PRCOPORX 流体孔隙度PRCO PORH 油气重量PRCOBULK 出砂指数PRCOHF 累计烃米数PRCOPF 累计孔隙米数PRCO PERM 渗透率PRCOSW 含水饱和度PRCOSH 泥质含量PRCOCALO 井径差值PRCOCL 粘土含量PRCODHY 残余烃密度PRCOSXO 冲洗带含水饱和度PRCO SWIR 束缚水饱和度PRCO PERW 水的有效渗透率PRCO PERO 油的有效渗透率PRCOKRW 水的相对渗透率PRCOKRO 油的相对渗透率PRCOFW 产水率PRCOSHSI 泥质与粉砂含量PRCOSXOF 199*SXO PRCOSWCO 含水饱和度PRCOWCI 产水率PRCOWOR 水油比PRCOCCCO 经过PORT校正后的C/O值 PRCO CCSC 经过PORT校正后的SI/CA值PRCO CCCS 经过PORT校正后的CA/SI值PRCO DCO 油水层C/O差值PRCOXIW A 水线视截距PRCOCOW A 视水线值PRCOCONM 视油线值PRCOCPRW 产水率(C/O计算)PRCOCOAL 煤层CRAOTHR 重矿物的百分比含量CRASALT 盐岩的百分比含量CRASAND 砂岩的百分比含量CRALIME 石灰岩的百分比含量CRADOLM 白云岩的百分比含量CRAANHY 硬石膏的百分比含量CRA ANDE 安山岩的百分比含量CRA BASD 中性侵入岩百分比含量CRA DIAB 辉长岩的百分比含量CRA CONG 角砾岩的百分比含量CRA TUFF 凝灰岩的百分比含量CRA GRA V 中砾岩的百分比含量CRA BASA 玄武岩的百分比含量CRA常用测井曲线名称A1R1 T1R1声波幅度A1R2 T1R2声波幅度A2R1 T2R1声波幅度A2R2 T2R2声波幅度AAC 声波附加值AA VG 第一扇区平均值AC 声波时差AF10 阵列感应电阻率AF20 阵列感应电阻率AF30 阵列感应电阻率AF60 阵列感应电阻率AF90 阵列感应电阻率AFRT 阵列感应电阻率AFRX 阵列感应电阻率AIMP 声阻抗AIPD 密度孔隙度AIPN 中子孔隙度AMA V 声幅AMAX 最大声幅AMIN 最小声幅AMP1 第一扇区的声幅值AMP2 第二扇区的声幅值AMP3 第三扇区的声幅值AMP4 第四扇区的声幅值AMP5 第五扇区的声幅值AMP6 第六扇区的声幅值AMVG 平均声幅AO10 阵列感应电阻率AO20 阵列感应电阻率AO30 阵列感应电阻率AO60 阵列感应电阻率AO90 阵列感应电阻率AOFF 截止值AORT 阵列感应电阻率AORX 阵列感应电阻率APLC 补偿中子AR10 方位电阻率AR11 方位电阻率AR12 方位电阻率ARO1 方位电阻率ARO2 方位电阻率ARO3 方位电阻率ARO4 方位电阻率ARO5 方位电阻率ARO6 方位电阻率ARO7 方位电阻率ARO8 方位电阻率ARO9 方位电阻率AT10 阵列感应电阻率AT20 阵列感应电阻率AT30 阵列感应电阻率AT60 阵列感应电阻率AT90 阵列感应电阻率ATA V 平均衰减率ATC1 声波衰减率ATC2 声波衰减率ATC3 声波衰减率ATC4 声波衰减率ATC5 声波衰减率ATC6 声波衰减率ATMN 最小衰减率ATRT 阵列感应电阻率ATRX 阵列感应电阻率AZ 1号极板方位AZ1 1号极板方位AZI 1号极板方位AZIM 井斜方位BGF 远探头背景计数率BGN 近探头背景计数率BHTA 声波传播时间数据BHTT 声波幅度数据BLKC 块数BS 钻头直径BTNS 极板原始数据C1 井径C2 井径C3 井径CAL 井径CAL1 井径CAL2 井径CALI 井径CALS 井径CASI 钙硅比CBL 声波幅度CCL 磁性定位CEMC 水泥图CGR 自然伽马CI 总能谱比CMFF 核磁共振自由流体体积CMRP 核磁共振有效孔隙度CN 补偿中子CNL 补偿中子CO 碳氧比CON1 感应电导率COND 感应电导率CORR 密度校正值D2EC 200兆赫兹介电常数D4EC 47兆赫兹介电常数DAZ 井斜方位DCNT 数据计数DEN 补偿密度DEN_1 岩性密度DEPTH 测量深度DEV 井斜DEVI 井斜DFL 数字聚焦电阻率DIA1 井径DIA2 井径DIA3 井径DIFF 核磁差谱DIP1 地层倾角微电导率曲线1 DIP1_1 极板倾角曲线DIP2 地层倾角微电导率曲线2 DIP2_1 极板倾角曲线DIP3 地层倾角微电导率曲线3 DIP3_1 极板倾角曲线DIP4 地层倾角微电导率曲线4 DIP4_1 极板倾角曲线DIP5 极板倾角曲线DIP6 极板倾角曲线DRH 密度校正值DRHO 密度校正值DT 声波时差DT1 下偶极横波时差DT2 上偶极横波时差DT4P 纵横波方式单极纵波时差DT4S 纵横波方式单极横波时差DTL 声波时差DTST 斯通利波时差ECHO 回波串ECHOQM 回波串ETIMD 时间FAMP 泥浆幅度FAR 远探头地层计数率FCC 地层校正FDBI 泥浆探测器增益FDEN 流体密度FGAT 泥浆探测器门限FLOW 流量FPLC 补偿中子FTIM 泥浆传播时间GAZF Z轴加速度数据GG01 屏蔽增益GG02 屏蔽增益GG03 屏蔽增益GG04 屏蔽增益GG05 屏蔽增益GG06 屏蔽增益GR 自然伽马GR2 同位素示踪伽马HAZI 井斜方位HDRS 深感应电阻率HFK 钾HMRS 中感应电阻率HSGR 无铀伽马HTHO 钍HUD 持水率HURA 铀IDPH 深感应电阻率IMPH 中感应电阻率K 钾KCMR 核磁共振渗透率KTH 无铀伽马LCAL 井径LDL 岩性密度LLD 深侧向电阻率LLD3 深三侧向电阻率LLD7 深七侧向电阻率LLHR 高分辨率侧向电阻率LLS 浅侧向电阻率LLS3 浅三侧向电阻率LLS7 浅七侧向电阻率M1R10 高分辨率阵列感应电阻率M1R120 高分辨率阵列感应电阻率M1R20 高分辨率阵列感应电阻率M1R30 高分辨率阵列感应电阻率M1R60 高分辨率阵列感应电阻率M1R90 高分辨率阵列感应电阻率M2R10 高分辨率阵列感应电阻率M2R120 高分辨率阵列感应电阻率M2R20 高分辨率阵列感应电阻率M2R30 高分辨率阵列感应电阻率M2R60 高分辨率阵列感应电阻率M2R90 高分辨率阵列感应电阻率M4R10 高分辨率阵列感应电阻率M4R120 高分辨率阵列感应电阻率M4R20 高分辨率阵列感应电阻率M4R30 高分辨率阵列感应电阻率M4R60 高分辨率阵列感应电阻率M4R90 高分辨率阵列感应电阻率MBVI 核磁共振束缚流体体积MBVM 核磁共振自由流体体积MCBW 核磁共振粘土束缚水ML1 微电位电阻率ML2 微梯度电阻率MPHE 核磁共振有效孔隙度MPHS 核磁共振总孔隙度MPRM 核磁共振渗透率MSFL 微球型聚焦电阻率NCNT 磁北极计数NEAR 近探头地层计数率NGR 中子伽马NPHI 补偿中子P01 第1组分孔隙度P02 第2组分孔隙度P03 第3组分孔隙度P04 第4组分孔隙度P05 第5组分孔隙度P06 第6组分孔隙度P07 第7组分孔隙度P08 第8组分孔隙度P09 第9组分孔隙度P10 第10组分孔隙度P11 第11组分孔隙度P12 第12组分孔隙度P1AZ 1号极板方位P1AZ_1 2号极板方位P1BTN 极板原始数据P2BTN 极板原始数据P2HS 200兆赫兹相位角P3BTN 极板原始数据P4BTN 极板原始数据P4HS 47兆赫兹相位角P5BTN 极板原始数据P6BTN 极板原始数据PAD1 1号极板电阻率曲线PAD2 2号极板电阻率曲线PAD3 3号极板电阻率曲线PAD4 4号极板电阻率曲线PAD5 5号极板电阻率曲线PAD6 6号极板电阻率曲线PADG 极板增益PD6G 屏蔽电压PE 光电吸收截面指数PEF 光电吸收截面指数PEFL 光电吸收截面指数PERM-IND 核磁共振渗透率POTA 钾PPOR 核磁T2谱PPORB 核磁T2谱PPORC 核磁T2谱PR 泊松比PRESSURE 压力QA 加速计质量QB 磁力计质量QRTT 反射波采集质量R04 0.4米电位电阻率R045 0.45米电位电阻率R05 0.5米电位电阻率R1 1米底部梯度电阻率R25 2.5米底部梯度电阻率R4 4米底部梯度电阻率R4AT 200兆赫兹幅度比R4AT_1 47兆赫兹幅度比R4SL 200兆赫兹电阻率R4SL_1 47兆赫兹电阻率R6 6米底部梯度电阻率R8 8米底部梯度电阻率RAD1 井径(极板半径)RAD2 井径(极板半径)RAD3 井径(极板半径)RAD4 井径(极板半径)RAD5 井径(极板半径)RAD6 井径(极板半径)RADS 井径(极板半径)RATI 地层比值RB 相对方位RB_1 相对方位角RBOF 相对方位RD 深侧向电阻率RFOC 八侧向电阻率RHOB 岩性密度RHOM 岩性密度RILD 深感应电阻率RILM 中感应电阻率RLML 微梯度电阻率RM 钻井液电阻率RMLL 微侧向电阻率RMSF 微球型聚焦电阻率RNML 微电位电阻率ROT 相对方位RPRX 邻近侧向电阻率RS 浅侧向电阻率SDBI 特征值增益SFL 球型聚焦电阻率SFLU 球型聚焦电阻率SGAT 采样时间SGR 无铀伽马SICA 硅钙比SIG 井周成像特征值SIGC 俘获截面SIGC2 示踪俘获截面SMOD 横波模量SNL 井壁中子SNUM 特征值数量SP 自然电位SPER 特征值周期T2 核磁T2谱T2-BIN-A 核磁共振区间孔隙度T2-BIN-B 核磁共振区间孔隙度T2-BIN-PR 核磁共振区间孔隙度T2GM T2分布对数平均值T2LM T2分布对数平均值TEMP 井温TH 钍THOR 钍TKRA 钍钾比TPOR 核磁共振总孔隙度TRIG 模式标志TS 横波时差TT1 上发射上接受的传播时间TT2 上发射下接受的传播时间TT3 下发射上接受的传播时间TT4 下发射下接受的传播时间TURA 钍铀比U 铀UKRA 铀钾比URAN 铀V AMP 扇区水泥图VDL 声波变密度VMVM 核磁共振自由流体体积VPVS 纵横波速度比W A V1 第一扇区的波列W A V2 第二扇区的波列W A V3 第三扇区的波列W A V4 第四扇区的波列W A V5 第五扇区的波列W A V6 第六扇区的波列W A VE 变密度图WF 全波列波形ZCORR 密度校正值测井曲线代码一览表常用测井曲线名称测井符号英文名称中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formationresistivity 冲洗带地层电阻率Ild deep investigate induction log深探测感应测井Ilm medium investigate induction log中探测感应测井Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log深双侧向电阻率测井Rs shallow investigate double 浅双侧向电阻率测井lateral resistivity logRMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马常用测井曲线名称测井符号英文名称中文名称Rt true formation resistivity. 地层真电阻率Rxo flushed zone formation resistivity 冲洗带地层电阻率Ild deep investigate induction log 深探测感应测井Ilm medium investigate induction log 中探测感应测井Ils shallow investigate induction log 浅探测感应测井Rd deep investigate double lateral resistivity log 深双侧向电阻率测井Rs shallow investigate double lateral resistivity log 浅双侧向电阻率测井RMLL micro lateral resistivity log 微侧向电阻率测井CON induction log 感应测井AC acoustic 声波时差DEN density 密度CN neutron 中子GR natural gamma ray 自然伽马SP spontaneous potential 自然电位CAL borehole diameter 井径K potassium 钾TH thorium 钍U uranium 铀KTH gamma ray without uranium 无铀伽马NGR neutron gamma ray 中子伽马5700系列的测井项目及曲线名称Star Imager 微电阻率扫描成像CBIL 井周声波成像MAC 多极阵列声波成像MRIL 核磁共振成像TBRT 薄层电阻率DAC 阵列声波DVRT 数字垂直测井HDIP 六臂倾角MPHI 核磁共振有效孔隙度MBVM 可动流体体积MBVI 束缚流体体积MPERM 核磁共振渗透率Echoes 标准回波数据T2 Dist T2分布数据TPOR 总孔隙度BHTA 声波幅度BHTT 声波返回时间Image DIP 图像的倾角COMP AMP 纵波幅度Shear AMP 横波幅度COMP ATTN 纵波衰减Shear ATTN 横波衰减RADOUTR 井眼的椭圆度Dev 井斜。
