最新数学中考复习用资料最值最小值最短路线问题(中考热点专题新题型)汇总

合集下载

中考数学考点解读复习试题(求最短路径问题)

中考数学考点解读复习试题(求最短路径问题)

求最短路径问题最短路径问题在中考中出现的频率很高,这类问题一般与垂线段最短、两点之间线段最短关系密切.类型1 利用“垂线段最短”求最短路径问题如图所示,AB是一条河流,要铺设管道将河水引到C,D两个用水点,现有两种铺设管道的方案.方案一:分别过C,D作AB的垂线,垂足分别为E,F,沿CE,DF铺设管道;方案二:连接CD交AB于点P,沿PC、PD铺设管道.问:这两种铺设管道的方案中哪一种更节省材料,为什么?【思路点拨】方案一管道长为CE+DF,方案二管道长为PC+PD,利用垂线段最短即可比较出大小.【解答】按方案一铺设管道更节省材料.理由如下:∵CE⊥AB,DF⊥AB,而AB与CD不垂直,∴根据“垂线段最短”,可知DF<DP,CE<CP,∴CE+DF<CP+DP,∴沿CE、DF铺设管道更节省材料.本题易错误的利用两点之间线段最短解决,解答时需要准确识图,找到图形对应的知识点.1.(保定一模)如图,点A的坐标为(-1,0),点B(a,a),当线段AB最短时,点B的坐标为( )A.(0,0) B.(22,-22) C.(-22,-22) D.(-12,-12)2.(杭州模拟)在直角坐标系中,点P落在直线x-2y+6=0上,O为坐标原点,则|OP|的最小值为( )A.352B.3 5 C.655D.103.(内江)在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx-3k+4与⊙O交于B、C两点,则弦BC的长的最小值为________.4.(碑林区期中)如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.类型2 利用“两点之间线段最短”求最短路径问题(乐陵模拟)(1)如图1,直线同侧有两点A,B,在直线MN上求一点C,使它到A、B之和最小;(保留作图痕迹不写作法)(2)知识拓展:如图2,点P在∠AOB内部,试在OA、OB上分别找出两点E、F,使△PEF周长最短;(保留作图痕迹不写作法)(3)解决问题:①如图3,在五边形ABCDE中,在BC,DE上分别找一点M,N,使得△AMN周长最小;(保留作图痕迹不写作法)②若∠BAE=125°,∠B=∠E=90°,AB=BC,AE=DE,∠AMN+∠ANM的度数为________.【思路点拨】(1)根据两点之间线段最短,作A关于直线MN的对称点E,连接BE交直线MN 于C,即可解决;(2)作P关于OA、OB的对称点C、D,连接CD交OA、OB于E、F,此时△PEF周长有最小值;(3)①取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,PQ的长度即为△AMN的周长最小值;②根据三角形的内角和等于180°求出∠P+∠Q,再根据三角形的外角以及三角形内角和知识运用整体思想解决.【解答】(1)作A关于直线MN的对称点E,连接BE交直线MN于C,连接AC,BC,则此时C 点符合要求.图1 图2 图3(2)作图如图.(3)①作图如图.②∵∠BAE=125°,∴∠P+∠Q=180°-125°=55°.∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×55°=110°.“两点(直线同侧)一线型”在直线上求一点到两点的和最短时,利用轴对称的知识作一点关于直线的对称点,连接对称点与另一点与直线的交点就是所求的点;“一点两线型”求三角形周长最短问题,作点关于两直线的对称点,连接两个对称点与两直线分别有两个交点,顺次连接所给的点与两交点即可得三角形;“两点两线型”求四边形的周长最短类比“一点两线型”即可.1.(内江)如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE最小,则这个最小值为( )A. 3 B.2 3 C.2 6 D. 62.(遵义)如图,在四边形ABCD中,∠C=50°,∠B=∠D=90°,E、F分别是BC、DC上的点,当△AEF的周长最小时,∠EAF的度数为( )A.50°B.60° C.70° D.80°3.(攀枝花)如图,在边长为2的等边△ABC中,D为BC的中点,E是AC边上一点,则BE+DE 的最小值为________.4.(鄂州)如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN的周长取最小值时,四边形PMON的面积为________.5.(凉山)菱形ABCD 在平面直角坐标系中的位置如图所示,顶点B(2,0),∠DOB =60°,点P 是对角线OC 上一个动点,E(0,-1),当EP +BP 最短时,点P 的坐标为____________.6.(广元改编)如图,已知抛物线y =-1m (x +2)(x -m)(m >0)与x 轴相交于点A ,B ,与y 轴相交于点C ,且点A 在点B 的左侧.(1)若抛物线过点G(2,2),求实数m 的值;(2)在(1)的条件下,在抛物线的对称轴上找一点H ,使AH +CH 最小,并求出点H 的坐标.7.(成都改编)如图,一次函数y =-x +4的图象与反比例y =3x (k 为常数,且k ≠0)的图象交于A ,B 两点.在x 轴上找一点P ,使PA +PB 的值最小,求满足条件的点P 的坐标.8.如图所示,已知点A 是半圆上的三等分点,B 是AN ︵的中点,P 是直径MN 上的一动点,⊙O 的半径为1,请问:P 在MN 上什么位置时,AP +BP 的值最小?并给出AP +BP 的最小值.9.(达州)如图,在平面直角坐标系中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,∠AOC 的平分线交AB 于点D ,E 为BC 的中点,已知A(0,4)、C(5,0),二次函数y =45x 2+bx +c 的图象抛物线经过A ,C 两点. (1)求该二次函数的表达式;(2)F 、G 分别为x 轴,y 轴上的动点,顺次连接D 、E 、F 、G 构成四边形DEFG ,求四边形DEFG 周长的最小值;(3)抛物线上是否在点P ,使△ODP 的面积为12?