中考数学复习专题13讲座

合集下载

2020年中考数学总复习方法论与解题技巧十三大专题讲座(完整版)

2020年中考数学总复习方法论与解题技巧十三大专题讲座(完整版)

范文2020年中考数学总复习方法论与解题技巧十三大1/ 7专题讲座(完整版)-1- 策略. 具体求解时,一是从题干出发考虑,探求结果;二2020 年中考数学专题讲座一:选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,2019 年各地命题设置上,选择题的数目稳定在 8~14 题,这说明选择题有它不可替是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效. 三、中考典例剖析考点一:直接法代的重要性. 从题设条件出发,通过正确的运算、推理或判断,直选择题具有题目小巧,答案简明;适应性强,解法灵活;接得出结论再与选择支对照,从而作出选择的一种方法。

概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知运用此种方法解题需要扎实的数学基础. 识,有利于强化分析判断能力和解决实际问题的能力的培养. 二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题例 1 (2019?白银)方程 A.x=±1 B.的解是() x=1 C.小做,小题巧做,切忌小题大做. 解选择题的基本思想是既要看到各类常规题的解题思想, x=﹣1 D. x=0 思路分析:观察可得最简公分母是(x+1),方程两边乘但更应看到选择题的特殊性,数学选择题的四个选择支中有且最简公分母,可以把分式方程转化为整式方程求解.仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、解:方程的两边同乘(x+1),得 x2﹣1=0,即(x+1)(x﹣1)=0,巧妙、快速地选择解法,以便快速智取,这是解选择题的基本解得:x1=﹣1,x2=1.3/ 7检验:把 x=﹣1 代入(x+1)=0,即 x=﹣1 不是原分式方程的解;把 x=1 代入(x+1)=2≠0,即 x=1 是原分式方程的解.则原方程的解为:x=1.故选 B.点评:此题考查了分式方程的求解方法.此题难度不大, -2- 取得愈简单、愈特殊愈好. 例 2 (2019?常州)已知 a、b、c、d 都是正实数,且 a c , bd 给出下列四个不等式:① a c ;② c a ;③ d b ;ab cd cd ab cd ab ④bd 。

【初中数学讲座】关山初度尘未洗,策马扬鞭再奋蹄——优化复习策略,提升教学效果讲稿

【初中数学讲座】关山初度尘未洗,策马扬鞭再奋蹄——优化复习策略,提升教学效果讲稿

关山初度尘未洗,策马扬鞭再奋蹄——优化复习策略,提升教学效果讲稿各位老师同仁,大家上午好!首先很感谢吴老师给我这个机会,进修学习给我提供这个平台,让我可以向大家学习,一起交流我们学校去年中考前的一些的措施和方法。

说实话星期一上午刚接到这个任务的时候我很忐忑,觉得自己无法胜任,在座的很多老师资历比我高,专业水平比我深,我没有勇气站在台上胡言乱语。

让我跟大家交流一下我们学校的一些做法,或许对大家会有帮助。

所以我今天斗胆在这里班门弄斧,由于时间仓促,这一周里学校事多课多,准备很不充分。

讲的不好的地方请大家海涵,讲的不对的地方请大家指正,谢谢大家!下面通过一个短视频开始我今天的话题。

我想这是多数老师的烦恼和困惑。

我们很卖力的教,恨不得使出浑身解数,只希望学生能如我们所愿掌握该掌握的知识,考出我们期待的成绩,然而理想很丰满,现实很骨感!都说教材是训练思维的重要载体,课堂是培养思维能力的主渠道。

然而无计可施,因为我们的现状是:学生学习缺乏兴趣和动力,课堂上学生睡觉、抄袭作业、做小动作、开小差,无精打采,完全找不到毕业班的紧张气氛;作业更是字迹潦草、错误连篇。