计算流体力学中英文词汇对照

流体动力学fluid dynamics 连续介质力学mechanics of continuous media 介质medium 流体质点fluid particle无粘性流体nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学fluid kinematics 水静力学hydrostatics液体静力学hydrostatics 支配方程governing equation伯努利方程Bernoulli equation 伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law 欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem 开尔文定理Kelvin theorem涡片vortex sheet 库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution 达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number 施特鲁哈尔数Strouhal number随体导数material derivative 不可压缩流体incompressible fluid质量守恒conservation of mass 动量守恒conservation of momentum能量守恒conservation of energy 动量方程momentum equation能量方程energy equation 控制体积control volume液体静压hydrostatic pressure 涡量拟能enstrophy压差differential pressure 流[动] flow流线stream line 流面stream surface流管stream tube 迹线path, path line流场flow field 流态flow regime流动参量flow parameter 流量flow rate, flow discharge涡旋vortex 涡量vorticity涡丝vortex filament 涡线vortex line涡面vortex surface 涡层vortex layer涡环vortex ring 涡对vortex pair涡管vortex tube 涡街vortex street卡门涡街Karman vortex street 马蹄涡horseshoe vortex对流涡胞convective cell 卷筒涡胞roll cell涡eddy 涡粘性eddy viscosity环流circulation 环量circulation速度环量velocity circulation 偶极子doublet, dipole驻点stagnation point 总压[力] total pressure总压头total head 静压头static head总焓total enthalpy 能量输运energy transport速度剖面velocity profile 库埃特流Couette flow单相流single phase flow 单组份流single-component flow均匀流uniform flow 非均匀流nonuniform flow二维流two-dimensional flow 三维流three-dimensional flow准定常流quasi-steady flow 非定常流unsteady flow, non-steady flow 暂态流transient flow 周期流periodic flow振荡流oscillatory flow 分层流stratified flow无旋流irrotational flow 有旋流rotational flow轴对称流axisymmetric flow 不可压缩性incompressibility不可压缩流[动] incompressible flow 浮体floating body定倾中心metacenter 阻力drag, resistance减阻drag reduction 表面力surface force表面张力surface tension 毛细[管]作用capillarity来流incoming flow 自由流free stream自由流线free stream line 外流external flow进口entrance, inlet 出口exit, outlet扰动disturbance, perturbation 分布distribution传播propagation 色散dispersion弥散dispersion 附加质量added mass ,associated mass收缩contraction 镜象法image method无量纲参数dimensionless parameter 几何相似geometric similarity运动相似kinematic similarity 动力相似[性] dynamic similarity平面流plane flow 势potential势流potential flow 速度势velocity potential复势complex potential 复速度complex velocity流函数stream function 源source汇sink 速度[水]头velocity head拐角流corner flow 空泡流cavity flow超空泡supercavity 超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics气动热力学aerothermodynamics 亚声速流[动] subsonic flow跨声速流[动] transonic flow 超声速流[动] supersonic flow锥形流conical flow 楔流wedge flow叶栅流cascade flow 非平衡流[动] non-equilibrium flow细长体slender body 细长度slenderness钝头体bluff body 钝体blunt body翼型airfoil 翼弦chord薄翼理论thin-airfoil theory 构型configuration后缘trailing edge 迎角angle of attack失速stall 脱体激波detached shock wave波阻wave drag 诱导阻力induced drag诱导速度induced velocity 临界雷诺数critical Reynolds number 前缘涡leading edge vortex 附着涡bound vortex约束涡confined vortex 气动中心aerodynamic center气动力aerodynamic force 气动噪声aerodynamic noise气动加热aerodynamic heating 离解dissociation地面效应ground effect 气体动力学gas dynamics稀疏波rarefaction wave 热状态方程thermal equation of state 喷管Nozzle 普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow 可压缩流[动] compressible flow可压缩流体compressible fluid 绝热流adiabatic flow非绝热流diabatic flow 未扰动流undisturbed flow等熵流isentropic flow 匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state 完全气体perfect gas拉瓦尔喷管Laval nozzle 马赫角Mach angle马赫锥Mach cone 马赫线Mach line马赫数Mach number 马赫波Mach wave当地马赫数local Mach number 冲击波shock wave激波shock wave 正激波normal shock wave斜激波oblique shock wave 头波bow wave附体激波attached shock wave 激波阵面shock front激波层shock layer 压缩波compression wave反射reflection 折射refraction散射scattering 衍射diffraction绕射diffraction出口压力exit pressure 超压[强] over pressure反压back pressure 爆炸explosion爆轰detonation 缓燃deflagration水动力学hydrodynamics 液体动力学hydrodynamics泰勒不稳定性Taylor instability 盖斯特纳波Gerstner wave斯托克斯波Stokes wave 瑞利数Rayleigh number自由面free surface 波速wave speed, wave velocity波高wave height 波列wave train波群wave group 波能wave energy表面波surface wave 表面张力波capillary wave规则波regular wave 不规则波irregular wave浅水波shallow water wave深水波deep water wave 重力波gravity wave椭圆余弦波cnoidal wave 潮波tidal wave涌波surge wave 破碎波breaking wave船波ship wave 非线性波nonlinear wave孤立子soliton 