9.1.3三角形的内角和与外角和
初中数学知识归纳三角形的内角和与外角性质

初中数学知识归纳三角形的内角和与外角性质三角形是初中数学中重要的概念之一,在三角形的学习中,了解三角形的内角和与外角性质十分重要。
本文将对初中数学中与三角形的内角和与外角性质相关的知识进行归纳总结。
一、内角和的性质1. 三角形内角和定理三角形的内角和为180°。
这是三角形的基本性质,对于任意一个三角形而言,它的三个内角之和恒定为180°。
2. 等腰三角形的内角性质等腰三角形的两个底角(底边上的两个角)相等,而顶角等于两个底角之和的一半。
3. 直角三角形的内角性质直角三角形的两个锐角之和为90°。
4. 锐角三角形的内角性质锐角三角形的三个内角都是锐角。
5. 钝角三角形的内角性质钝角三角形的其中一个内角是钝角。
二、外角的性质1. 外角和内角的关系三角形的外角等于其对应的两个内角的和。
即一个三角形的外角与其非相邻的两个内角形成一条直线。
2. 三角形外角和的性质一个三角形的所有外角和等于360°。
三、实例应用1. 设某三角形的一个内角为60°,则其余两个内角的度数分别为多少度?根据三角形的内角和定理,三角形的内角和为180°。
已知一个内角为60°,设其余两个内角分别为x和y,则x + y + 60 = 180,整理得到x + y = 120。
因此,另外两个内角的度数分别为120°。
2. 若三角形的两个内角分别为30°和60°,求第三个内角的度数。
根据三角形的内角和定理,三角形的内角和为180°。
已知两个内角分别为30°和60°,设第三个内角的度数为x,则30 + 60 + x = 180,整理得到x = 90。
因此,第三个内角的度数为90°。
3. 在一个三角形中,一个内角为120°,另外两个内角是什么?根据三角形的内角和定理,三角形的内角和为180°。
几何形三角形的内角和与外角性质

几何形三角形的内角和与外角性质三角形是几何学中最基本的形状之一,由三条边和三个内角组成。
在三角形中,内角和与外角性质是我们研究三角形的重要内容之一。
本文将深入探讨三角形的内角和与外角的性质,并进行详细解析。
一、三角形的内角和性质三角形的内角和是指三个内角的度数之和。
下面将分别讨论不同类型三角形的内角和性质。
1. 直角三角形直角三角形是一种特殊的三角形,其中一个内角是直角(90度)。
根据直角三角形的性质,其两个其他内角之和必须为90度的补角。
因此,直角三角形的内角和为180度。
2. 锐角三角形锐角三角形是指三个内角都是锐角的三角形。
根据三角形内角和的性质,锐角三角形的三个内角之和必须小于180度。
具体来说,对于一个锐角三角形,三个内角的和一定是小于180度的。
3. 钝角三角形钝角三角形是指三个内角中有一个内角是钝角的三角形。
根据三角形内角和的性质,钝角三角形的三个内角之和必须大于180度。
具体来说,对于一个钝角三角形,三个内角的和一定是大于180度的。
二、三角形的外角性质三角形的外角是指一个三角形的某个内角的补角。
根据外角性质,一个三角形的三个外角之和为360度。
下面将分别讨论不同类型三角形的外角性质。
1. 直角三角形直角三角形的一个内角为直角,对应的外角为90度。
根据三角形外角和性质,直角三角形的两个其他外角之和必须为270度。
2. 锐角三角形锐角三角形的三个内角都是锐角,对应的三个外角都是钝角。
根据外角和性质,锐角三角形的三个外角之和必定为360度。
3. 钝角三角形钝角三角形的一个内角为钝角,对应的外角为钝角的补角。
根据外角和性质,钝角三角形的两个其他外角之和必须为小于90度。
三、内角和与外角的关系三角形内角和与外角之间存在一定的关系。
以一个一般的三角形为例,设三个内角分别为A、B、C,对应的三个外角为α、β、γ。
根据内角和性质,A + B + C = 180度。
而根据外角和性质,α + β + γ = 360度。
三角形的内角和与外角和的关系

