最新人教版2018-2019学年七年级数学上册《几何图形初步》同步测试题及答案-精编试题
新版人教版七年级数学上册第四章几何图形初步测试题(含答案)

)
D. 经过两点可以画一条直线,并且只能画一条直线 C
A. ∠1 与∠ AOB 是同一个角
B. ∠ AOC 也可以用∠ O 来表示
C. 图中共有三个角:∠ AOB ,∠ AOC ,∠ BOC O
D. ∠β 与∠ BOC 是同一个角
3.甲看乙的方向是北偏东 ຫໍສະໝຸດ 00,那么乙看甲的方向是()
A. 南偏东 600
B.南偏西 600
C.南偏西 300
B
β
1
A
第 2 题图 D. 南偏东 300
4. 分别从正面、左面和上面这三个方向看下面的四个几何体,得到如图所示的平面图形, 是( )
那么这个几何体
A
B
C
D
5. 下列四个图形中,经过折叠能围成如图所示的几何图形的是(
)
A
B
C
B 书店 D
6.一个角的度数为 54 11 23 ,则这个角的余角和补角的度数分别为(
8.如图,各图中阴影部分绕着直线 AB 旋转 3600,所形成的立体图形分别是
A
A
A
A
学校
第 7 题图
________________________. __________________________.
B D
C
B 9.如图,以图中的
B
B
第 8 题图
A,B,C,D,E 为端点的线段共有 __________条 .
参考答案: 1.D 2.B 3.C 4.C 5.B 6.A 7.两点之间,线段最短 8.圆柱、圆锥、球 9.10 10.520 11.DC=3cm ,AB=10cm 12.略 13.∠ 2=50 0,∠ 3=65 0
14.( 1) 116 010 ,( 2) 106 025 .
人教版七年级数学上册《几何图形初步》课堂单元检测试题【含答案】

的长是
cm.
14.将长方形 ABCD 沿 AE 折叠,得如图所示的图形,已知∠CED′=50°,则∠AED 的大小
是
.
15.如图所示,三角形 ABC 绕点 A 旋转后得到三角形 ADE.若∠BAC=100°,∠BAD=25°,
则∠DAE=
,∠CAE=
.
1 16.把一根绳子对折成一条线段 AB,在线段 AB 取一点 P,使 AP= PB,从 P 处把绳子剪断.
19.(12 分)如图,已知直线 AB,CD,EF 相交于点 O,∠COB=90°,∠AOE∶∠AOD=2∶5, 求∠BOF,∠DOF 的度数.
解:因为∠COB=90°,
所以∠AOD=∠BOD=90°.
因为∠AOE∶∠AOD=2∶5,
2×90°
所以∠AOE=
=36°.
5
因为∠AOE+∠AOF=180°,∠BOF+∠AOF=180°,
1 所以 BM= AB=5.
2 所以 CM=BM-CB=5-2=3. (2)点 M 是线段 CD 的中点,理由如下: 因为 AC=BD, 所以 AC-DC=BD-DC, 即 AD=CB. 因为点 M 为线段 AB 的中点, 所以 AM=MB. 所以 AM-AD=MB-CB, 即 DM=MC. 所以点 M 是线段 CD 的中点.
人教版七年级数学上册《几何图形初步》课堂单元检测试题【含答案】
(时间:45 分钟 满分:100 分)
一、选择题(每小题 3 分,共 30 分)
1.已知∠2 是∠1 的余角,且∠1=25°,则∠2 的补角等于( )
A.65°
B.155°
C.115°
D.125°
2.如图,把三角形 ABC 绕点 A 顺时针旋转得到三角形 AB′C′,且∠C′AC=60°,则∠BAB′
最新2019-2020年度人教版七年级数学上册《几何图形初步》同步测试题及答案-经典试题

第四章几何图形初步检测题(本试卷满分120分,含附加题20分)一、选择题(每小题3分,共30分)1. 如图1所示的包装盒,可近似看做的立体图形是()A. 棱锥B. 棱柱C. 圆锥D. 圆柱2. 图2是一把茶壶,则它的主视图是()A B C D3. 图3是菲律宾的国旗,该国旗上的平面图形有()A. 三角形B. 五边形C. 三角形和五边形D. 三角形、四边形和五边形4. 如图4,将一块铁皮折叠起来,总会有一道折痕,这说明()A. 两点之间线段最短B. 两点确定一条直线C. 面与面相交成线段D. 线段与线段相交成点5. 将一副三角尺按图5所示摆放,则∠ABC的度数为()A. 70°B. 75°C. 80°D. 85°6. 图6是一个正方体的表面展开图,则与原正方体中“伟”字所在的面相对面上标的字是()A. 中B. 大C. 国D. 的7. 下列基本图形的表示方法不正确的是()A B C D8. 下列各式不正确的是()A. 18 000″<360′B. 2°30′>2.4°C. 36 000″<8°D. 1°10′20″>4219″9. 明明借助一副三角尺和量角器,先画∠AOB=90°,再以点O为顶点,OB为始边,作∠BOC=30°,最后作∠AOC的平分线OD,则∠COD的度数为()A. 30°B. 60°C. 30°或60°D. 15°或45°10.由4个相同的小正方体搭建了一个积木,从不同方向看积木,所得到的图形如图7所示,则这个积木可能是()图7二、填空题(每小题3分,共24分)11. 上午9:30,某校学生进行阳光体育锻炼活动,地面上留下他们的影子,这种现象属于(填“中心”或“平行”)投影.12. 如图8,铅球投掷场地呈扇形,其中投掷区的角度为40°,则这个角的余角为°,补角为°.13. 从多边形的一个顶点与其他顶点连线段,若多边形被分成了八个三角形,则该多边形是_____边形.14. 若一个立体图形的三视图都是圆,则这个立体图形是.15. 图9所示是一个立体图形的表面展开图,请写出这个立体图形的名称:.16. 如图10,甲、乙、丙三只七星瓢虫分别落在操场草坪的点A,B,C处,连接AB,AC,BC,线段BC(填“<”“>”)线段AC,若乙瓢虫在甲瓢虫的北偏东30°,则甲瓢虫在乙瓢虫南偏西°.17. 如图11,点C在线段AB上,D是线段AC的中点,若BD=5 cm,BC=2 cm,则AB的长度为cm.18. 如图12,如图8所示,一个正方体的每一个面分别标有数字1、2、3、4、5、6,根据图中的正方体①、②、③三种状态所显示的数字,可推出“?”处的数字是.①②③图12三、解答题(共46分)19.(6分)仔细观察图13所示几何体,并完成以下问题:(1)请你写出几何体的名称;(2)柱体有______________;(3)构成几何体的面不超过3个的几何体有____________.①②③④⑤⑥图1320.(6分)已知∠A=24.1°+6°,∠B=56°-26°30′,∠C=18°12′+11.8°,试通过计算,比较∠A,∠B和∠C的大小.21.(6分)如图14,是美丽的蒙古包,它可以近似看做由两个常见的立体图形组合而成,试画出它的三视图.22. (8分)如图15,已知点O在直线AB上,OD、OE分别平分∠BOC、∠AOC,∠BOC=80°. (1)求∠AOD的度数;(2)∠DOC和∠COE有什么关系?简单说明理由.(3)若∠BOC=60°,其他条件不变(2)中的结论还成立吗?23.