若存在,求出点P 的坐标;若不存在,请说明理由.参考答案类型1 利用“垂线段最短”求最短路径问题 1.D 2.C3.24 提示:∵直线y =kx -3k +4必过点D(3,4), ∴当BC 过点D 且BC ⊥OD 时最小.∵点D 的坐标是(3,4),∴OD =5.∵OB =OA =13, ∴根据勾股定理可得BD =12.∴BC 的长的最小值为24.4.(1)∵两点之间线段最短,∴连接AD ,BC 交于H ,则H 为蓄水池位置,它到四个村庄距离之和最小.(2)过H 作HG ⊥EF ,垂足为G.则沿HG 开渠最短,根据垂线段最短.类型2 利用“两点之间线段最短”求最短路径问题1.B 2.D 3.7 提示:作B 关于AC 的对称点B ′,连接AD 、AB ′、BB ′、B ′D ,交AC 于E ,此时BE +ED =B ′E +ED =B ′D ,根据两点之间线段最短可知B ′D 就是BE +ED 的最小值,∵B 、B ′关于AC 对称,∴AC 、BB ′互相垂直平分.∴四边形ABCB ′是平行四边形.∵三角形ABC 是边长为2,∵D 为BC 的中点,∴AD ⊥BC.∴AD =3,BD =CD =1,BB ′=2AD =23,作B ′G ⊥BC 的延长线于G ,∴B ′G =AD =3,在Rt △B ′BG 中,BG =BB ′2-B ′G 2=(23)2-(3)2=3.∴DG =BG -BD =3-1=2.在Rt △B ′DG 中,B ′D =DG 2-B ′G 2=22+(3)2=7.故BE +ED 的最小值为7.4.363-545.(23-3,2-3)6.(1)抛物线过点G(2,2)时,-1m(2+2)(2-m)=2,即m =4.(2)∵m =4,∴y =-14(x +2)(x -4).令y =0,则-14(x +2)(x -4)=0,解得x 1=-2,x 2=4.∴A(-2,0),B(4,0).∴抛物线对称轴为直线x =-2+42=1.令x =0,则y =2,∴C(0,2).∵B 点与A 点关于对称轴对称,∴连接BC ,BC 与对称轴的交点便为所求点H.∵B(4,0),C(0,2),∴求得线段BC 所在直线为y =-12x +2.当x =1时,y =32,∴H(1,32).7.联立⎩⎨⎧y =-x +4,y =3x ,解得⎩⎨⎧x =1,y =3,或⎩⎨⎧x =3,y =1.∴A(1,3),B(3,1).B 点关于x 轴的对称点B ′坐标为(3,-1), 连接AB ′交x 轴于点P ′,连接BP ′.设直线AB ′为y =kx +b ,联立得⎩⎨⎧k +b =3,3k +b =-1.解得⎩⎨⎧k =-2,b =5.∴y =-2x +5.令y =0,得x =52.∴P ′(52,0).即满足条件的P 的坐标为(52,0).8.作A 关于MN 的对称点A ′,根据圆的对称性,则A ′必在圆上,连接BA ′交MN 于P ,连接PA ,则PA +PB 最小,此时PA +PB =PA ′+PB =A ′B.连接OA 、OA ′、OB ,∵AN ︵=13MN ︵,∴∠AON =∠A ′ON =60°.∵AB ︵=BN ︵, ∴∠BON =12∠AON =30°.∴∠A ′OB =90°.∴A ′B =OA ′2+OB 2=12+12=2,即AP +BP 的最小值是 2.9.(1)将A(0,4)、C(5,0)代入二次函数y =45x 2+bx +c ,得⎩⎨⎧20+5b +c =0,c =4,解得⎩⎨⎧b =-245,c =4. ∴二次函数的表达式y =45x 2-245x +4.(2)延长EC 至E ′,使E ′C =EC ,延长DA 至D ′,使D ′A =DA ,连接D ′E ′,交x 轴于F 点,交y 轴于G 点,连接DG ,EF ,DE ,GD =GD ′,EF =E ′F ,(DG +GF +EF +ED)最小=D ′E ′+DE , 由E 点坐标为(5,2),D(4,4),得D ′(-4,4),E ′(5,-2).由勾股定理, 得DE =22+12=5,D ′E ′=(5+4)2+(4+2)2=313,∴(DG +GF +EF +ED)最小=D ′E ′+DE =313+5,即四边形DEFG 周长的最小值为313+ 5. (3)如下图:OD =AO 2+AD 2=4 2. ∵S △ODP =12.∴点P 到OD 的距离=2S △OPDOD =2×1242=3 2.过点O 作OF ⊥OD ,取OF =32,过点F 作直线FG ∥OD ,交y 轴于G 点,交抛物线于点P 1,P 2,在Rt △OGF 中,OG =OF 2+FG 2=(32)2+(32)2=6.∴直线GF 的解析式为y =x -6.将y =x -6代入y =45x 2-245x +4得:x -6=45x 2-245x +4.解得x 1=29+418,x 2=29-418.将x 1,x 2的值代入y =x -6得:y 1=-19+418,y 2=-19-418. ∴点P 1(29-418,-19-418),P 2(29+418,-19+418). 如下图所示:过点O 作OF ⊥OD ,取OF =32,过点F 作直线FG ,交y 轴于G 点,交抛物线于P 3,P 4,在Rt △GFO 中,OG =OF 2+GF 2=6. ∴直线FG 的解析式为y =x +6.将y =x +6代入y =45x 2-245x +4得:x +6=45x 2-245x +4.解得x 1=29+ 1 0018,x 2=29- 1 0018.y 1=x 1+6=77+ 1 0018,y 2=x 2+6=77- 1 0018, ∴P 3(29- 1 0018,77- 1 0018),P 4(29+ 1 0018,77+ 1 0018).综上所述:点P 的坐标为(29-418,-19-418)或(29+418,-19+418)或(29- 1 0018,77- 1 0018) 或(29+ 1 0018,77+ 1 0018).。