水动[力]噪声hydrodynamic noise 水击water hammer 空化cavitation空化数cavitation number 空蚀cavitation damage超空化流supercavitating flow 水翼hydrofoil水力学hydraulics 洪水波flood wave涟漪ripple 消能energy dissipation海洋水动力学marine hydrodynamics 谢齐公式Chezy formula欧拉数Euler number 弗劳德数Froude number水力半径hydraulic radius 水力坡度hvdraulic slope高度水头elevating head 水头损失head loss水位water level 水跃hydraulic jump含水层aquifer 排水drainage排放量discharge 壅水曲线back water curve压[强水]头pressure head 过水断面flow cross-section明槽流open channel flow 孔流orifice flow无压流free surface flow 有压流pressure flow缓流subcritical flow 急流supercritical flow渐变流gradually varied flow 急变流rapidly varied flow临界流critical flow 异重流density current, gravity flow堰流weir flow 掺气流aerated flow含沙流sediment-laden stream 降水曲线dropdown curve沉积物sediment, deposit 沉[降堆]积sedimentation, deposition沉降速度settling velocity 流动稳定性flow stability不稳定性instability 奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation 泊肃叶流Poiseuille flow奥辛流Oseen flow 剪切流shear flow粘性流[动] viscous flow 层流laminar flow分离流separated flow 二次流secondary flow近场流near field flow 远场流far field flow滞止流stagnation flow 尾流wake [flow]回流back flow 反流reverse flow射流jet 自由射流free jet管流pipe flow, tube flow 内流internal flow拟序结构coherent structure 猝发过程bursting process表观粘度apparent viscosity 运动粘性kinematic viscosity动力粘性dynamic viscosity 泊poise厘泊centipoise 厘沱centistoke剪切层shear layer 次层sublayer流动分离flow separation 层流分离laminar separation湍流分离turbulent separation 分离点separation point附着点attachment point 再附reattachment再层流化relaminarization 起动涡starting vortex驻涡standing vortex 涡旋破碎vortex breakdown涡旋脱落vortex shedding 压[力]降pressure drop压差阻力pressure drag 压力能pressure energy型阻profile drag 滑移速度slip velocity无滑移条件non-slip condition 壁剪应力skin friction, frictional drag 壁剪切速度friction velocity 磨擦损失friction loss磨擦因子friction factor 耗散dissipation滞后lag 相似性解similar solution局域相似local similarity 气体润滑gas lubrication液体动力润滑hydrodynamic lubrication 浆体slurry泰勒数Taylor number 纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid 边界层理论boundary later theory边界层方程boundary layer equation 边界层boundary layer附面层boundary layer 层流边界层laminar boundary layer湍流边界层turbulent boundary layer 温度边界层thermal boundary layer边界层转捩boundary layer transition 边界层分离boundary layer separation边界层厚度boundary layer thickness 位移厚度displacement thickness动量厚度momentum thickness 能量厚度energy thickness焓厚度enthalpy thickness 注入injection吸出suction 泰勒涡Taylor vortex速度亏损律velocity defect law 形状因子shape factor测速法anemometry 粘度测定法visco[si] metry流动显示flow visualization 油烟显示oil smoke visualization孔板流量计orifice meter 频率响应frequency response油膜显示oil film visualization 阴影法shadow method纹影法schlieren method 烟丝法smoke wire method丝线法tuft method 氢泡法nydrogen bubble method相似理论similarity theory 相似律similarity law部分相似partial similarity 定理pi theorem, Buckingham theorem 静[态]校准static calibration 动态校准dynamic calibration风洞wind tunnel 激波管shock tube激波管风洞shock tube wind tunnel 水洞water tunnel拖曳水池towing tank 旋臂水池rotating arm basin扩散段diffuser 测压孔pressure tap皮托管pitot tube 普雷斯顿管preston tube斯坦顿管Stanton tube 文丘里管Venturi tubeU形管U-tube 压强计manometer微压计micromanometer 多管压强计multiple manometer静压管static [pressure]tube 流速计anemometer风速管Pitot- static tube 激光多普勒测速计laser Doppler anemometer, laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer 流量计flow meter粘度计visco[si] meter 涡量计vorticity meter传感器transducer, sensor 压强传感器pressure transducer热敏电阻thermistor 示踪物tracer时间线time line 脉线streak line尺度效应scale effect 壁效应wall effect堵塞blockage 堵寒效应blockage effect动态响应dynamic response 响应频率response frequency底压base pressure 菲克定律Fick law巴塞特力Basset force 埃克特数Eckert number格拉斯霍夫数Grashof number 努塞特数Nusselt number普朗特数prandtl number 雷诺比拟Reynolds analogy施密特数schmidt number 斯坦顿数Stanton number对流convection 自由对流natural convection, free convec-tion强迫对流forced convection 热对流heat convection质量传递mass transfer 传质系数mass transfer coefficient热量传递heat transfer 传热系数heat transfer coefficient对流传热convective heat transfer 辐射传热radiative heat transfer动量交换momentum transfer 能量传递energy transfer传导conduction 热传导conductive heat transfer热交换heat exchange 临界热通量critical heat flux浓度concentration 扩散diffusion扩散性diffusivity 扩散率diffusivity扩散速度diffusion velocity 分子扩散molecular diffusion沸腾boiling 蒸发evaporation气化gasification 凝结condensation成核nucleation 计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem 伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU方程KDV equation修正微分方程modified differential equation 拉克斯等价定理Lax equivalence theorem 数值模拟numerical simulation 大涡模拟large eddy simulation数值粘性numerical viscosity 非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis 相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition狄里克雷边界条件Dirichlet boundarycondition熵条件entropy condition 远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition 近似因子分解法approximate factorization method 人工压缩artificial compression 人工粘性artificial viscosity边界元法boundary element method 配置方法collocation method能量法energy method 有限体积法finite volume method流体网格法fluid in cell method, FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method 伽辽金法Galerkin method积分方法integral method 标记网格法marker