(9分)图16是一个常见立体图形的三视图,根据三视图,回答下列问题:(1)该立体图形是什么图形?(2)求该立体图形的表面积.24.(10分)如图17,已知线段AB,点E、F分别是线段AC、BD的中点,CD=4 cm,AC+BD=10cm.(1)求线段EF的长度;(2)若CD=a,AC+BD=b,则EF=.附加题(共20分)25. (8分)如图9,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC,OD,OE,且OC平分∠AOD,∠COE=70°.(1)设∠1=x°,用含x的式子表示∠2的度数.(2)若∠2=3∠1,求∠2的度数.图1826. (12分)经过平面内的两个点可以确定一条直线,根据这个性质,完成下列问题:探索知识:(1)在同一平面内有三点,经过其中的两点作直线,则所做直线的条数为;(2)在同一平面内有四个点,经过其中的两点作直线,有几种情况?画出每种情况中的所有直线.(3)由(1)、(2)可知,在同一平面内有五个点,且任意三个点都不在同一条直线上,则经过其中的两点作直线,最多能作条直线;归纳总结:(4)在同一平面内有n(n≥2)个点,且任意三个点都不在同一条直线上,则经过其中的两点作直线,最多能作条直线;运用知识:(5)某市举行篮球赛,进入第二轮比赛共有15个球队,如果采用循环赛(每两个球队都进行一场比赛),那么第二轮共有场比赛.参考答案一、1. A 2. D 3. D 4. C 5. B 6. D 7. C 8. C 9. C 10. D二、11. 平行12. 50 140 13. 十14. 球体15. 圆锥16. <30 17. 8 18. 6三、19. (1)几何体的名称依次为圆锥,长方体,圆柱,三棱柱,球,正方体.(2)②③④⑥(3)①③⑤20. 解:因为∠A=24.1°+6°=30.1°,∠B=56°-26°30′=29°30′=29.5°,∠C=18°12′+11.8°=18.2°+11.8°=30°,所以∠A>∠C>∠B.21. 解:如图所示:1∠BOC=40°,所以∠AOD=180°22. 解:(1)因为OD平分∠BOC,∠BOC=80°,所以∠BOD=2-∠BOD=180°-40°=140°.(2)∠DOC 和∠COE 互余.理由:由(1)得∠COD=40°.因为∠BOC=80°,所以∠AOC=180°-∠BOC=100°.因为OE 平分∠AOC ,所以∠EOC=50°.所以∠DOC+∠COE=40°+50°=90°.(3)成立.23. 解:(1)长方体;(2)2(2×6+2×4+4×6)=88,即该立体图形的表面积为88.24. 解:(1)因为点E 、F 分别是线段AC 、BD 的中点,所以CE=21AC ,DF=21BD. CE+DF=21(AC+BD)=21×10=5(cm). 因为CD=4 cm ,所以EF=CE+DF+CD=5+4=9(cm).(2)a+21b 25. 解:(1)因为∠1=x °,所以∠3=∠COE-∠1=70°-x °.又OC 平分∠AOD ,所以∠4=∠3=70°-x °.由∠1+∠2+∠3+∠4=180°,得∠2=180°-∠1-∠3-∠4=180°-x °-2(70°-x °)= 40°+x °.(2)由∠2=3∠1,得40+x=3x ,解得x=20.所以∠2=3∠1=3×20°=60°.26. (1)1或3;(2)有3种情况,各种情况画出的直线如图所示;(3)10(4)2)1( n n (5)105。
2018年秋人教版七年级上册数学《第四章 几何图形初步》单元测试卷及解析

2018年秋人教版七年级上册数学《第四章几何图形初步》单元测试卷注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、选择题,哪种物体最接近于圆柱( )A. B. C. D.2.下列几何体的截面分别是()A. 圆、平行四边形、三角形、圆B. 圆、长方形、三角形、圆C. 圆、长方形、长方形、三角形D. 圆、长方形、三角形、三角形3.如图是我国南海地区图,图中的点分别代表三亚市,永兴岛,黄岩岛,渚碧礁,弹丸礁和曾母暗沙,该地区图上两个点之间距离最短的是()A. 三亚﹣﹣永兴岛B. 永兴岛﹣﹣黄岩岛C. 黄岩岛﹣﹣弹丸礁D. 渚碧礁﹣﹣曾母暗山4.如图,图中共有线段()A. 7条B. 8条C. 9条D. 10条5.如图,C 为线段 AB 上一点,D 为线段 BC 的中点,AB=20,AD=14,则 AC的长为( )A. 10B. 8C. 7D. 66.如图,∠AOB 是平角,∠AOC=50°,∠BOD =60°,OM 平分∠BOD,ON 平分∠AOC,则∠MON 的度数是()A. 135°B. 155°C. 125°D. 145°7.将长方形纸片按如图所示的方式折叠,BC、BD为折痕.若∠ABC=25°,则∠DBE的度数为()A. 50°B. 65°C. 45°D. 60°8.将一块长为a米,宽为b米的矩形空地建成一个矩形花园,要求在花园中修两条入口宽均为x米的小道,其中一条小道两边分别经过矩形一组对角顶点,剩余的地方种植花草,现有从左至右三种设计方案如图所示,种植花草的面积分别为S1,S2和S3,则它们的大小关系为()A. S3<S1<S2B. S1<S2<S3C. S2<S1<S3D. S1=S2=S39.下列七个图形中是正方体的平面展开图的有()A. 1个B. 2个C. 3个D. 4个10.如图是一个棱长为1的正方体的展开图,点A ,B ,C 是展开后小正方形的顶点,连接AB ,BC ,则∠ABC 的大小是( )A. 60°B. 50°C. 45°D. 30°第II 卷(非选择题)二、解答题(题型注释)6.96×108m ,太阳的体积大约是多少?(球的体积的计算公式是V=43πr 3,π取3.14)12.已知一个长方体的长为1cm ,宽为1cm ,高为2cm ,请求出: (1)长方体有 条棱, 个面; (2)长方体所有棱长的和; (3)长方体的表面积.13.如图所示,若剪下来折叠能拼成一个正方体盒子,请你想象一下,能否在空格中填上适当的数,使相对的两个面上的数互为相反数?14.如图,点 B 、C 把线段 MN 分成三部分,其比是 MB :BC :CN=2:3:4,P 是 MN 的中点,且 MN=18cm ,求 PC 的长.15.如图,∠AOB 是平角,∠DOE=90°,OC 平分∠DOB . (1)若∠AOE=32°,求∠BOC 的度数;(2)若OD 是∠AOC 的角平分线,求∠AOE 的度数.16.以直线AB 上一点O 为端点作射线 OC ,使∠BOC =60°,将一个直角三角形的直角顶点放在点O 处.(注:∠DOE =90°)(1)如图1,若直角三角板DOE 的一边OD 放在射线OB 上,则∠COE = °;(2)如图2,将直角三角板DOE 绕点O 逆时针方向转动到某个位置,若OE 恰好平分∠AOC ,请说明OD 所在射线是∠BOC 的平分线;(3)如图3,将三角板DOE 绕点O 逆时针转动到某个位置时,若恰好∠COD = 15∠AOE ,求∠BOD 的度数?17.探索性问题:已知A ,B 在数轴上分别表示m ,n . (1)填表:(2)若A ,B 两点的距离为d ,则d 与m ,n 有何数量关系.