中考专题复习——最短路径问题(有答案)

中考专题复习——最短路径问题(有答案)

B CD AL 中考专题复习——路径最短问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题; 线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。

(构建“对称模型”实现转化) 三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A 沿木块侧面爬到点B 处,则它爬行的最短路径是 。

②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。

例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。

②如图,直线L 同侧有两点A 、B ,已知A 、B 到直线L 的垂直距离分别为1和3,两点的水平距离为3,要在直线L 上找一个点P ,使PA+PB 的和最小。

请在图中找出点P 的位置,并计算PA+PB 的最小值。

③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km 和3Km ,张村与李庄的水平距离为3Km ,则所用水管最短长度为 。

四、练习题(巩固提高)张村李庄ABCD 图(2)EBDACP图(3)D OP(一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D 处,则蚂蚁爬行的最短路径是 。

2、现要在如图所示的圆柱体侧面A 点与B 点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm ,底面圆周长为16cm ,则所缠金丝带长度的最小值为 。

3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A 点爬到点B 处吃到食物,知圆柱体的高为5 cm ,底面圆的周长为24cm ,则蚂蚁爬行的最短路径为 。

4、正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,DN +MN的最小值为 。

第4题 第5题 第6题 第7题5、在菱形ABCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。

中考数学最短路径复习题

中考数学最短路径复习题

中考数学最短路径复习题一、选择题1. 在一个平面直角坐标系中,点A(1,1)和点B(5,5),点C(3,8),求从点A到点C的最短路径,如果只允许向上和向右移动,最短路径的长度是多少?A. 6B. 7C. 8D. 92. 一个城市地图上,从学校到图书馆有三条路,分别长3km、4km和5km。