and cell method, MAC method 特征线法method of characteristics 直线法method of lines矩量法moment method 多重网格法multi- grid method板块法panel method 质点网格法particle in cell method, PIC method 质点法particle method 预估校正法predictor-corrector method投影法projection method 准谱法pseudo-spectral method随机选取法random choice method 激波捕捉法shock-capturing method激波拟合法shock-fitting method 谱方法spectral method稀疏矩阵分解法split coefficient matrix method 不定常法time-dependent method时间分步法time splitting method 变分法variational method涡方法vortex method 隐格式implicit scheme显格式explicit scheme 交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme 守恒差分格式conservation difference scheme 克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme 戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme 拉克斯-温德罗夫格式Lax-Wendroff scheme 蛙跳格式leap-frog scheme 单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme穆曼-科尔格式Murman-Cole scheme 半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme迎风格式upstream scheme , upwind scheme计算区域computational domain 物理区域physical domain影响域domain of influence 依赖域domain of dependence区域分解domain decomposition 维数分解dimensional split物理解physical solution 弱解weak solution黎曼解算子Riemann solver 守恒型conservation form弱守恒型weak conservation form 强守恒型strong conservation form散度型divergence form 贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh 适应网格生成adaptive grid generation自动网格生成automatic grid generation 数值网格生成numerical grid generation交错网格staggered mesh 网格雷诺数cell Reynolds number数植扩散numerical diffusion 数值耗散numerical dissipation数值色散numerical dispersion 数值通量numerical flux放大因子amplification factor 放大矩阵amplification matrix阻尼误差damping error 离散涡discrete vortex熵通量entropy flux 熵函数entropy function分步法fractional step method。
喷水推进船航速预报的动量通量试验技术发展现状

喷水推进船航速预报的动量通量试验技术发展现状喷水推进船是一种利用水流与船体之间的作用力来推动船只前进的船舶推进方式。
喷水推进船航速的预报是旨在提高船舶性能和安全性的关键技术之一、动量通量试验技术是一种通过测量喷水推进系统的进口速度和喷口速度之间的差异来评估动量传递效率的方法。
动量通量试验技术可以帮助设计师优化喷水推进系统,提高船舶的运行效率和节能性能。
目前,动量通量试验技术在喷水推进船航速预报中的应用已经取得了一定的进展,但仍存在一些挑战和问题。
首先,动量通量试验技术在实际应用中需要考虑多种因素的影响,如流体动力学特性、船体形状、推进系统设计等。
这些因素之间的相互作用可能会对试验结果产生影响,需要设计合理的实验方案和参数调整方法来减小误差。
其次,动量通量试验技术需要依赖专业设备和先进技术来进行实验数据的采集和处理。
目前,一些国际知名的船舶研究机构和大型船厂已经建立了专门的实验室和设备来开展动量通量试验技术研究,但对于一些中小型船厂和科研机构来说,设备的购置和维护成本较高,技术人才的培养及团队的建设也是一个亟待解决的问题。
此外,动量通量试验技术还需要面临国际标准和规范的制定和推广。
目前各国在动量通量试验技术的研究和应用中存在一定的差异,缺乏统一的标准和规范,这不利于技术的交流和推广。
因此,建立国际标准和规范是推动动量通量试验技术发展的重要一环。
综上所述,动量通量试验技术在喷水推进船航速预报中发展现状良好,但仍需持续加强研究和合作,解决技术难题,推动技术的进步和应用。
随着我国船舶工业的不断发展和技术水平的提高,相信动量通量试验技术在喷水推进船航速预报领域将会取得更大的突破和进展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Millimeter wave carrier generation based on a double-Brillouin-frequency spaced fiber laser Y. G. Shee,1,2 M. H. Al-Mansoori,3 S. Yaakob,4 A. Man,4 A. K. Zamzuri4, F. R. MahamdAdikan,1 and M. A. Mahdi5,*1Department of Electrical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur,Malaysia2Department of Electrical and Electronic Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Genting Kelang, 53300 Setapak, Kuala Lumpur, Malaysia3Faculty of Engineering, Sohar University, P.O. Box 44, Sohar P.C. 311, Oman 4Telekom Research and Development Sendirian Berhad, TM Innovation Centre, Lingkaran Teknokrat, 63000Cyberjaya, Selangor, Malaysia5Wireless and Photonics Networks Research Center, Faculty of Engineering, University PutraMalaysia, 43400 UPMSerdang, Selangor, Malaysia*mdadzir@.myAbstract:An all-optical generation of a millimeter wave carrier from amultiwavelength Brillouin-erbium fiber laser is presented. Four-channeloutput with spacing of about 21.5 GHz is generated from the fiber laser bycontrolling the gain in the cavity. A dual-wavelength signal with spacingcorrespondent to six orders of Brillouin frequency shift is obtained bysuppressing the two channels at the middle. Heterodyning these signals atthe high-speed photodetector produces a millimeter wave carrier at 64.17GHz. Temperature dependence characteristic of Brillouin frequency shiftrealize the flexibility of generated millimeter wave frequency to be tuned at6.6 MHz/ °C.©2012 Optical Society of AmericaOCIS codes: (140.3510) Lasers, fiber; (290.5900) Scattering, stimulated Brillouin; (190.4370)Nonlinear optics, fibers; (060.2410) Fibers, erbium.References and links1. B. L. Dang, M. G. Larrode, R. V. Prasad, I. Niemegeers, and A. M. J. Koonen, “Radio-over-fiber basedarchitecture for seamless wireless indoor communication in the 60 GHz band,” Comput. Commun. 30(18), 3598–3613 (2007).2. J. J. O'Reilly, P. M. Lane, R. Heidemann, and R. Hofstetter, “Optical generation of very narrow linewidthmillimetre wave signals,” Electron. Lett. 28, 2309–2311 (1992).3. L. A. Johansson and A. J. Seeds, “Generation and transmission of millimeter-wave data-modulated opticalsignals using an optical injection phase-lock loop,” J. Lightwave Technol. 21(2), 511–520 (2003).4. M. Hyodo and M. Watanabe, “Optical generation of millimetre-wave signals up to 110 GHz by phase-locking oftwo external-cavity semiconductor lasers,” Electron. Lett. 38(25), 1679–1680 (2002).5. J. Qian, J. Su, and L. Hong, “A widely tunable dual-wavelength erbium-doped fiber ring laser operating in singlelongitudinal mode,” Opt. Commun. 