(3)在数轴上整数点P 到4和﹣5的距离之和为9,求出满足条件的所有这些整数的和.三、填空题18.下面的几何体中,属于柱体的有______个.19.如图,是正方体的一个平面展开图,在这个正方体中,与“爱”字所在面相对的面上的汉字是______20.如果线段AB=10,点C、D在直线AB上,BC=6,D是AC的中点,则A、D两点间的距离是______.21.已知线段MN=16cm,点P为任意一点,那么线段MP与NP和的最小值是_____cm.22.如图,若∠3:∠2=2:5,且∠2﹣∠1=12°,∠3等于_____.23.如图,点B、O、D在同一直线上,且OB平分∠AOC,若∠COD=150°,则∠AOC的度数是_____.24.如图,一纸片沿直线AB折成的V字形图案,已知图中∠1=62°,则∠2的度数=_______° .25.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是_____.若∠1=28°32′35″,则∠1的补角=_____.参考答案1.A【解析】1.根据圆柱的特点:圆柱由一个曲面,两个平面(底面)围成的;圆柱两个面之间距离叫做高,圆柱的侧面打开,得到一个长方形,这个长方形的长就是圆柱的底周长观察所给图形,观察图形用排除法可做出判断.A选项:有一个曲面,两个平面围成的,最接近圆柱,故本选项正确;B选项:有两个平面,但圆柱的母线没有垂直于底面,故本选项错误;C选项:两个底面的大小不同,故本选项错误;D选项:有两个平面,有两个曲面,故本选项错误;故选:A2.B【解析】2.根据平面图形得出截面.由图可知,下列几何体的截面分别是:圆、长方形、三角形、圆.故答案选B.3.A【解析】3.根据两点直线距离最短可在图中看出三亚-永兴岛之间距离最短.由图可得,两个点之间距离最短的是三亚-永兴岛.故答案选A.4.B【解析】4.根据线段的定义找出所有的线段即可解答.由图可知,线段有AD,DB,BC,CE,EA,DE,AB,AC,一共八条,所以答案选择B.5.B【解析】5.先根据AB=20,AD=14求出BD的长,再由D为线段BC的中点求出BC的长;由已知AB=20得出AC的长,对比四个选项即可确定出正确答案.∵AB=20,AD=14, ∴BD=AB-AD=20-14=6, ∵D 为线段BC 的中点, ∴BC=2BD=12, ∴AC=AB-BC=20-12=8. 故选:B . 6.C【解析】6.根据条件可求出∠COD 的度数,利用角平分线的性质可求出∠MOC 与∠DON 的度数,最后根据∠MON=∠MOC+∠COD+∠DON 即可求出答案. 解:∵∠AOC+∠COD+∠BOD=180°, ∴∠COD=180°-∠AOC-∠COD=70°,∵OM 、ON 分别是∠AOC 、∠BOD 的平分线, ∴∠MOC=12∠AOC=25°,∠DON=12∠BOD=30°, ∴∠MON=∠MOC+∠COD+∠DON=125°, 故选:C . 7.B【解析】7.根据折叠的性质得到∠ABC =∠A ′BC ,∠EBD =∠E ′BD ,再根据平角的定义有∠ABC +∠A ′BC +∠EBD +∠E ′BD =180°,易得∠A ′BC +∠E ′BD =180°×12=90°,则∠CBD =90°,再根据平角的定义即可求出∠DBE 的值.∵一张长方形纸片沿BC 、BD 折叠,∴∠ABC =∠A ′BC ,∠EBD =∠E ′BD ,而∠ABC +∠A ′BC +∠EBD +∠E ′BD =180°,∴∠A ′BC +∠E ′BD =180°×12=90°,即∠CBD =90°. ∵∠ABE =180°,∴∠DBE =180°-∠ABC -∠CBD =180°-25°-90°=65°. 故选B . 8.C【解析】8.利用分割图形法找出S 1、S 2、S 3的面积,再根据平行四边形的面积公式找出S 4、S 5、S 6的面积,由此即可得出结论.∵矩形的长为a 米,宽为b 米,小路的宽为x 米, ∴S 1=ab−(a+b)x+S 4;S 2=ab−(a+b)x+S 5;S 3=ab−(a+b)x+S 6.S 4=x ⋅x sin60°= 2√33x 2,S 5=x 2,S 6=x ⋅ xsin30°=2x 2, ∴S 2<S 1<S 3. 故答案选C. 9.B【解析】9.由平面图形的折叠及正方体的表面展开图的特点进行判断即可. 解:常见立方体的展开图可以总结为11幅基础图形,如下,据此可知是正方体的平面展开图的有:故选:B . 10.C【解析】10.连接AC ,由图可知∠ACB=90°,简单计算即可发现AC=BC. 解:连接AC ,由图可知∠ACB=90°,由勾股定理可得AC=BC=√5,则△ACB 是一个直角等腰三角形,则∠ABC=45°, 故选择C. 11.1.41×1027m 3.【解析】11.根据已知条件太阳的半径,然后根据球体的体积公式即能得出答案. 解:当r=6.96×108时,V=πr 3≈×3.14×(6.96×108)3≈1.41×1027m 3,答:太阳的体积大约是1.41×1027m3.12.(1)12,6;(2)16(cm);(3)长方体的表面积是10cm2.【解析】12.(1)根据长方体的性质可得出;(2)长方体的棱长总和=4(长+宽+高);(3)长方体的表面积=2(长×宽+长×高+宽×高),把相关数字代入即可.解:(1)长方体有12条棱,6个面;故答案为:12,6;(2)(1+1+2)×4,,=4×4,=16(cm).故长方体所有棱长的和是16cm;(3)(1×1+1×2+1×2)×2,=(1+2+2)×2,,=5×2,=10(cm2).故长方体的表面积是10cm2.13.A=﹣2,B=﹣3,C=﹣4.【解析】13.两数互为相反数,和为0.本题应对图形进行分析,可知A对应-2,B对应-3,C对应-4,由此可得结论.解:依题意得:A=﹣2,B=﹣3,C=﹣4.14.PC=1.【解析】14.根据比例设MB=2x,BC=3x,CN=4x,再根据线段中点的定义表示出MP并求出x,再根据PC= MC﹣MP列方程代入x的值,从而得解.解:设MB=2x,则BC=3x,CN=4x,因为P是MN中点,所以MP=MN=×(2x+3x+4x)=x=9.解得x=2,∴PC=MC ﹣MP=2x+3x ﹣x=0.5x=1.15.(1)61°;(2)30°.【解析】15.(1)求出∠AOD 和∠BOD ,由OC 平分∠DOB ,求出∠BOC ;(2)根据OC 平分∠BOD ,OD 平分∠AOC 得出∠BOC=∠DOC=∠AOD ,求出∠AOD 即可得出∠AOE.解:(1)∠AOD=∠DOE ﹣∠AOE=90°﹣32°=58°,,∠BOD=∠AOB ﹣∠AOD=180°﹣58°=122°,又OC 平分∠BOD ,所以:∠BOC=∠BOD=×122°=61°;(2)因为OC 平分∠BOD,OD 平分∠AOC ,所以∠BOC=∠DOC=∠AOD ,又∠BOC+∠DOC+∠AOD=180°,所以∠AOD=×180°=60°,所以∠AOE=∠DOE ﹣∠AOD=90°﹣60°=30°.16.