如果需要找到最短的路线,应该选择哪一条?A. 第一条路B. 第二条路C. 第三条路D. 无法确定二、填空题3. 在一个迷宫中,从入口到出口有若干条路径,如果每条路径的长度为边长,且迷宫的边长为1,求从入口到出口的最短路径长度至少是多少?(假设迷宫为正方形网格,且入口和出口分别位于迷宫的对角线两端)4. 如果在一个平面上,有若干个点,每个点之间都可以通过直线相连,求这些点中任意两点之间的最短路径总和,这在图论中被称为什么问题?三、解答题5. 某工厂需要铺设一条从原料仓库到生产车间的最短路径,已知原料仓库和生产车间分别位于平面直角坐标系的点(2,3)和点(10,7)。

请计算出最短路径的长度。

6. 某城市有5个主要的交通节点,分别为A、B、C、D和E,它们之间的距离如下表所示:| 起点/终点 | A | B | C | D | E ||--||||||| A | 0 | 2 | 3 | 5 | 6 || B | 2 | 0 | 4 | 3 | 7 || C | 3 | 4 | 0 | 2 | 4 || D | 5 | 3 | 2 | 0 | 3 || E | 6 | 7 | 4 | 3 | 0 |请找出从A点出发,经过其他所有点恰好一次并返回A点的最短路径。

四、应用题7. 某城市计划在几个居民区之间建立最短的公共交通路线。

已知居民区之间的距离如下:- 居民区1到居民区2的距离是4km。

- 居民区1到居民区3的距离是6km。

- 居民区2到居民区3的距离是2km。

- 居民区2到居民区4的距离是3km。

- 居民区3到居民区4的距离是1km。

最新九年级数学必考要点分类汇编精华版最短路线问题

最新九年级数学必考要点分类汇编精华版最短路线问题

最新九年级数学必考要点分类汇编精华版最短路线问题最新九年级数学必考要点分类汇编精华版最短路线问题专题诠释:考查知识点----“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

解题总思路----找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

教学过程:⼀、数学模型 1、实际问题:如图,要在河边修建⼀个⽔泵站,分别向张村、李庄送⽔,修在河边什么地⽅可使所⽤的⽔管最短 2、数学问题:已知:直线l 和l 的同侧两点A 、B 。

求作:点C ,使C 在直线l 上,并且AC +CB 最⼩。

⼆、例题讲解例1、(湖北荆门)⼀次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4).(1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上⼀动点,求PC +PD 的最⼩值,并求取得最⼩值时P 点坐标.例2、问题探究(1)如图①,四边形ABCD 是正⽅形, 10AB cm =,E 为边BC 的中点,P 为BD 上的⼀个动点,求PC PE +的最⼩值;(2)如图②,若四边形ABCD 是菱形, 10AB cm =,45ABC ∠=°,E 为边BC 上的⼀个动点,P 为BD 上的⼀个动点,求PC PE +的最⼩值;问题解决(3)如图③,若四边形ABCD 是矩形, 10AB cm =,20BC cm =,E 为边BC 上的⼀个动点,P 为BD 上的⼀个动点,求PC PE +的最⼩值;图①图②图③例3、如图,在直⾓坐标系中,点A 的坐标为(-2,0),连结0A ,将线段OA 绕原点O 顺时针旋转120。

,得到线段OB. (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最⼩?若存在,求出点C 的坐标;若不存在,请说明理由.(注意:本题中的结果均保留根号)A DBADBCEP冲刺中考:1、(达州)在边长为2㎝的正⽅形ABCD 中,点Q 为BC 边的中点,点P 为对⾓线AC 上⼀动点,连接PB 、PQ ,则△PBQ 周长的最⼩值为____________㎝(结果不取近似值).2、(抚顺市)如图所⽰,正⽅形ABCD 的⾯积为12,ABE △是等边三⾓形,点E 在正⽅形ABCD 内,在对⾓线AC 上有⼀点P ,使PD PE +的和最⼩,则这个最⼩值为() A. B. C .3 D3、(鄂州)已知直⾓梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A +PD 取最⼩值时,△APD 中边AP 上的⾼为() A 、17172B 、17174 C 、 17178D 、34、如图,在锐⾓ABC △中,45AB BAC =∠=°,BAC ∠的平分线交BC 于点D M N ,、分别是AD 和AB 上的动点,则BM MN +的最⼩值是________.5、如图,在△ABC 中,AC=BC=2,∠ACB=90。