三角形的内角和与外角和的关系
三角形的内角和与外角和的关系,大家清楚吗,如果不清楚快来小编这里了解了解吧。
下面是由小编为大家整理的“三角形的内角和与外角和的关系”,仅供参考,欢迎大家阅读。
三角形的内角和与外角和的关系
三角形的内角和外角的关系:
1、三角形的一个内角与它相邻的外角的和为180度;
2、三角形的一个外角等于与它不相邻的两个内角的和;
3、三角形的一个外角大于与它不相邻的任何一个内角。
三角形的内角和外角的关系定理是初中数学必须掌握的重要定理。
拓展阅读:等腰三角形的性质
1.等腰三角形的两个底角度数相等。
2.等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
3.等腰三角形的两底角的平分线相等。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高。
7.一般的等腰三角形是轴对称图形只有一条对称轴,顶角平分线所在的直线是它的对称轴,但等边三角形有三条对称轴。
8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方。
9.等腰三角形的腰与它的高的关系,腰大于高,腰长的平方等于底边上高的平方加底的一半的平方。
三角形的内角和与外角性质

三角形的内角和与外角性质三角形是平面几何中最基本的形状之一,它由三条边和三个角组成。
在研究三角形时,我们常常涉及到三角形的内角和外角的性质。
本文将深入探讨这些性质,并通过具体的例子加以说明。
一、三角形的内角和三角形的内角和是指三个内角的和。
根据欧拉公式,在二维平面上的任何一个多边形,无论是几边形还是多边形,其内角和都等于180°。
因此,对于三角形而言,其三个内角的和也必然等于180°。
这一性质被称为三角形内角和定理。
可以用以下方式表示三角形的内角和定理:设三角形ABC的三个内角分别为∠A、∠B和∠C,则有:∠A + ∠B + ∠C = 180°除了可以通过欧拉公式来证明三角形的内角和定理,我们还可以通过数学推理来理解它的原理。
举例说明,假设我们有一个三角形ABC,我们可以通过将其顶点A 点移动到线段BC的延长线上,形成一个四边形ABCD。
由于四边形的内角和是360°,根据四边形的性质,我们可以得出∠A + ∠B + ∠C +∠D = 360°。
然而,由于顶点A在移动过程中始终保持在线段BC的延长线上,因此∠D等于180°。
再根据三角形ABC是四边形ABCD的一部分,我们可以得出∠A + ∠B + ∠C = 180°。
这就证明了三角形的内角和定理。
二、三角形的外角和三角形的外角是指与三角形的一条边相邻且不共线的角。
对于每个三角形而言,它的三个外角的和等于360°。
这一性质被称为三角形外角和定理。
我们可以通过以下方式来表示三角形的外角和定理:设三角形ABC的三个外角分别为∠DAB、∠EBC和∠FCA,则有:∠DAB + ∠EBC + ∠FCA = 360°三角形的外角和定理可以通过数学推理来证明。
举例说明,我们仍然假设有一个三角形ABC,并在其边AB的延长线上选取一个点D。
考虑∠DAB、∠EBC和∠FCA这三个外角。
三角形的内角和与外角性质

三角形的内角和与外角性质三角形是几何学中最基本的形状之一,它的内角和与外角性质是研究三角形性质的重要内容之一。
本文将详细介绍三角形的内角和与外角性质,以及它们之间的关系。
一、三角形的内角和性质在一个三角形中,三个内角的和始终等于180度。
这一性质称为三角形的内角和性质。
以三角形ABC为例,角A、角B、角C分别表示三角形的三个内角。
则有以下等式成立:角A + 角B + 角C = 180°这一性质可以通过以下推论得到进一步的认识。
1. 正三角形的内角和性质正三角形是指三个内角均相等的三角形。
在一个正三角形中,每个内角都是60度,所以三个内角的和为:60° + 60° + 60° = 180°2. 直角三角形的内角和性质直角三角形是指其中一个内角为90度的三角形。
在直角三角形中,另外两个内角的和为:90° + 角B + 角C = 180°∴角B + 角C = 90°3. 钝角三角形的内角和性质钝角三角形是指其中一个内角大于90度的三角形。
在钝角三角形中,另外两个内角的和为:角A + 钝角 + 角C = 180°∴角A + 角C = 钝角二、三角形的外角性质在一个三角形中,每个内角的补角称为该内角的外角。
根据三个内角和性质,可以得知:三角形的外角和等于360度。
以三角形ABC为例,角A、角B、角C的外角分别为角A'、角B'、角C'。
则有以下等式成立:角A + 角A' = 180°角B + 角B' = 180°角C + 角C' = 180°由此可知,角A' + 角B' + 角C' = 360°。
三、内角和与外角性质的关系三角形的三个内角与对应的外角之间存在着一定的关系。
1. 内角和与外角和的关系三角形的三个内角和等于三个外角和。
三角形的内角和与外角和的计算