(1)30;(2)答案见解析;(3)65°或52.5°.【解析】16.试题分析:(1)根据图形得出∠COE=∠BOE-∠COB ,代入求出即可;(2)根据角平分线定义求出∠COE=∠AOE=12∠COA ,再根据∠AOE+∠DOB=90°,∠COE+∠COD=90°,可得∠COD=∠DOB ,从而问题得证;(3)设∠COD=x°,则∠AOE=5x°,根据题意则可得6x=30或5x +90﹣x=120,解方程即可得.试题解析:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=∠BOE-∠COB=30°,故答案为:30;(2)∵OE 平分∠AOC ,∴∠COE=∠AOE=12∠COA , ∵∠EOD=90°,∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,∴∠COD=∠DOB ,∴OD所在射线是∠BOC的平分线;(3)设∠COD=x°,则∠AOE=5x°,∵∠DOE=90°,∠BOC=60°,∴6x=30或5x+90﹣x=120,∴x=5或7.5,即∠COD=65°或37.5°,∴∠BOD=65°或52.5°.17.(1)3,4,12,1,92,2;(2)d=|m﹣n|;(3)﹣5.【解析】17.(1)根据在数轴求距离的方法,让右边的点表示的数减去左边的点的表示的数,依次计算可得答案.(2)数轴上两点间的距离d等于表示两点数之差的绝对值,即d=|m-n|.(3)设P点为x,根据(2)得出的结论列出含绝对值的一元一次方程,利用绝对值的代数意义化简即可求出x的值.解:(1)5﹣2=3;0﹣(﹣4)=4;6﹣(﹣6)=12;﹣4﹣(﹣5)=1;2﹣(﹣90)=92;﹣2.5﹣(﹣4.5)=2;故答案为:3,4,12,1,92,2;(2)∵数轴上两点间的距离d等于表示两点数之差的绝对值,∴d=|m﹣n|.(3)设整数点P表示的数为x,∵点P到4和﹣5的距离之和为9,∴|x﹣4|+|x﹣(﹣5)|=9,即x﹣4+x+5=9,﹣(x﹣4)+x+5=9(﹣5和4两点间所有的整数点均成立),x﹣4﹣(x+5)=9(舍去)或﹣(x﹣4)﹣(x+5)=9,解得x=﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4;∴有这些整数的和为4+3+2+1+0﹣1﹣2﹣3﹣4﹣5=﹣5.18.4【解析】18.解这类题首先要明确柱体的概念,然后根据图示进行解答.柱体分为圆柱和棱柱,所以柱体有:第1、3、5、6,故答案为:4个.19.中.【解析】19.正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此作答. 根据正方形的平面展开图,观察可知,爱与中相对.20.2或8【解析】20.由于线段BC 与线段AB 的位置关系不能确定,故应分C 在线段AB 内和AB 外两种情况进行解答.解:①如图1所示,∵AB=10,BC=6,∴AC=AB-BC=10-6=4,∵D 是线段AC 的中点,∴AD=12AC=12×4=2;②如图2所示,∵AB=10,BC=6,∴AC=AB+BC=10+6=16,∵D 是线段AC 的中点,∴AD=12AC=12×16=8.故答案为:2或8.21.16【解析】21. 分两种情况:①点P 在线段MN 上;②点P 在线段MN 外;然后利用两点之间距离性质,结合图形得出即可.①点P 在线段MN 上,MP+NP=MN=16cm ,②点P 在线段MN 外,当点P 在线段MN 的上部时,由两点之间线段最短可知:MP+NP > MN =16,当点P 在线段MN 的延长线上时,MP+NP > MN =16.综上所述:线段MP 和NP 的长度的和的最小值是16,此时点P 的位置在线段MN 上, 故答案为:16.22.32°【解析】22.根据比例可设∠3=2x,∠2=5x,利用方程和平角解答即可.∵∠3:∠2=2:5,设∠3=2x,∠2=5x,∵∠1+∠2+∠3=180°,∠2-∠1=12°,可得:5x-12°+5x+2x=180°,解得:x=16,所以∠3=2×16°=32°,故答案为:32°23.60°.【解析】23.根据互补得出∠COB,进而得出∠AOC的度数.∵点B、O、D在同一直线上,∠COD=150°,∴∠COB=180°-150°=30°,∵OB平分∠AOC,∴∠AOC=2×30°=60°,故答案为:60°.24.56°【解析】24.分析:由折叠的性质和平角的定义得出2∠1+∠2=180°,即可求出结果.详解:根据题意得:2∠1+∠2=180°,∴∠2=180°-2×62°=56°,故答案为:56°.25.∠AOD,151°27′25″【解析】25.根据互补和互余解答即可.∵∠1=∠2,∴与∠1互补的角是∠AOD.∵∠1=28°32′35″,∴∠1的补角=151°27′25″.故答案为:∠AOD;151°27′25″.。
人教版-学年度上学期七年级数学期末复习试卷四 几何图形初步(含答案)

2018-2019七上期末复习试题四学生版第四章几何图形初步检测卷(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.下列几何体中,属于柱体的有( )①长方体;②正方体;③圆锥;④圆柱;⑤四棱锥;⑥三棱柱.A.2个 B.3个 C.4个 D.5个2.下列语句:①点A在直线上;②直线的一半就是射线;③延长直线AB到点C;④射线OA与射线AO是同一射线.其中正确的说法有( )A.0个 B.1个 C.2个 D.3个3.如图,圆柱体的表面展开后得到的平面图形是( ).4.如图四个图形都是由6个大小相同的正方形组成,其中是正方体展开图的是( )A.①②③ B.②③④ C.①③④ D.①②④5.如图所示的正方体的展开图是( )6.由若干个相同的小正方体组合而成的一个几何体从不同方向看到的图形如图,则组成这个几何体的小正方体的个数是()从正面看从左面看从上面看A.3个B.4个C.5个D.6个7.若∠与∠互为补角,∠是∠的2倍,则∠为()A.30°B.40°C.60°D.120°8.下列立体图形中:①圆柱;②圆锥;③正方体;④四棱柱,面数相同的是( )A.①② B.①③ C.②③ D.③④9.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50° B.20°或60° C.30°或50° D.30°或60°10.4点10分,时针与分针所夹的小于平角的角为()A.55°B.65°C.70°D.以上结论都不对二、填空题(每小题3分,共15分)11.木工师傅用刨子可将木板刨平,经过刨平的木板上的两个点,就能弹出一条笔直的墨线,而且只能弹出一条墨线,用数学知识解释其依据为: .12.如图,一个正方体的每个面分别标有数字1,2,3,4,5,6.根据图中该正方体三种状态所显示的数据,可推出“?”处的数字是 .①②③13.两个完全相同的长方体的长、宽、高分别是5 cm ,4 cm ,3 cm ,把它们叠放在一起组成一个新长方体,在这些新的长方体中,表面积最大是14平面上有三点A 、B 、C ,①连接其中任意两点,可得线段3条;②经过任意两点画直线,可得到直线 .15如图,∠AOC=50°,∠BOC=20°,OE 平分∠BOC ,OF 平分∠AOC ,则∠EOF 的度数为 .三、解答题(共75分) 16.(6分)已知∠与∠互余,且∠比∠小25°,求2∠-51∠的值.17.(6分)如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =8cm ,BD =2cm . (1)图中共有多少条线段? (2)求AC 的长;(3)若点E 在直线AD 上,且EA =3cm .求BE 的长.18.(7分)点A 、B 、C 在同一直线上。