中考数学《最短路径问题1》专题复习

中考数学《最短路径问题1》专题复习

中考压轴题(4)最短路径问题1【典型例题】1.如图,点A、B分别在直线m的上方.(1)在直线m上找到点P,使得AP BP+最短.(要求:保留作图痕迹,不要求写作法)(2)在(1)的条件下,若点A、B到直线m的距离分别为3.5cm、8.5cm,且点B在点A的东北方向,则AP BP+的最短距离为______cm.2.如图,在45⨯的网格中,最小正方形的边长为1,A,B,C,D均为格点(最小正方形的顶点).(1)如图1,在网格中画出一个以AB为一边且与△ABC全等的格点三角形,△ABC的面积为.(2)如图2,在线段AB上画出一点P,使CP PD+最小,其最小值为__________.知识点思想方法步骤其他【对应练习】3.如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图)(1)画出格点△ABC顶点均在格点上关于直线DE对称的111CBA∆;(2)在DE上画出点P,使1PB PC+最小;(3)在DE上画出点Q,使1QB QC-最大4.如图,在旷野上,一个人骑着马从A地到B地,半路上他必须让马先到河岸l的P点去饮水,然后再让马到河岸m的Q点再次饮水,最后到达B点,他应该如何选择马饮水地点P、Q,才能使所走路程AP PQ QB++最短?(假设河岸l、m为直线)5.在桌面上放了一个正方体盒子,如图,一只蚂蚁在顶点A处,它要爬到顶点B处找食物,你能帮助蚂蚁设计一条最短的爬行路线吗?要是爬到顶点C呢?6.有一根底面周长为30cm,高2米的圆柱形枯木,一条长藤自根部缠绕向上,缠了五周刚好到达顶部,这条长藤最短有多长?7.一只蚂蚁从长为4cm、宽为3 cm,高是12 cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是多少?8.已知点P在∠MON内.(1)如图1,点P关于射线OM的对称点是G,点P关于射线ON的对称点是H,连接OG、OH、OP.①若∠MON=50°,则∠GOH=______°;②若OP=5,连接GH,请说明当∠MON 为°时,GH=10;(2)如图2,若∠MON=60°,A、B分别是射线OM、ON上的任意一点,当△PAB的周长最小时,求∠APB的度数.9.(源模:模型建立)白日登山望峰火,黄昏饮马傍交河.——《古从军行》唐李欣诗中隐含着一个有趣的数学问题,我们称之为“将军饮马”问题.关键是利用轴对称变换,把直线同侧两点的折线问题转化为直线两侧的线段问题,从而解决距高和最短的一类问题.“将军饮马”问题的数学模型如图所示:(新模1:模型应用)如图1,正方形ABCD的边长为3,点E在边AB上,且1BE=,F为对角线AC上一动点,欲使BFE△周长最小.(1)在图中确定点F的位置(要有必要的画图痕迹,不用写画法);(2)BFE△周长的最小值为______.(新模2:模型变式)(3)如图2,在矩形ABCD中,5AB=,4=AD,在矩形ABCD内部有一动点P,满足14PAB ABCDS S=矩形△,则点P到A,B两点的距离和PA PB+的最小值为.(超模:模型拓广)(4)如图3,90ABD BDE∠=∠=︒,2AB=,3BD DE==.请构造合理的数学模型,并借助模()22439x x+-+()0x>的最小值.。

初中数学中考复习专题 最短路径问题 (24张PPT)

初中数学中考复习专题 最短路径问题 (24张PPT)

【例题分层探究】 问题 1:边 CD 是定值,此问题可转化为计算 CE+DE 的最小值问题. 问题 2:线段 CD,EF 均为定值,此问题可借助轴对称 求最短路径的方法计算出 DE+CF 的最小值.
初中数学中考复习专题 最短路径问题 (24张PPT)
初中数学中考复习专题 最短路径问题 (24张PPT) 初中数学中考复习专题 最短路径问题 (24张PPT)
∵C(0,-5) ∴C′(0,5) ∴直线C′D为y=-7x+5
D(2,-9)
ME
x
AO
B
∴y=0 , 即-7x+5=0 ∴m=5 ∕ 7
∴x=5 ∕ 7
C D
初中数学中考复习专题 最短路径问题 (24张PPT)
初中数学中考复习专题 最短路径问题 (24张PPT)
中考链接
24 如图 Z8-3,在平面直角坐标系中,矩形 OACB 的
A
B l
在直线l上求一 点P,使 PA+PB值最小
作B关于l 的对称点 B',连A B'与l交 点即为P
图形
原理
两点之间线段 最短
PA+PB最小值 为AB
原理
两点之间线段 最短
PA+PB最小值 为AB
问题3
作法
l1
P
分别作点P关于
l2
两直线的对称
在直线l1、l2上 点P'和P",连 分别求点M P'P"与两直线
AM+MN+NB的 值最小.
作点A关于l2的 对称点A',作 点B关于l1的对 称点B',连A 'B'交l2于M
,交l1于N.
图形
原理
两点之间线段 最短.
AM+MN+NB 的最小值为线 段A'B'的