面对这样的一群学生我们不可避免的要接受全县倒二、倒三的残酷现实。

那么我们应该怎么办呢,“雄关漫道真如铁,而今迈步从头越”正如毛泽东的这句诗句,不管为了学生还是自己或是学校,我们必须正视现状并努力改变现状。

所以我们备课组四个成员开始撸起袖子埋头苦干。

章建跃博士认为,“三个理解”是教师专业发展的三大基石,教学质量的根本保证:理解数学----提高教学质量的前提,理解学生-----实现有效教学的基础,理解教学-----实施有效教学的关键。

所以我们首先必须理解学生。

一、分层教学前苏联赞科夫所说:“要求一律,就会压制个性,从而也就压制了学生的精神力量。

”当代世界著名心理学家和教育家霍华德•加德纳认为,每个人都或多或少具有8种智力,只是其组合和发挥程度不同。

著名心理学家奥苏泊尔曾提出成功的驱动力有三部分:一是认识内驱力,即获得知识解决问题为目的的内驱力;二是自我提高内驱力,即个人通过自己胜任能力和工作成就的提高来赢得相应的地位和自尊心的内驱力;三是附属内驱力,即以获得长者或集体的赞许为目的的内驱力。

精品 九年级数学中考数学一轮复习第13课 解直角三角形

精品 九年级数学中考数学一轮复习第13课 解直角三角形

第13课 解直角三角形=========⎪⎪⎩⎪⎪⎨⎧<<⎪⎪⎩⎪⎪⎨⎧<<=∠=∠=∠000000000000060tan ;45tan ;30tan 60cos ;45cos ;30cos 60sin ;45sin ;30sin :)900()900(tan ,cos ,sin 特殊三角函数值平方关系:正切:余弦:正弦::取值范围越大,正切值正切:越大,余弦值余弦:越大,正弦值正弦::增减性αααααA A A中考真题练习1.在Rt △ABC 中,∠C=900,若sinA=513,则cosA 的值为( ) A.512B.813C.23D.12132.式子2000)160(tan 45tan 30cos 2---的值是( ) A.232-B.0C.32D.23.在△ABC 中,若0)21(cos 21sin 2=-+-B A ,则∠C 的度数是( ) A.30° B.45° C.60° D.90° 4.如图,在△ABC 中,∠C=900,AB=5,BC=3,则sinA 的值是()A.34B.43C.35 D.455.如图,在直角坐标系中,P 是第一象限内的点,其坐标是(3,m ),且OP 与x 轴正半轴的夹角α的正切值是错误!未找到引用源。