2018-2019学年最新人教版七年级数学上册《几何图形初步》全章综合测试题及解析-经典试题

人教版数学七年级上册“单元精品卷”(含精析)第四章几何图形初步(培优提高卷)题型选择题填空题解答题总分得分一、选择题。
(本题有10个小题,每小题3分,共30分)1.如图,几何体上半部为正三棱柱,下半部为圆柱,其俯视图是()A. B. C. D.2.某几何体的三视图如图所示,这个几何体是()A.圆锥 B.圆柱 C.三棱柱 D.三棱锥3.如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为()A.4 B.6 C.8 D.124.如图所示,∠BAC=90°,AD⊥BC,垂足为D,则下列结论中,正确的个数为()①AB⊥AC;②AD与AC互相垂直;③点C到AB的垂线段是线段AB;④点A到BC的距离是线段AD;⑤线段AB的长度是点B到AC的距离.A.1个 B.2个 C.3个 D.4个5.如图,平面内有公共端点的、OB、OC、OD、OE、OF,从射线OA开始按逆时针依次在射线上写出数字1、2、3、4、5、6、7…,则数字“2015”在()A.射线OA上 B.射线OB上C.射线OD上 D.射线OE上6.下列说法中,不正确的是()A. 若点C在线段BA的延长线上,则BA=AC-BCB. 若点C在线段AB上,则AB=AC+BCC. 若AC+BC>AB,则点C一定在线段BA外D. 若A、B、C三点不在一直线上,则AB<AC+BC7.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A、15°B、28°C、29°D、34°8.如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15 °30′,则下列结论中不正确...的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75°30′9.如图,QQ软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的是()【来源:21cnj*y.co*m】10.如图所示,把一张矩形纸片AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形二、填空题。
【数学】人教版七年级数学上册第四章几何图形初步单元测试A卷(4).doc

人教版七年级上册第三章一元一次方程单元测试卷一、填空题1、如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是 .2、如图,点A 在点O 北偏东32°方向上,点B 在点O 南偏东43°方向上,则∠AOB=3、平面上有任意三点,过其中两点画直线,共可以画 .4、两根木条,一根长60cm ,另一根长80cm ,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是 .5、.计算:175°26′÷3= .6、一个角的余角比这个角的补角的一半小30°,则这个角的大小为度.7、一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是 .8、如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2的度数是 .9、下列四种说法:①因为AM=MB,所以M是AB的中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB=AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB的中点,其中正确的是(只填写序号)10、如图,OB是∠AOC的平分线,OD是∠COE的平分线,若∠AOC=70°,∠COE=40°,那么∠BOD=度.二、选择题11.下列说法中正确的是().A.射线AB和射线BA是同一条射线B. 延长线段AB和延长线段BA的含义是相同的C. 延长直线ABD.经过两点可以画一条直线,并且只能画一条直线12.如图,下列说法不正确的是().A.∠1与∠AOB是同一个角B. ∠AOC也可用∠O来表示C. 图中共有三个角:∠AOB, ∠AOC, ∠BOCD. ∠ 与∠BOC是同一个角13.甲看乙的方向为北偏东30°,那么乙看甲的方向是().A. 南偏东60°B.南偏西60°C. 南偏西30°D.南偏东30°14.那么这个几何体是().β1OCBA15.下面四个图形中,经过折叠能围成如图所示的几何图形的是()16.一个角的度数为54°11′23〞,则这个角的余角和补角的度数分别为().A. 35°48′37〞, 125°48′37〞B. 35°48′37〞, 144°11′23〞C. 36°11′23〞, 125°48′37〞D. 36°11′23〞, 144°11′23〞三、解答题17.(1)如图1,已知点D是线段AC的中点,点B在线段DC上,且AB=4BC,若BD=6 cm,求AB的长;(2)如图2,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE,试求∠COE的度数.A B C DA B C D18.如图,已知线段AB上有两点C,D,且AC∶CD∶DB=2∶3∶4,E,F分别为AC,DB的中点,EF=2.4 cm,求线段AB的长.19.如图,P是线段AB上任一点,AB=12 cm,C、D两点分别从P、B同时向A点运动,且C点的运动速度为2 cm/s,D点的运动速度为3 cm/s,运动的时间为t s.(1)若AP=8 cm.①运动1 s后,求CD的长;②当D在线段PB运动上时,试说明AC=2CD;(2)如果t=2 s时,CD=1 cm,试探索AP的值.参考答案一、填空题1、如图,把弯曲的河道改直,能够缩短航程,这样做根据的道理是两点之间线段最知 .2、如图,点A在点O北偏东32°方向上,点B在点O南偏东43°方向上,则∠AOB=1053、平面上有任意三点,过其中两点画直线,共可以画1或3条 .4、两根木条,一根长60cm,另一根长80cm,将它们的一端重合,放在同一直线上,此时两根木条的中点间的距离是7或10 .5、.