三角形的内角和与外角和的计算三角形是几何学中的基本图形,由三条边组成,每个角落对应着一个角。
三角形的内角和与外角和是我们学习三角形性质时常常涉及的重要概念。
本文将详细介绍三角形内角和与外角和的计算方法。
一、三角形的内角和计算方法对于任意一般三角形ABC,我们可以用角度的方式来描述这个三角形。
设三角形的三个内角分别为∠A、∠B和∠C,我们有以下定理:定理1:三角形的内角和等于180°。
也就是说,∠A + ∠B + ∠C = 180°。
这个定理是非常重要的,因为只要知道三个内角中的任意两个角度,就可以通过计算得到第三个角度的值。
例如,如果我们已知∠A = 30°,∠B = 45°,那么根据定理1,我们可以计算出∠C的值:∠C = 180° - ∠A - ∠B = 180° - 30° - 45° = 105°。
由此可见,三角形的内角和是固定的,不受三角形大小和形状的影响。
无论是等边三角形、等腰三角形还是一般三角形,它们的内角和都是180°。
二、三角形外角和计算方法三角形的每个内角都有一个对应的外角,它们之间的关系如下:定理2:三角形的一个内角的对应外角等于其他两个内角的和。
也就是说,对于三角形ABC,∠A的对应外角等于∠B和∠C的和,∠B的对应外角等于∠A和∠C的和,∠C的对应外角等于∠A和∠B的和。
设∠A的对应外角为∠D,∠B的对应外角为∠E,∠C的对应外角为∠F,我们有以下等式:∠D = ∠B + ∠C,∠E = ∠A + ∠C,∠F = ∠A + ∠B.三角形的外角和是指三个外角的和,即∠D + ∠E + ∠F。
根据定理2,我们可以将其表示为:∠D + ∠E + ∠F = (∠B + ∠C) + (∠A + ∠C) + (∠A + ∠B) = 2(∠A + ∠B + ∠C) = 2(180°) = 360°.这意味着,无论是何种三角形,其外角和都等于360°。
三角形的内角和与外角

三角形的内角和与外角三角形是初中数学中一个重要的几何概念,它具有许多特性和性质。
其中,三角形的内角和与外角是一个常见而重要的问题。
在本文中,我将详细介绍三角形的内角和与外角的概念、性质和应用。
一、三角形的内角和三角形的内角和是指三角形内部的三个角的度数之和。
根据数学原理,任意一个多边形的内角和等于180°乘以该多边形的边数减去2。
因此,三角形的内角和等于180°。
我们可以通过一个简单的例子来说明这个性质。
假设我们有一个三角形ABC,其中∠A=60°,∠B=70°,∠C=50°。
我们可以计算出三角形的内角和为180°,即60°+70°+50°=180°。
这个例子证明了三角形的内角和等于180°。
三角形的内角和的性质有许多应用。
例如,我们可以通过已知的内角和来计算未知角的度数。
假设我们知道一个三角形的两个角的度数,我们可以通过计算三角形的内角和减去已知角的度数,来求得未知角的度数。
二、三角形的外角三角形的外角是指三角形内部的一个角与其相邻的两个内角的补角之和。
根据数学原理,三角形的外角等于360°减去三角形的内角和。
因此,三角形的外角和等于360°。
我们可以通过一个例子来说明三角形的外角的概念。
假设我们有一个三角形ABC,其中∠A=60°,∠B=70°,∠C=50°。
我们可以计算出三角形的内角和为180°,然后通过360°减去180°,得到三角形的外角和为180°。
这个例子证明了三角形的外角和等于180°。
三角形的外角的性质也有许多应用。
例如,我们可以通过已知的外角和来计算未知角的度数。
假设我们知道一个三角形的两个内角的度数,我们可以通过计算三角形的外角和减去已知角的度数,来求得未知角的度数。
三角形的内角和与外角和关系