,则错误!未找到引用源。

的值是( )A.45 B.错误!未找到引用源。

C.35D.错误!未找到引用源。

6.如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( ) A.23B.32C.21313 D.31313第6题图 第7题图 第8题图7.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为a,那么滑梯长l 为( )A.h sina B.h tana C.h cosaD.h ·sina 8.如图,在□ABCD 中,对角线AC 、BD 相交成的锐角为α,若AC=a ,BD=b ,则□ABCD 的面积是( ) A.αsin 21ab B.αsin ab C.αcos ab D.αcos 21ab 9.在△ABC 中,AB=AC=5,sin ∠ABC=0.8,则BC=10.如图,某山坡的坡面AB=200米,坡角∠BAC=300,则该山坡的高BC 的长为 米.第10题图 第11题图 第12题图 11.如图,在小山的东侧A 点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成750角的方向飞行,25分钟后到达C 处,此时热气球上的人测得小山西侧B 点的俯角为300,则小山东西两侧A 、B 两点间的距离为 米.12.如图,在高度是21米的小山A 处测得建筑物CD 顶部C 处的仰角为300,底部D 处的俯角为何450,则这个建筑物的高度CD= 米(结果可保留根号)13.如图,在Rt △ABC 中,∠ACB=900,D 是AB 的中点,过D 点作AB 的垂线交AC 于点E,BC=6,sinA=35,则DE= .第13题图第14题图14.如图,点E(0,4),O(0,0),C(5,0)在⊙A上,BE是⊙A上的一条弦.则tan∠OBE=________.16.某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为600,在教学楼三楼D处测得旗杆顶部的仰角为300,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB的高度为米.第16题图第17题图第18题图17.如图,某小岛受到了污染,污染范围可以大致看成是以点O为圆心,AD长为直径的圆形区域,为了测量受污染的圆形区域的直径,在对应⊙O的切线BD(点D为切点)上选择相距300米的B、C两点,分别测得∠ABD=300,∠ACD=600,则直径AD= 米.18.如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC,若BD=8,AC=6,∠BOC=1200,则四边形ABCD 的面积为.(结果保留根号)19.如图,是一张宽m的矩形台球桌ABCD,一球从点M(点M在长边CD上)出发沿虚线MN射向边BC,然后反弹到边AB上的P点.如果MC n=,CMNα∠=.那么P点与B点的距离为 .第19题图第20题图20.如图,正方向ABCD的边长为3cm,E为CD边上一点,∠DAE=30°,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q.若PQ=AE,则AP等于cm.21.已知α是锐角,且sin(α+150)=32.计算1184cos( 3.14)tan3απα-⎛⎫---++ ⎪⎝⎭的值.22.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=450,sinB=13,AD=1.(1)求BC的长;(2)求tan∠DAE的值.23.如图,在一次数学课外活动中,小明同学在点P 处测得教学楼A 位于北偏东60°方向,办公楼B 位于南偏东45°方向.小明沿正东方向前进60米到达C 处,此时测得教学楼A 恰好位于正北方向,办公楼B 正好位于正南方向.求教学楼A 与办公楼B 之间的距离.24.中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=300,∠CBD=600.(1)求AB 的长; (2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.25.如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为600.沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为450,已知山坡AB 的坡度3:1=i ,AB=10米,AE=15米.(3:1=i 是指坡面的铅直高度BH 与水平宽度AH 的比) (1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD 的高度.26.如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A、B、C在同一平面上).求这个标志性建筑物底部A到岸边BC的最短距离.27.如图,一只猫头鹰蹲在一棵树AC的B(点B在AC上)处,发现一只老鼠躲进短墙DF的另一侧,猫头鹰的视线被短墙遮住,为了寻找这只老鼠,它又飞至树顶C处,已知短墙高DF=4米,短墙底部D与树的底部A的距离为2.7米,猫头鹰从C点观测F点的俯角为530,老鼠躲藏处M(点M在DE上)距D点3米.