计算:175°26′÷3= .6、一个角的余角比这个角的补角的一半小30°,则这个角的大小为60度.7、一个正方体的表面展开图如图所示,六个面上各有一字,连起来的意思是“预祝中考成功”,把它折成正方体后,与“成”相对的字是功 .8、如图,将三个同样的正方形的一个顶点重合放置,如果∠1=45°,∠3=30°时,那么∠2的度数是15 .9、下列四种说法:①因为AM=MB ,所以M 是AB 的中点;②在线段AM 的延长线上取一点B ,如果AB=2AM ,那么M 是AB 的中点;③因为M 是AB 的中点,所以AM=MB=AB ;④因为A 、M 、B 在同一条直线上,且AM=BM ,所以M 是AB 的中点,其中正确的是②③ (只填写序号) 10、如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线,若∠AOC=70°,∠COE=40°,那么∠BOD=55度.二、选择题11.下列说法中正确的是(D ).A.射线AB 和射线BA 是同一条射线B. 延长线段AB 和延长线段BA 的含义是相同的C. 延长直线ABD.经过两点可以画一条直线,并且只能画一条直线 12.如图,下列说法不正确的是(B ).A.∠1与∠AOB是同一个角B. ∠AOC也可用∠O来表示C. 图中共有三个角:∠AOB, ∠AOC, ∠BOCD. ∠ 与∠BOC是同一个角(C)C13.甲看乙的方向为北偏东30°,那么乙看甲的方向是().A. 南偏东60°B.南偏西60°C. 南偏西30°D.南偏东30°14.那么这个几何体是(B).15.下面四个图形中,经过折叠能围成如图所示的几何图形的是(B)β1OCBAA B C D16.一个角的度数为54°11′23〞,则这个角的余角和补角的度数分别为(A ). A. 35°48′37〞, 125°48′37〞 B. 35°48′37〞, 144°11′23〞 C. 36°11′23〞, 125°48′37〞 D. 36°11′23〞, 144°11′23〞三、解答题17(1)如图1,已知点D 是线段AC 的中点,点B 在线段DC 上,且AB =4BC ,若BD =6 cm ,求AB 的长;(2)如图2,∠AOB =∠COD =90°,OC 平分∠AOB ,∠BOD =3∠DOE ,试求∠COE 的度数.解:(1)因为AB =4BC ,AB +BC =AC ,所以AC =5BC.因为点D 是线段AC 的中点, 所以AD =DC =12AC =12BC. 因为BD =DC -BC =6 cm , 所以52BC -BC =6 cm. 所以BC =4 cm. 所以AB =4BC =16 cm.(2)因为∠AOB =90°,OC 平分∠AOB , 所以∠BOC =12∠AOB =45°.因为∠BOD =∠COD -∠BOC =90°-45°=45°,∠BOD =3∠DOE , 所以∠DOE =15°.所以∠COE =∠COD -∠DOE =90°-15°=75°.A B C D18.如图,已知线段AB 上有两点C ,D ,且AC ∶CD ∶DB =2∶3∶4,E ,F 分别为AC ,DB 的中点,EF =2.4 cm ,求线段AB 的长. 解:因为AC ∶CD ∶DB =2∶3∶4,所以设AC =2x cm ,CD =3x cm ,DB =4x cm. 所以EF =EC +CD +DF =x +3x +2x =6x cm. 所以6x =2.4,即x =0.4.所以AB =2x +3x +4x =9x =3.6 cm.19.如图,P 是线段AB 上任一点,AB =12 cm ,C 、D 两点分别从P 、B 同时向A 点运动,且C 点的运动速度为2 cm/s ,D 点的运动速度为3 cm/s ,运动的时间为t s.人教版七年级上册第四章几何图形初步单元测试卷一、 选择题 (本题共计 10 小题,每题 分,共计30分 , )1. 以下几何图形中,表示立体图形的是( ) A.B.C.D.2. 同一副三角板(两块)画角,不可能画出的角的度数是( ) A. B. C. D.3. 两个锐角的和( ) A.必定是锐角 B.必定是钝角 C.必定是直角D.可能是锐角,可能是直角,也可能是钝角4. 如图,下列说法正确的是( )A. 的方向是北偏东B. 的方向是南偏东C. 的方向是南偏西D. 的方向是北偏西5. 已知 ″,则 的余角是( ) A. B. C. D.6. 如图所示的图形绕虚线旋转一周,所形成的几何体是( )A.B.C.D.7. 下列说法:①射线 和射线 是同一条射线;②若 ,则点 为线段 的中点; ③同角的补角相等;④点 在线段 上, , 分别是线段 , 的中点.若 ,则线段 . 其中说法正确的是( ) A.①② B.②③ C.②④ D.③④8. 已知 , 是 的平分线, , 是 的平分线,则 的度数为( ) A. B. C. D. 或9. 五棱柱的顶点总个数有( )个. A. B. C. D.10. 延长线段 到点 ,使 ,点 是线段 的中点,则 为( ) A. B. C. D.二、 填空题 (本题共计 6 小题,每题 分,共计18分 , )11. 如图所示:小明从学校回家有 条路行径走,他走最近的路线是________号路线.其道理用几何知识解释为________.12. 如图所示的图形绕虚线旋转一周得到的几何体的名称是________.13. 工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直.运用的数学原理:________.14. 如图,线段,点分线段为,是线段的中点,则线段________.15. 观察下列各图,在第个图中有一个角,第个图中共有个角,第个图中共有个角,则第个图中角的个数是________,第个图中角的个数为________.16. 时钟在人教版七年级数学上册第4章《几何图形初步》单元检测一.选择题(共10小题,每小题3分,共30分)1.下列几何体是棱锥的是()A.B.C.D.2.下面几种几何图形中,属于平面图形的是()①三角形;②长方形;③正方体;④圆;⑤四棱锥;⑥圆柱.A.①②④B.①②③C.①②⑥D.④⑤⑥3.如图的平面图形绕直线l旋转一周,可以得到的立体图形是()A.B.C.D.4.如图,图中共有线段()A.7条B.8条C.9条D.10条5.如图,轩轩同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两条直线相交,只有一个交点B.两点确定一条直线C.经过一点的直线有无数条D.两点之间,线段最短6.已知线段AB=10cm,PA+PB=20cm,下列说法正确的是()A.点P不能在直线AB上B.点P只能在直线AB上C.点P只能在线段AB的延长线上D.点P不能在线段AB上7.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.8.如图,下列条件中不能确定的是OC是∠AOB的平分线的是()A.∠AOC=∠BOC B.∠AOB=2∠AOCC.∠AOC+∠BOC=∠AOB D.9.嘉琪同学将一副三角板按如图所示位置摆放,其中∠α与∠B一定互补的是()A.B.C.D.10.下列说法正确的个数是()(1)连接两点之间的线段叫两点间的距离;(2)木匠师傅锯木料时,一般先在模板上画出两个点,然后过这两点弹出一条墨线,这样做的原理是:两点之间,线段最短;(3)若AB=2CB,则点C是AB的中点;(4)若∠A=20°18′.