281(17), 4432–4434 (2008).6. X. S. Yao, “Brillouin selective sideband amplification of microwave photonic signals,” IEEE Photon. Technol.Lett. 10(1), 138–140 (1998).7. T. Schneider, D. Hannover, and M. Junker, “Investigation of Brillouin scattering in optical fibers for thegeneration of millimeter waves,” J. Lightwave Technol. 24(1), 295–304 (2006).8. K.-H. Lee and W.-Y. Choi, “Harmonic signal generation and frequency upconversion using selective sidebandBrillouin amplification in single-mode fiber,” Opt. Lett. 32(12), 1686–1688 (2007).9. W. Li, N. H. Zhu, and L. X. Wang, “Harmonic RF carrier generation and broadband data upconversion usingstimulated Brillouin scattering,” Opt. Commun. 284(13), 3437–3439 (2011).10. Y. Shen, X. Zhang, and K. Chen, “All-optical generation of microwave and millimeter wave using a two-frequency Bragg grating-based Brillouin fiber laser,” J. Lightwave Technol. 23(5), 1860–1865 (2005).11. G. F. Shen, X. M. Zhang, H. Chi, and X. F. Jin, “Microwave/Millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser,” Prog. Electromagn. Res. 80, 307–320 (2008).12. S. Gao, H. Fu, and Y. Gao, “Photonic generation of microwave/millimeter-wave sources without cavity ormodulation using fiber stimulated Brillouin scattering,” Microw. Opt. Technol. Lett. 51(5), 1203–1206 (2009).#165960 - $15.00 USD Received 3 Apr 2012; revised 11 May 2012; accepted 16 May 2012; published 30 May 2012 (C) 2012 OSA 4 June 2012 / Vol. 20, No. 12 / OPTICS EXPRESS 1340213. Z. Wu, Q. Shen, L. Zhan, J. Liu, W. Yuan, and Y. Wang, “Optical generation of stable microwave signal using adual-wavelength Brillouin fiber laser,” IEEE Photon. Technol. Lett. 22(8), 568–570 (2010).14. X. Feng, L. Cheng, J. Li, Z. Li, and B. Guan, “Tunable microwave generation based on a Brillouin fiber ringlaser and reflected pump,” Opt. Laser Technol. 43(7), 1355–1357 (2011).15. D. Yu and G. J. Cowle, “Properties of Brillouin/erbium fiber lasers,” IEEE J. Quantum Electron. 3(4), 1049–1057 (1997).16. G. J. Cowle and D. Y. Stepanov, “Multiple wavelength generation with Brillouin/erbium fiber lasers,” IEEEPhoton. Technol. Lett. 8(11), 1465–1467 (1996).17. N. M. Samsuri, A. K. Zamzuri, M. H. Al-Mansoori, A. Ahmad, and M. A. Mahdi, “Brillouin-erbium fiber laserwith enhanced feedback coupling using common Erbium gain section,” Opt. Express 16(21), 16475–16480 (2008).18. M. H. Al-Mansoori and M. A. Mahdi, “Multiwavelength L-band Brillouin-erbium comb fiber laser utilizingnonlinear amplifying loop mirror,” J. Lightwave Technol. 27(22), 5038–5044 (2009).19. J. Fu, D. Chen, B. Sun, and S. Gao, “A novel-configuration multi-wavelength Brillouin erbium fiber laser and itsapplication in switchable high-frequency microwave generation,” Laser Phys. 20(10), 1907–1912 (2010).20. J. Tang, J. Sun, L. Zhao, T. Chen, T. Huang, and Y. Zhou, “Tunable multiwavelength generation based onBrillouin-erbium comb fiber laser assisted by multiple four-wave mixing processes,” Opt. Express 19(15),14682–14689 (2011).21. Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Double Brillouin frequency shiftthrough circulation of odd-order Stokes signal,” Appl. Opt. 49(20), 3956–3959 (2010).22. Y. G. Shee, M. H. Al-Mansoori, A. Ismail, S. Hitam, and M. A. Mahdi, “Multiwavelength Brillouin-erbium fiberlaser with double-Brillouin-frequency spacing,” Opt. Express 19(3), 1699–1706 (2011).23. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement withcombined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30(11), 1276–1278 (2005).24. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of thepower level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22(11), 787–789 (1997).25. X. Bao, Q. Yu, and L. Chen, “Simultaneous strain and temperature measurements with polarization-maintainingfibers and their error analysis by use of a distributed Brillouin loss system,” Opt. Lett. 29(12), 1342–1344(2004).1. IntroductionSpectrum congestion in the microwave band and the millimeter wave hunger for bandwidth due to the rapid growth of information technology demands fuelled the interest in the development and implementation of hybrid radio over fiber systems. The utilization of millimeter wave frequencies enables the design of compact and low-cost wireless millimeter wave communications front-ends which can offer convenient terminal mobility and high capacity channels. It is an attractive candidate for short-distance sensors and indoor communications based on pico-cell zone around 60 GHz owing to high atmospheric losses [1]. Recently, a lot of research had been carried out to develop millimeter wave generation and transport techniques. These include the optical generation of low phase noise wireless signals and their transport overcoming the chromatic dispersion in fiber.Microwave or millimeter wave signals can be generated by heterodyning two optical signals with a wavelength spacing