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)(1)猫头鹰飞至C处后,能否看到这只老鼠?为什么?(2)要捕捉到这只老鼠,猫头鹰至少要飞多少米?28.如图,AC为⊙O的直径且PA⊥AC,BC是⊙O的一条弦,直线PB交直线AC于点D,23 DB DCDP DO==.(1)求证:直线PB是⊙O的切线;(2)求cos∠BCA的值.29.如图,在同一平面内,两条平行高速公路l1和l2间有一条“Z”型道路连通,其中AB段与高速公路l1成300角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速公路间的距离.30.图①、②分别是某种型号跑步机的实物图与示意图,已知踏板CD长为1.6m,CD与地面DE的夹角∠CDE为120,支架AC长为0.8m,∠ACD为800,求跑步机手柄的一端A的高度h(精确到0.1m).(参考数据:sin120=cos780≈0.21,sin680=cos220≈0.93,tan680≈2.48)31.解放桥是天津市的标志性建筑之一,是一座全钢结构的部分可开启的桥梁.(1)如图①,已知解放桥可开启部分的桥面的跨度AB等于47m,从AB的中点C处开启,则AC开启至A/C/的位置时,A/C/的长为m;(2)如图②,某校数学兴趣小组要测量解放桥的全长PQ,在观景平台M处测得∠PMQ=540,沿河岸MQ前行,在观景平台N处测得∠PNQ=730,已知PQ⊥MQ,MN=40m,求解放桥的全长PQ(tan54°≈1.4,tan73°≈3.3,结果保留整数).32.如图,某校教学楼的后面紧邻着一个土坡,坡上面是一块平地,BC∥AD,斜坡AB的长为22 m,坡角∠BAD=680,为了防止山体滑坡,保障安全,学校决定对该土坡进行改造,经地质人员勘测,当坡角不超过500时,可确保山体不滑坡.(1)求改造前坡顶与地面的距离;(2)为确保安全,学校计划改造时保持坡脚A不动,坡顶B沿BC改到F点处,则BF至少是多少米?(保留一位小数,参考数据:sin680≈0.9272,cos 680≈0.3746,tan 680≈2.4751,sin500≈0.7660,cos500≈0.6428,tan500≈1.1918)第13课解直角三角形测试题日期:月日满分:100分时间:20分钟姓名:得分:1.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,2C.1,1,3D.1,2,32.在Rt△ACB中,∠C=900,AB=10,sinA=,cosA=,tanA=,则BC的长为()A.6B.7.5C.8D.12.53.点M (-sin600,cosn600)关于x 轴对称的点的坐标是( )A .(32,12) B .(32-,12-) C .(32-,12) D .(12-,32-) 4.如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则tan α等于( ) A.513B.1213C.512D.125第4题图 第5题图 第6题图5.如图,在△ABC 中,∠C=900,AD 是BC 边上的中线,BD=4,52=AD ,则tan ∠CAD 的值是( ) A.2B.2C.3D.56.如图,A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC /B /,则tanB /的值为( ) A.12B.13C.14D.247.如图是拦水坝的横断面,斜坡AB 的水平宽度为12米,斜面坡度为1:2,则斜坡AB 的长为( ) A.34米B.56米C.512米D.24米8.如图,在矩形ABCD 中,点E 在AB 边上,沿CE 折叠矩形ABCD,使点B 落在AD 边上的点F 处,若AB=4,BC=5,则tan ∠AFE 的值为( ) A.43 B.35 C.34 D.459.△ABC 中,∠C=900,AB=8,cosA=43,则BC 的长 10.若a=3-tan600,则196)121(2-+-÷--a a a a =11.如图,在Rt △ABC 中,∠C=900,∠B=370,BC=32,则AC= .(sin370≈0.60,cos370≈0.80,tan370≈0.75)第11题图第12题图第13题图第14题图12.如图,△ABC的顶点都在方格纸的格点上,则sinA=_____13.如图,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为米(用含α的代数式表示).2,则AB的长为.14.如图,在△ABC中,∠A=300,∠B=450,AC=315.如图,从A地到B地的公路需经过C地,图中AC=10km,∠CAB=250,∠CBA=370,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin250≈0.42,cos250≈0.91,sin370≈0.60,tan370≈0.75)16.如图,在Rt△ABC中,∠C=900,∠A的平分线交BC于点E,EF⊥AB于点F,点F恰好是AB的一个三等分点(AF>BF).(1)求证:△ACE≌△AFE;(2)求tan∠CAE的值.17.如图,某数学兴趣小组想测量一棵树CD的高度,他们先在点A处测得树顶C的仰角为300,然后沿AD 方向前行10m,到达B点,在B处测得树顶C的仰角高度为600(A、B、D三点在同一直线上).请你根据他们测量数据计算这棵树CD的高度.。