∠B=20°28″,∠C=20.25°,则有∠A>∠C>∠B.A.1个B.2个C.3个D.4个二.填空题(共8小题,每小题3分,共24分)11.如图所示的三角形绕边AB所在直线旋转一周所形成的几何体是.12.如图,C是线段BD的中点,AD=3,AC=7,则AB的长等于.13.把一根木条固定在墙上,至少要钉2根钉子,这是根据.14.从重庆乘火车到北京,沿途经过5个车站方可达到北京站,那么在重庆与北京两站之间需要安排不同的车票种.15.已知∠A=110.32°,用度、分、秒表示为∠A=.16.如图,上午6:30时,时针和分针所夹锐角的度数是.17.若一个角的补角比它的余角的2倍还多70°,则这个角的度数为度.18.图中,∠1与∠2的关系是.三.解答题(共5小题,19--22每小题6分,23题5分,满分29分)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠()∵∠1=30°∴∠BOC=30°∵OE平分∠BOC(已知)∴∠COE=BOC∴∠COE=15°四.综合运用(共2小题,24题8分,25题9分,满分17分)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是、、(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.2018—2019学年人教版七年级数学上册第4章《几何图形初步》单元检测参考简答一.选择题(共10小题)1.D.2.A.3.B.4.B.5.D.6.D.7.D.8.C.9.D.10.A.二.填空题(共8小题)11.圆锥.12.11.13.两点确定一条直线.14.42.15.110°19′12″.16.15°.17.70.18.互余.三.解答题(共5小题)19.两种规格的长方体纸盒,尺寸如下(单位:厘米)(1)做这种规格的纸盒各一个,共用料多少平方厘米?(2)做一个大纸盒与做三个小纸盒,哪个用料多?多多少平方厘米?【解】:(1)2 (1.5a×2b+1.5a×30+2b×30)+2(ab+20a+20b)=6ab+90a+120b+2ab+40a+40b=8ab+130a+160b(平方厘米).答:共用料(8ab+130a+160b)平方厘米;(2)2 (1.5a×2b+1.5a×30+2b×30)=6ab+90a+120b(平方厘米);2(ab+20a+20b)×3=6ab+120a+120b (平方厘米);(6ab+120a+120b)﹣(6ab+90a+120b)=30a(平方厘米).答:做三个小纸盒的用料多,多30a平方厘米.20.如图,已知∠AOB=∠COD=90°,∠BOC=34°.(1)判断∠BOC与∠AOD之间的数量关系,并说明理由;(2)若OE平分∠AOC,求∠EOC的余角的度数.【解】:(1)∠BOC与∠AOD之间的数量关系为∠BOC+∠AOD=180°,因为∠AOB=∠COD=90°,∠AOB+∠BOC+∠COD+∠AOD=360°,所以∠BOC+∠AOD=360°﹣∠AOB﹣∠COD=180°,(2)因为∠AOB=90°,∠BOC=34°,所以∠AOC=∠AOB+∠BOC=124°,因为OE平分∠AOC,所以∠E0C=∠AOE=12∠AOC=62°,所以∠EOC余角的度数为90°﹣∠E0C=28°.21.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.【解】:(1)∵以点A为左端点向右的线段有:线段AB、AC、AD,以点C为左端点向右的线段有线段CD、CB,以点D为左端点的线段有线段DB,∴共有3+2+1=6条线段;(2)设线段上有m个点,该线段上共有线段x条,则x=(m﹣1)+(m﹣2)+(m﹣3)+…+3+2+1,∴倒序排列有x=1+2+3+…+(m﹣3)+(m﹣2)+(m﹣1),∴2x=mm+m+…+m=m(m﹣1),∴x=12m(m﹣1);(3)把45位同学看作直线上的45个点,每两位同学之间的一握手看作为一条线段,直线上45个点所构成的线段条数就等于握手的次数,因此一共要进行12×45×(45﹣1)=990次握手.22.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.【解】:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=12∠BOC,∠2=12∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.23.如图,∠AOB=90°,∠COD=90°,OE平分∠BOC,若∠1=30°,求∠COE的度数.解:∵∠AOB=90°∴∠1与∠2互余互余定义∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC(同角的余角相等)∵∠1=30°∴∠BOC=30°等量代换∵OE平分∠BOC(已知)∴∠COE=BOC角平分线定义∴∠COE=15°【解】:∵∠AOB=90°∴∠1与∠2互余(互余定义)∵∠COD=90°∴∠BOC与∠2互余∴∠1=∠BOC (同角的余角相等)∵∠1=30°∴∠BOC=30°(等量代换)∵OE平分∠BOC(已知)∴∠COE=BOC (角平分线定义)∴∠COE=15°;故答案为:互余定义;BOC;同角的余角相等;等量代换;角平分线定义.四.综合运用(共2小题)24.如图,数轴上有三个点A,B,C,表示的数分别是﹣4,﹣2,3.(1)若使C、B两点的距离是A、B两点的距离的2倍,则需将点C向左移动1或10个单位;(2)点A、B、C开始在数轴上运动,若点A以每秒a个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,设运动时间为t秒:①点A、B、C表示的数分别是﹣4﹣at、﹣2+2t、3+5t(用含a、t的代数式表示);②若点B与点C之间的距离表示为d1,点A与点B之间的距离表示为d2,当a为何值时,5d1﹣3d2的值不会随着时间t的变化而改变,并求此时5d1﹣3d2的值.【解】:(1)由数轴可知:A、B两点的距离为2,B点、C点表示的数分别为:﹣2、3,所以当C、B两点的距离是A、B两点的距离的2倍时,需将点C向左移动1或10个单位;故答案是:1或10;(2)①点A表示的数是﹣4﹣at;点B表示的数是﹣2+2t;点C所表示的数是3+5t.故答案是:﹣4﹣at;﹣2+2t;3+5t;②∵点A以每秒a个单位的速度向左运动,点B和点C分别以每秒2个单位长度和5个单位长度的速度向右运动,∴d1=3t+5,d2=(a+2)t+2,∴5d1﹣3d2=5(3t+5)﹣3[(a+2)t+2]=(9﹣3a)t+19,9﹣3a=0,解得a=3,故当a为3时,5d1﹣3d2的值不会随着时间t的变化而改变,此时5d1﹣3d2的值为19.25.以直线AB上点O为端点作射线OC,使∠BOC=60°,将直角△DOE的直角顶点放在点O处.(1)如图1,若直角△DOE的边OD放在射线OB上,则∠COE=30°;(2)如图2,将直角△DOE绕点O按逆时针方向转动,使得OE平分∠AOC,说明OD所在射线是∠BOC的平分线;(3)如图3,将直角△DOE绕点O按逆时针方向转动,使得∠COD=15∠AOE.求∠BOD的度数.【解】:(1)∵∠BOE=∠COE+∠COB=90°,又∵∠COB=60°,∴∠COE=30°,故答案为:30°;(2)∵OE平分∠AOC,∴∠COE=∠AOE=12 COA,∵∠EOD=90。