三角形的内角和与外角和关系三角形是几何学中的重要概念,它由三条边和三个内角组成。
研究三角形的性质时,内角和与外角和关系是一个重要的问题。
本文将就三角形的内角和与外角和关系展开论述。
一、三角形内角和的定义与性质在了解三角形内角和与外角和的关系之前,我们首先需要了解三角形内角和的定义与性质。
1. 三角形内角和定义:三角形是由三条边所围成的图形,其中每个角都位于两条边之间。
三角形的内角和定义为三个内角的度数之和,通常表示为180度。
2. 三角形内角和的性质:(1)所有三角形的内角和都等于180度。
(2)对于任意三角形ABC,我们可以用角A、角B和角C来表示他们的内角和关系,即A + B + C = 180度。
二、三角形外角和的定义与性质了解了三角形内角和的定义与性质之后,我们再来了解一下三角形外角和的定义与性质。
1. 三角形外角和定义:三角形的每个内角都对应一个外角,位于与之相邻的两条边的延长线上,而外角和定义为三个外角的度数之和。
2. 三角形外角和的性质:(1)对于任意三角形ABC,它的外角和等于360度。
(2)对于任意三角形ABC,三个内角与其相应的外角满足以下关系:角A + 外角A = 180度;角B + 外角B = 180度;角C + 外角C = 180度。
三、三角形内角和与外角和的关系在前面的阐述中,我们已经分别了解了三角形内角和和外角和的定义与性质,那么他们之间究竟是否存在一定的关系呢?通过观察三角形内角和与外角和的定义,我们可以得出以下结论:(1)三角形的内角和与外角和的关系:内角和与外角和的和为360度。
(2)三角形的内角和与外角和的关系式:角A + 角B + 角C + 外角A + 外角B + 外角C = 360度。
通过以上结论,可以发现三角形的内角和与外角和之间存在一定的数学关系。
内角和与外角和的和总是等于360度,这是由三角形内角和和外角和的定义所决定的。
结论:三角形的内角和与外角和的关系是内角和与外角和的和为360度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索新知
(1)什么是三角形的外角?外角有什么性质?
(2)类似地,在多边形中找出外角
D
多边形的一边与另一 边的延长线的夹角, 叫做多边形的外角。
C E A B F
做一做
(1)如图,求△ABC的三个外角的和。
2
A
1
B
3
C
三角形的三 个外角之和 为3600
(2)四边形的外角和等于多少度?
C
B
A
E
C
D
2、已知:如右图,在多边 形中A、B、C、D、E中
求:∠A+∠B+∠C+∠D+∠E
(4)求∠A+∠B+∠C+∠D+∠E+∠F 的度数。
F H A B G C 的不变性
(2)综合、对比所学,形成理 性思维,有条理地表达。
一比高低
1、试求五角星的各角和 已知:如右图:在五角星 ∠ 图形中,ABCDE是各角 的顶点。 求: ∠A+∠B+∠C+∠D+∠ E的度数
3 4 2 1
B
D
A
(3)五边形的外角和怎么求?n边形呢?
归纳总结
任意多边形的外角和等于3600。
把一个五边形切取一个角,将得到几边形? 此时多边形的内角与外角有什么变化?
(1)一个多边形的每一个外角都是600,这 个多边形是几边形?它的内角和等于多少度? (2)有没有这样的多边形,它的内角和是外 角和的3 倍? (3)一个多边形的每一个外角都相等,且 每一个内角都比外角大900,求这个多边形 的边数和每个内角的度数。
9.1.3多边形的外角 和
C
3 4 2 1
B
D
A
瓦亭初中数学组
问题导入
小明在点S处沿(1)中的长方形广场周围的道 路步行。他从一条道路转到下一条道路,身体转 过的角是哪些角?请在图中表示出来。小明转过 一圈回到S点之后,转过的角度之和是多少? 如果小明在点S处沿(2)中的五边形广场周 围的道路步行,回答同样的问题。 D
D A C B
(1)
E C
S
A S
(2)
B
学习目标:
1.掌握多边形外角定义. 2.掌握三角形、四边形、五边形---多边形外角和定义及外角和 定理的推导过程及定理。 3.利用多边形外角和定理进行有 关角计算
自学导航:
1、回顾三角形的内角和外角的概念。 2、三角形的外角和是多少度?三角形的 内角和是多少度? 3、多边形的内角和是多少度? 4、三角形的内角与外角有什么联系?你 能找出哪些关系呢?