corresponding to the desired microwave or millimeter wave signal [2]. The beating frequency appears at the output of the photodetector (PD) is equal to the spectral spacing between the two wavelengths. High frequency can be generated as long as the PD bandwidth is not a constraint. For high spectral purity and absolute frequency stability, the phase fluctuations of the two lasers need to be correlated by optical injection locking or optical phase-locked loop as reported in [3, 4]. Basically, these two methods require feedback control together with the employment of local oscillators.As an alternative to the aforementioned methods, highly coherent beat signal is attainable by deriving two light beams from a same gain medium or two related gain media. The laser source should have either a single wavelength with dual longitudinal modes or two wavelengths operating in single longitudinal mode for each wavelength [5].Stimulated Brillouin scattering attracted much attention in the development of fiber lasers and signal processing due to its existence at low threshold power. The narrow bandwidth of Brillouin gain spectrum was exploited in the sideband selective amplification. The generation of Brillouin Stokes signals with frequency downshifted is implemented in the development of #165960 - $15.00 USD Received 3 Apr 2012; revised 11 May 2012; accepted 16 May 2012; published 30 May 2012 (C) 2012 OSA 4 June 2012 / Vol. 20, No. 12 / OPTICS EXPRESS 13403multiple-channel-output devices. These two characteristics fueled the interest of the generation of millimeter wave based on SBS in optical fiber. Several works on the generation of microwave or millimeter wave carriers based on SBS in optical fibers had been reported. The generation of millimeter wave signal based on selective sideband Brillouin amplification induced by stimulated Brillouin scattering in the optical fiber had been demonstrated [6–9]. However, oscillators are needed to generate harmonic sidebands. The pump lasers to generate SBS for sideband amplification also need to be tuned precisely to coincide with the signals to be amplified due to the narrow Brillouin amplification bandwidth.Simple and interesting methods to generate microwave or millimeter wave carrier based on cascading Brillouin effect in the fibers were reported in [10–14]. The beating of Brillouin pump and its Brillouin Stokes signal produces RF carrier which the frequency is equal to the multiples of Brillouin frequency shift. The generation of 11 GHz microwave signal with 4 MHz linewidth from a SMF-28 fiber cavity was demonstrated in [10]. Then, Shen et al. replaced the SMF-28 fiber with a photonic crystal fiber as the Brillouin gain medium, microwave signals at 9.788 GHz and 19.579 GHz were generated by mixing the first-order Stokes wave and the pump wave, and mixing the second-order Stokes wave and the pump wave, respectively [11]. The linewidth of the two signals are 13.5MHz and 8.5 MHz, respectively. These ideas have greatly reduced the cost and the complexity of the system since the electrical signal generator is not needed. However, high pump power at hundreds of milli-Watts is needed for the excitation of desired Stokes signal. However, the employment of photonic crystal fiber to lower down the threshold adds to the overall system cost. On the other hand, generation of RF signal based on SBS was reported in [12]. The structure is simple; nevertheless, several spools of fiber need to be cascaded to generate higher order Stokes signals for the generation of higher frequency.Channel filtering from multiwavelength fiber laser is also a possible approach to produce a dual-wavelength output. Brillouin-erbium fiber laser (BEFL) which exploits the Brillouin gain of the fiber and erbium gain in the erbium-doped fiber (EDF) is efficient in generating multiple channel lasing signals. In the operation of BEFL, homogeneous Brillouin gain with the EDF gain allows lasing action to occur in a single longitudinal mode without intrinsic mode competition given a stable environment [15]. With proper design of the cavity, multiple lasing wavelengths with a constant spacing can be produced through the cascaded SBS process in the optical fiber [16]. The spacing of about 10-12 GHz is commonly known in standard optical fibers [17–20].The generation of microwave signal by channel filtering from a multiwavelength BEFL was proposed in [19]. In order to apply channel filtering techniques, the filter must have a steep guard band to remove the unwanted signal. This can be a paramount challenge to any optical filters to have a 20-dB suppression within 0.08 nm spacing. The wavelength spacing can be widened by isolating its odd- and even-order Stokes signals propagation in a double-Brillouin-frequency shifter (DBFS) [21]. By integrating the DBFS in a laser cavity, a multiwavelength BEFL with 21 GHz spacing has been demonstrated [22].In this paper, we demonstrate a 64 GHz millimeter wave carrier generated from a multiwavelength BEFL for the first time to the best of our knowledge. A filtered dual-wavelength signal with spacing correspondent to six orders of Brillouin frequency shift is obtained and is heterodyned at the high-speed PD to produce a millimeter wave carrier at 64.17 GHz. Based on the proposed method, the use of high frequency generator can be eliminated as compared with other microwave generation approaches such as optical injection locking, optical phase-lock loop and external modulation. The generation of higher order Stokes signals can be easily achieved in a single spool of fiber and lower power in contrast to the works reported in [10–14].