人教版七年级上册数学《几何图形初步》单元测试卷带答案

人教版数学七年级上学期第四章单元测试满分:100分时间:90分钟一、基础题1、下列说法正确的是()A、直线AB和直线BA是两条直线B、射线AB和射线BA是两条射线C、线段AB和线段BA是两条线段D、直线AB和直线a不能是同一条直线2、下列图中角的表示方法正确的个数有()A、1个B、2个C、3个D、4个3、下面图形经过折叠可以围成一个棱柱的是()、4、将如图所示的正方体沿某些棱展开后,能得到的图形是()5、经过任意三点中的两点共可以画出()A、一条直线B、两条直线C、一条或三条直线D、三条直线6、下列叙述正确的是()A.180°的角是补角 B.110°和90°的角互为补角C.10°、20°、60°的角互为补角 D.120°和60°的角互为补角7、下列说法正确的是()(A)射线OA与OB是同一条射线;(B)射线OB与AB是同一条射线(C)射线OA与AO是同一条射线;(D)射线AO与BA是同一条射线8、甲看乙的方向为北偏东30°,那么乙看甲的方向是()A.南偏东60° B.南偏西60° C.南偏东30° D.南偏西30°9、下列说法错误的是()(A)点P为直线AB外一点(B)直线AB不经过点P(C )直线AB 与直线BA 是同一条直线 (D )点P 在直线AB 上。
10、一个正方形,六个面上分别写着六个连续的整数,且每个相对面上的两个数之和相等,如图所示,你能看到的数为7、10、11,则六个整数的和为( ) A 、51 B 、52 C 、57 D 、5811、经过一点可以画 条直线,经过两点可以画 条直线, 经过三点可以画 条直线。
12、要在墙上钉一根木条,至少要 个钉子,理由是 13、如图,从学校A 到书店B 最近的路线是(1)号路线,其道理用几何知识解释应是_______ 14、如图,若CB 等于4cm ,DB 等于7cm ,且D 是AC 的中点,则AC=_________15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
A
图1
①
③ ②
图2
D
C
O
B
A
七年级上学期数学第四章测试卷(二)
一、选择(每题3分,共24分)
1、如图1所示,由A 到B 有①②③三条路线,最短路线为③的理由是( ) A 、因为它直 B 、两点确定一条直线
C 、两点间距离定义
D 、在连接两点线中,线段最短。
2、下列几何语言描述正确的是( ) A 、直线mn 与直线ab 相交于点D B 、点A 在直线M 上 C 、点A 在直线AB 上 D 、延长直线AB
3、如图2所示,已知∠AOB=150°,∠AOC=∠BOD=90°,则∠COD 的度数是( ) A 、30° B 、80° C 、60° D 、45°
4、用一副三角板不能画角的度数是( ) A 、30° B 、75° C 、100° D 、135°
5、一个角和它的补角度数比为4:5,则这个角的余角度数为( ) A 、40° B 、50° C 、10° D 、80°
6、若点A 、B 、C 在同一条直线上,线AB=6cm ,AC=3cm ,则线段BC 的长为( ) A 、3cm B 、9cm C 、3cm 或9cm D 、不能确定
7、如果一个角为30°,用10倍的放大镜观察,这个角应是( ) A 、30° B 、300° C 、60° D 、不能确定 8、7点整,时针与分针的夹角为( ) A 、120° B 、100° C 、150° D 、130° 二、填空(每题3分,共24分)
1、木匠师傅利用墨斗弹线的道理是____________________。
2、计算①123°29′29〞+69°46′53〞=____________。
②41°16′37〞×5=________________。
3、如图3所示,将平面图形折成一个正方体,字______所在面与“秀”字面相对。
你 是 很
优 秀 的
图3
25
65O
A
B
北
西
图6
西
北
O A
30
4、如图4所示,D 、E 分别是AB 、BC 的中点,其中AD=2,BC=6,则DE=_______。
E
D
C B
A
5、如图5所示,射线OA 表示_____方向,射线OB 表示__ _方向。
6、若一个角的补角比它的余角3倍大10°,则这个角为______。
7、若∠α+∠β=90°,∠β+∠γ=90°,则∠α与∠γ的关系是 。
8、一个长方形锯去一个角,可以得到的图形是_____________________。
三、解答题:
1、已知一个角是它补角的3
1
,求这个角的余角度数。
(8分)
2、如图所示,指出OA 是表示什么方线的一条直线,仿照这条直线画出表示下列方向的射线(9分)
(1)OB 北偏东65° (2)OC 南偏西50° (3)OD 西北方向°
3、一个角的补角和它的余角之比为3∶1,求这个角是多少度。
(8分)
4、已知点A ,B ,C 是同一条直线上的任意三点,如果AC=7,BC=3,求线段AC 和BC 的中点间距离。
(10分)
图4
图5
D
C
E
B
O
A
A B
C
D
O
E
5、已知∠AOB=2∠AOC ,那么OC 是不是∠AOB 的角平分线?请画图表示(10分)
6、如图所示,∠AOC=90°,OB ⊥OD ,则与∠BOC 相等的角有谁?图中共有多少对互为余角请写出来。
(10分)
7、如图所示,∠AOB 是平角,OC 是射线,OD 和OE 分别是∠AOC ,∠BOC 的角平分线,你能求出∠DOE 的度数吗?(9分)
四、探究题:(8分)
1、当直线上标出一个点时可得 条射线, 条线段;
2、当直线上标出二个点时可得 条射线, 条线段;
3、当直线上标出三个点时可得 条射线, 条线段;
4、当直线上标出四个点时可得 条射线, 条线段;
你由以上画图可以猜想:当直线上标出个点时,可得 条射线, 条线段;
答 案
一、 1、D 2、C 3、A 4、C 5、C 6、C 7、A 8、C 二、 1、两点确定一条直线 。
2、①193°16′22″ 。
②26°23′5″ 。
3、是 。
4、5 。
5、北偏东65°,南偏西25°
6、50°。
7、相等。
8、三角形 梯形 五边形 三、 1、45°。
2、略。
3、45°。
4、5或2。
5、不一定是角平分线,如下图:
6、与∠BOC 相等角是∠AOE
互余的角有∠AOB 与∠BOC ∠COD 与∠BOC
∠AOE 与∠AOB ∠AOE 与∠COD
7、∠DOE=90°
四、1、2条,0条;2、4条,1条;3、6条,3条;4、8条,6条; 2n 条,
2
1
n(n-1).。