数学中考复习用资料最值最小值最短路线问题中考热点专题新题型

数学中考复习用资料最值最小值最短路线问题中考热点专题新题型

OxyBD AC P y OxP DB(40)A ,(02)C , 最短路线问题1、在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值). 2、如图所示,正方形ABCD 的面积为12,ABE △是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD PE +的和最小,则这个最小值为( )A .3.26C .3 D 63、已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当P A +PD 取最小值时,△APD 中边AP 上的高为( )A 、17172B 、17174C 、17178D 、3 (动点,作A 关于BC 的对称点A ',连A 'D 交BC 于P ,涉及勾股定理,相似)4、已知等腰三角形ABC 的两个顶点分别是A(0,1)、B(0,3),第三个顶点C 在x 轴的正半轴上.关于y 轴对称的抛物线y =ax 2+bx +c 经过A 、D(3,-2)、P 三点,且点P 关于直线AC 的对称点在x 轴上. (1)求直线BC 的解析式;(2)求抛物线y =ax 2+bx +c 的解析式及点P 的坐标; (3)设M 是y 轴上的一个动点,求PM +CM 的取值范围.5、如图,在矩形OABC 中,已知A 、C 两点的坐标分别为(40)(02)A C ,、,,D 为OA 的中点.设点P 是AOC ∠平分线上的一个动点(不与点O 重合). (1)试证明:无论点P 运动到何处,PC 总造桥与PD 相等;(2)当点P 运动到与点B 的距离最小时,试确定过O P D 、、三点的抛物线的解析式;(3)设点E 是(2)中所确定抛物线的顶点,当点P 运动到何处时,PDE △的周长最小?求出此时点P 的坐标和PDE △的周长;(4)设点N 是矩形OABC 的对称中心,是否存在点P ,使90CPN ∠=°?若存在,请直接写出点P 的坐标.6、一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 上一动点,AD EP B CA BO D xy求PC +PD 的最小值,并求取得最小值时P 点坐标.7、已知:抛物线的对称轴为与x 轴交于A B ,两点,与y 轴交于点C ,其中()30A -,、()02C -,.(1)求这条抛物线的函数表达式. (2)已知在对称轴上存在一点P ,使得PBC △的周长最小.请求出点P 的坐标.(3)若点D 是线段OC 上的一个动点(不与点O 、点C 重合).过点D 作DE PC ∥交x 轴于点E .连接PD 、PE .设CD 的长为m ,PDE △的面积为S .求S 与m 之间的函数关系式.试说明S 是否存在最大值,若存在,请求出最大值;若不存在,请说明理由. 8、、如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB最短,求出点Q 的坐标; (2) 平移抛物线2y ax =,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.① 当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由. 提示:第(2)问,是“饮马问题”的变式运用,涉及到抛物线左移。

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型复习

初中数学《最短路径问题》典型题型知识点:“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。

“饮马问题”,“造桥选址问题”。

考的较多的还是“饮马问题”,出题背景变式有角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。

解题总思路:找点关于线的对称点实现“折”转“直”,近两年出现“三折线”转“直”等变式问题考查。

一、两点在一条直线异侧例:已知:如图,A ,B 在直线L 的两侧,在L 上求一点P ,使得PA+PB 最小。

解:连接AB,线段AB 与直线L 的交点P ,就是所求。

(根据:两点之间线段最短.)二、 两点在一条直线同侧例:图所示,要在街道旁修建一个奶站,向居民区A 、B 提供牛奶,奶站应建在什么地方,才能使从A 、B 到它的距离之和最短.解:只有A 、C 、B 在一直线上时,才能使AC +BC 最小.作点A 关于直线“街道”的对称点A ′,然后连接A ′B ,交“街道”于点C ,则点C 就是所求的点.三、一点在两相交直线内部例:已知:如图A 是锐角∠MON 内部任意一点,在∠MON 的两边OM ,ON 上各取一点B ,C ,组成三角形,使三角形周长最小.解:分别作点A 关于OM ,ON 的对称点A ′,A ″;连接A ′,A ″,分别交OM ,ON 于点B 、点C ,则点B 、点C 即为所求分析:当AB 、BC 和AC 三条边的长度恰好能够体现在一条直线上时,三角形的周长最小例:如图,A.B 两地在一条河的两岸,现要在河上建一座桥MN ,桥造在何处才能使从A 到B 的路径AMNB 最短?(假设河的两岸是平行的直线,桥要与河垂直)解:1.将点B 沿垂直与河岸的方向平移一个河宽到E , 2.连接AE 交河对岸与点M,则点M 为建桥的位置,MN 为所建的桥。