#165960 - $15.00 USD Received 3 Apr 2012; revised 11 May 2012; accepted 16 May 2012; published 30 May 2012 (C) 2012 OSA 4 June 2012 / Vol. 20, No. 12 / OPTICS EXPRESS 134042. Experimental setupFigure 1 shows the architecture of millimeter wave carrier generation from a BEFL. The design and operation principle of the proposed BEFL was published in [22]. An external cavity tunable laser source with 1 MHz laser linewidth is employed as the Brillouin pump (BP) for the operation of the BEFL. It is amplified by the EDF gain block before being injected to the DBFS. The gain block is formed by a section of 21.5 m EDF pumped by a 1480 nm laser diode (LD). A wavelength selective coupler (WSC) is used to multiplex the input signal and the 1480 nm LD into the EDF. The DBFS consists of a fiber based 4-port circulator and a spool of optical fiber as the Brillouin gain medium. In our experiment, a spool of 6.7 km SMF-28 fiber with 0.22 dB/km attenuation, the effective group index of 1.4682 at 1550 nm and the nonlinear coefficient of 1.1 W−1km−1 is utilized. Output signal at the port-4 of the circulator is frequency shifted as much as 2v B (double Brillouin frequency) from the input signal injected from port-1 to port-2. In other words, the output signal is the product of second-order Stokes signal from the input signal. The operating principle of the DBFS was reported in [21]. The frequency-shifted signal is redirected to the cavity through a 90/10 directional coupler (DC). Ten percent of the signal is deviated to the output of the BEFL while ninety percent is amplified by the gain block before propagating to the DBFS to form a round-trip oscillation. The cascaded SBS process is controlled by adjusting the erbium gain via the amount of 1480 nm pump power supplied into the EDF. In order to have a dual-wavelength output with about 60 GHz frequency spacing, four lasers must be produced from the BEFL. In our experiment, this condition is achieved at 4 mW Brillouin pump power and 60 mW 1480 nm pump power.Fig. 1. Architecture of the millimeter wave generation from multiwavelength BEFL.In order to select two lasing wavelengths only, a dedicated filter is essentially required to suppress the unwanted laser lines. To achieve this, a filter block is constructed that comprises of two isolators (Iso1 and Iso2) and two fiber Bragg gratings (FBG1 and FBG2) as illustrated in Fig. 1. The transmission spectra of the two FBGs and the filter block are shown in Fig. 2(a). The center wavelengths are 1557.143 and 1557.091 nm for FBG1 and FBG2, respectively. For the filter block characterization, the center wavelength is 1557.132 nm with 0.367 nm spectral width at 20 dB suppression level as illustrated in Fig. 2(b). Optical isolators are placed before each FBG to suppress the reflected signals from propagating back to the laser cavity. Figure 2(b) depicts the overlapping spectra between four-wavelength output of the BEFL and the filter block transmission. The operating wavelength of BEFL is determined by the Brillouin pump wavelength that initiates the lasing. It is tuned to 1556.870 nm so that the desired rejection band is accurately matched with the FBG reflection band. As a result, the lasing wavelengths are at 1556.870 nm, 1557.042 nm, 1557.214 nm and 1557.386 nm with spacing of about 0.172 nm. After the filtering mechanism, there are only two lasers separated by 0.516 nm. These lasers are then amplified to higher peak powers of −0.76 and −0.20 dBm by an erbium-doped fiber amplifier (EDFA) to be detected by a high speed photodetector as shown in Fig. 2(c). The noise floor within the FBG reflection band is higher after #165960 - $15.00 USD Received 3 Apr 2012; revised 11 May 2012; accepted 16 May 2012; published 30 May 2012 (C) 2012 OSA 4 June 2012 / Vol. 20, No. 12 / OPTICS EXPRESS 13405amplification owing to the presence of amplified spontaneous emission (ASE) from the EDFA itself. A photodetector from u2t (model no.: XPDV2120R) with 50 GHz 3-dB bandwidth is used for the detection. However, it can operate at higher frequencies up to 60 GHz with lower performance. The radio frequency (RF) spectrum is measured by implementing an Agilent 8564EC electrical spectrum analyzer. An external harmonic mixer is adopted for high frequency measurement to extend the measurable frequency from 40 GHz to high frequency up to 110 GHz.Fig. 2. (a) Transmission spectra of FBG1, FBG2 and filter block, (b) optical spectrum at theoutput of the multiwavelength fiber laser and the filter block transmission spectrum, and (c)filtered dual-wavelength output before and after the EDFA.3. Results and discussionsGenerated millimeter wave beat signal at 64.1667 GHz is measured with 100 MHz span and 300 kHz resolution bandwidth as illustrated in Fig. 3. The millimeter wave 3-dB linewidth is #165960 - $15.00 USD Received 3 Apr 2012; revised 11 May 2012; accepted 16 May 2012; published 30 May 2012 (C) 2012 OSA 4 June 2012 / Vol. 20, No. 12 / OPTICS EXPRESS 13406observed around 4.8 MHz. The utilization of laser with narrower linewidth would help in narrowing the generated carrier linewidth since the spectral purity of beat signal in heterodyning method is determined by the linewidth of the lasers used [3].Fig. 3. Generated RF spectrum at 64.1667 GHz.Signal stability is investigated by scanning the RF spectrum for every ten minutes. The RF power and frequency stabilities is recorded as in Fig. 4. It is found that the frequency drifts between 64.1670 GHz and 64.1665 GHz with 0.0004% maximum deviation from the average. The carrier frequency can be further stabilized by placing the fiber spool in a temperature controller since the Brillouin shift is sensitive to temperature variation [23]. RF power constancy is important in the implementation of oscillator. The measured average peak power is at −52.87 dBm and its peak power fluctuation is ± 0.37 dB. Fluctuations in the millimeter wave power can only be reduced with the enhancement of laser stability. The measured power is low due to the bandwidth limitation of the photodetector. The 10 dB cable loss also contributed to the low RF power.Fig. 4. Frequency and power stabilities of the generated millimeter wave carrier.The Brillouin frequency shift, v B has strong strain and temperature dependence characteristic [24, 25]. It has been shown to vary linearly with strain, ε, and temperature, T , given by [24]B TC C T νενδνδεδ=+ (1)where C v ε and C vT are strain and temperature coefficients respectively. These characteristics can be exploited in the proposed system for the tunability of the generated frequency. Since #165960 - $15.00 USDReceived 3 Apr 2012; revised 11 May 2012; accepted 16 May 2012; published 30 May 2012(C) 2012 OSA 4 June 2012 / Vol. 20, No. 12 / OPTICS EXPRESS 13407the beating frequency is equal to the frequency offset of the filtered dual-wavelength output from the multiwavelength fiber laser, divergence in the Brillouin shift will be transferred to the generated frequency. In order to have a thermally-tunable frequency, the fiber is wound in a spool and placed in a temperature controller to minimize the strain effect, hence limiting the control parameter to temperature only. Temperature is tuned from 31°C to 51 °C with 2 °C steps and the generated frequencies are recorded. Generated frequencies are measured every ten minutes and ten measurements are taken for each temperature. The frequencies are averaged and its relationship with the temperature variation is studied. Figure 5 shows the linear relationship between the generated frequencies and temperature. The measurement data fit very well with the regression line (R-Squared = 0.9999) with 6.6 MHz/ °C. Temperature can be set higher to achieve wider frequency tuning as long as the plastic fiber spool can stand the heat.Fig. 5. Thermally-tuned characteristics of the generated millimeter wave carrier.4. ConclusionThe implementation of multiwavelength BEFL in the generation of millimeter wave by heterodyning two filtered channels from a multiwavelength is experimentally proven. The wider frequency spacing, which is equal to two order of Brillouin frequency shift, realizes the channel filtering from BEFL. Millimeter wave at ~64 GHz is generated from the proposed method and it can be tuned at 6.6 MHz/ °C by controlling the temperature of the Brillouin gain medium. The generation of millimeter wave can be enhanced by the utilization of narrow linewidth laser for the initiation of multiwavelength generation. Supplementary control mechanism in the design of fiber laser cavity would stabilize the beat signal and hence produce a high quality millimeter wave signal for its implementation in radio over fiber communication systems.AcknowledgmentsThis work is partly supported by the Universiti Putra Malaysia under Research University Grant Scheme 05-01-09-0783RU and the Ministry of Higher Education High Impact Research #A000007-50001, the Ministry of Science, Technology and Innovation (National Science Fellowship and MOSTI/BGM/R&D/19(3)), and Telekom Research and Development Sendirian Berhad.#165960 - $15.00 USD Received 3 Apr 2012; revised 11 May 2012; accepted 16 May 2012; published 30 May 2012 (C) 2012 OSA 4 June 2012 / Vol. 20, No. 12 / OPTICS EXPRESS 13408。