A· BMNE证明:由平移的性质,得 BN ∥EM 且BN=EM, MN=CD, BD ∥CE, BD=CE, 所以A.B 两地的距:AM+MN+BN=AM+MN+EM=AE+MN, 若桥的位置建在CD 处,连接AC.CD.DB.CE, 则AB 两地的距离为:AC+CD+DB=AC+CD+CE=AC+CE+MN,在△ACE 中,∵AC+CE >AE, ∴AC+CE+MN >AE+MN,即AC+CD+DB >AM+MN+BN 所以桥的位置建在CD 处,AB 两地的路程最短。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年数学中考复习用资料最值最小值最短路线问题(中考热点专题新题型)最短路线问题1、在边长为2㎝的正方形ABCD 中,点Q 为BC 边的中点,点P 为对角线AC 上一动点,连接PB 、PQ ,则△PBQ 周长的最小值为____________㎝(结果不取近似值).2、如图所示,正方形«Skip Record If...»的面积为12,«Skip Record If...»是等边三角形,点«Skip Record If...»在正方形«Skip Record If...»内,在对角线«Skip Record If...»上有一点«Skip Record If...»,使«Skip Record If...»的和最小,则这个最小值为( ) A .«Skip Record If...» B .«Skip Record If...» C .3 D .«Skip Record If...» 3、已知直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD =2,BC =DC =5,点P 在BC 上移动,则当PA +PD 取最小值时,△APD 中边AP 上的高为( ) A 、«Skip Record If...» B 、«Skip Record If...»C 、 «Skip Record If...»D 、3(动点,作A 关于BC 的对称点A ',连A 'D 交BC 于P ,涉及勾股定理,相似) 4、已知等腰三角形ABC 的两个顶点分别是A(0,1)、B(0,3),第三个顶点C 在x 轴的正半轴上.关于y 轴对称的抛物线y =ax 2+bx +c 经过A 、D(3,-2)、P 三点,且点P 关于直线AC 的对称点在x 轴上. (1)求直线BC 的解析式;(2)求抛物线y =ax 2+bx +c 的解析式及点P 的坐标; (3)设M 是y 轴上的一个动点,求PM +CM 的取值范围.A DE PBCA B ODxy第6题5、如图,在矩形«Skip Record If...»中,已知«Skip Record If...»、«Skip Record If...»两点的坐标分别为«Skip Record If...»,«Skip Record If...»为«Skip Record If...»的中点.设点«Skip Record If...»是«Skip Record If...»平分线上的一个动点(不与点«Skip Record If...»重合).(1)试证明:无论点«Skip Record If...»运动到何处,«SkipRecord If...»总造桥与«Skip Record If...»相等;(2)当点«Skip Record If...»运动到与点«Skip Record If...»的距离最小时,试确定过«Skip Record If...»三点的抛物线的解析式;(3)设点«Skip Record If...»是(2)中所确定抛物线的顶点,当点«Skip Record If...»运动到何处时,«Skip Record If...»的周长最小?求出此时点«Skip Record If...»的坐标和«Skip Record If...»的周长;(4)设点«Skip Record If...»是矩形«Skip Record If...»的对称中心,是否存在点«Skip Record If...»,使«Skip Record If...»?若存在,请直接写出点«Skip Record If...»的坐标.6、一次函数«Skip Record If...»的图象与x 、y 轴分别交于点A (2,0),B (0,4). (1)求该函数的解析式;(2)O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB 求PC +PD 的最小值,并求取得最小值时P 点坐标.7、已知:抛物线的对称轴为与«Skip Record If...»轴交于两点,与«Skip Record If...»轴交于点«Skip Record If...»其中«Skip Record If...»、«Skip Record If...»(1)求这条抛物线的函数表达式. (2)已知在对称轴上存在一点P ,使得«Skip Record If...»的周长最小.请求出点P 的坐标.(3)若点«Skip Record If...»是线段«Skip Record If...»上的一个动点(不与点O 、点C 重合).过点D 作«Skip Record If...»交«Skip Record If...»轴于点«Skip Record If...»连接«Skip Record If...»、«Skip Record If...».设«Skip Record If...»的长为«Skip Record If...»,«Skip Record If...»的面积为«Skip Record If...».求«Skip Record If...»与«Skip Record If...»之间的函数关系式.试说明«Skip Record If...»是否存在最大值,若存在,请求出最大值;若不存在,请说明理由. 8、、如图,已知点A (-4,8)和点B (2,n )在抛物线2y ax =上.(1) 求a 的值及点B 关于x 轴对称点P 的坐标,并在x 轴上找一点Q ,使得AQ +QB 最短,求出点Q 的坐标;(2) 平移抛物线2y ax =,记平移后点A 的对应点为A ′,点B 的对应点为B ′,点C (-2,0)和点D (-4,0)是x 轴上的两个定点.① 当抛物线向左平移到某个位置时,A ′C +CB ′ 最短,求此时抛物线的函数解析式;② 当抛物线向左或向右平移时,是否存在某个位置,使四边形A ′B ′CD 的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.提示:第(2)问,是“饮马问题”的变式运用,涉及到抛物线左移。

答案见参考图。

① 方法一,A ′关于x 轴对称点A 〞,要使 A ′C+CB ′最短,点C 应在直线A 〞B ′上;方法二,由(1)知,此时事实上,点Q 移到点C 位置,求CQ=14/5,即抛物线左移14/5单位; ②设抛物线左移b 个单位,则A '(-4-b,8)、B '(2-b,2)。

∵CD=2,∴B '左移2个单位得到B ″(-b,2)位置,要使A ′D+C B '最短,只要A ′D+DB ″最短。

则只有点D 在直线 A ″B ″上。

9、如图,在平面直角坐标系«Skip Record If...»中,△ABC 三个顶点的坐标分别为«Skip Record If...»,«Skip Record If...»,«Skip Record If...»,延长AC 到点D,使CD=«Skip Record If...»,过点D 作DE ∥AB 交BC 的延长线于点E.(1)求D 点的坐标;(2)作C 点关于直线DE 的对称点F,分别连结DF 、EF ,若过B 点的直线«Skip Record If...»将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G 为y 轴上一点,点P 从直线«Skip Record If...»与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点,若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试4 x2 2 A ′8-2 O -2 -4 y 6 B ′ CD -4 4 A ′′4 x2 2A ′8 -2 O -2 -4 y6 B ′CD -4 4 A ′′B ′′确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短。

(要求:简述确定G 点位置的方法,但不要求证明)提示:第(2)问,平分周长时,直线过菱形的中心;第(3)问,“确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短”转化为点G到A的距离加G到(2)中直线的距离和最小是“饮马问题”的变式运用;发现(2)中直线与x轴夹角为60°很关键.10、恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷«Skip RecordIf...»和世界级自然保护区星斗山«Skip Record If...»位于笔直的沪渝高速公路«Skip Record If...»同侧,«Skip Record If...»、«Skip Record If...»到直线«Skip Record If...»的距离分别为«Skip Record If...»和«Skip Record If...»,要在沪渝高速公路旁修建一服务区«Skip Record If...»,向«Skip Record If...»、«Skip Record If...»两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(«Skip Record If...»与直线«Skip Record If...»垂直,垂足为«Skip Record If...»),«Skip Record If...»到«Skip Record If...»、«Skip Record If...»的距离之和«Skip Record If...»,图(2)是方案二的示意图(点«Skip Record If...»关于直线«Skip Record If...»的对称点是«Skip Record If...»,连接«Skip Record If...»交直线«Skip Record If...»于点«Skip Record If...»),«Skip Record If...»到«Skip Record If...»、«Skip Record If...»的距离之和«Skip Record If...». (1)求«Skip Record If...»、«Skip Record If...»,并比较它们的大小; (2)请你说明«Skip Record If...»的值为最小; (3)拟建的恩施到张家界高速公路«Skip Record If...»与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,«Skip Record If...»到直线«Skip Record If...»的距离为«Skip Record If...»,请你在«Skip Record If...»旁和«Skip Record If...»旁各修建一服务区«Skip Record If...»、«Skip Record If...»,使«Skip Record If...»、«Skip Record If...»、«Skip Record If...»、«Skip Record If...»组成的四边形的周长最小.并求出这个最小值. 提示:涉及勾股定理、点对称、设计方案。

相关文档
最新文档