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

2024年中考数学复习专题课件(共30张PPT)一元一次不等式(组)及其应用

解:设普通水稻的亩产量是 x kg,则杂交水稻的亩产量是 2x kg,依题 意得 7 200 9 600
x - 2x =4,解得 x=600, 经检验,x=600 是原分式方程的解,且符合题意,则 2x=2×600=1 200(kg). 答:普通水稻的亩产量是 600 kg,杂交水稻的亩产量是 1 200 kg.
__00__.
6.[2023·贵州第 17(2)题 6 分]已知 A=a-1,B=-a+3.若 A>B,求 a 的取值范围. 解:由 A>B 得 a-1>-a+3, 解得 a>2, 即 a 的取值范围为 a>2.
7.[2021·贵阳第 17(1)题 6 分]有三个不等式 2x+3<-1,-5x>15, 3(x-1)>6,请在其中任选两个不等式, 组成一个不等式组,并求出它 的解集.
4.风陵渡黄河公路大桥是连接山西、陕西、河南三省的交通要塞 ,该 大桥限重标志牌显示,载重后总质量超过 30 t 的车辆禁止通行,现有一 辆自重 8 t 的卡车,要运输若干套某种设备,每套设备由 1 个 A 部件和 3 个 B 部件组成,这种设备必须成套运输,已知 1 个 A 部件和 2 个 B 部件 的总质量为 2.8 t,2 个 A 部件和 3 个 B 部件的质量相等. (1)求 1 个 A 部件和 1 个 B 部件的质量各是多少; (2)卡车一次最多可运输多少套这种设备通过此大桥?
解:(1)设出售的竹篮 x 个,陶罐 y 个,依题意有 5x+12y=61, x=5, 6x+10y=60,解得y=3. 答:小钢出售的竹篮 5 个,陶罐 3 个.
(2)设购买鲜花 a 束,依题意有 0<61-5a≤20, 解得 8.2≤a<12.2, ∵a 为整数, ∴共有 4 种购买方案, 方案一:购买鲜花 9 束; 方案二:购买鲜花 10 束; 方案三:购买鲜花 11 束; 方案四:购买鲜花 12 束.

中考数学备考策略和技巧讲座

中考数学备考策略和技巧讲座

中考数学备考策略和技巧讲座一、讲座的意义中考数学可太重要啦,就像通往美好未来的一扇大门的钥匙。

数学成绩好,在中考里那就是超级加分项。

这个讲座就是来帮大家把这把钥匙磨得更锋利的。

二、备考策略1. 基础知识要打牢中考数学的基础分可不少呢。

那些定理、公式,一定要像背自己的名字一样熟练。

比如说一元二次方程的求根公式,这是必须要烂熟于心的。

可不能在考试的时候还在那想公式是啥,那时间可就不够用啦。

2. 分板块复习几何、代数、函数这些板块,要一个一个地攻克。

几何就多画图,把那些三角形、四边形的性质和定理都用在图上。

代数就多做计算练习,提高计算的准确性和速度。

函数的话,要理解函数的概念、图像和性质,这对解题超级有帮助。

3. 整理错题把平时做练习、模拟考试的错题都整理出来。

看看自己是哪里出了问题,是概念没理解,还是计算失误,或者是解题思路不对。

针对这些问题,有针对性地进行复习。

三、技巧方面1. 考试时间分配中考数学考试时间有限,要合理分配。

简单的题目要快速做完,把更多的时间留给那些比较难的题目。

比如说选择题和填空题,尽量在较短的时间内完成,为后面的大题争取时间。

2. 巧用草稿纸草稿纸可不是乱写乱画的地方。

要把草稿纸划分好区域,每一道题的计算过程都写清楚。

这样既方便检查,又能避免计算混乱。

3. 解题思路遇到难题不要慌。

可以从题目中的已知条件入手,一步一步地推导。

有时候,换个角度思考问题,比如从结论往回推,可能就会找到解题的思路。

四、心态调整备考的时候压力肯定大,但是要保持积极的心态。

相信自己的能力,不要被一时的挫折打败。

考试的时候更是要放松,就把它当成平时的一次练习,这样才能发挥出自己的最佳水平。

中考数学备考策略之数学冲刺复习讲座

中考数学备考策略之数学冲刺复习讲座

y
C
BG
F
P
O
EA
x
图9
无锡
(2)若将(1)中的“正方形 ABCD”改为“正三角形ABC” (如图2),N是∠ACP的平分线 上一点,则当∠AMN=60°时,结 论AM=MN是否还成立?请说明 B 理由.
(3)若将(1)中的“正方形
ABCD”改为“正n边形
ABCD……X”,请你作出猜想:
当∠AMN=
2 bd
D
A
同理可得D点的纵坐标是 2 . O A′ D′
∴AB中点D的坐标为( a c ,b d ).
2
2
B B′ x
●归纳 无论线段AB处于直角坐标系中的哪个
位置,当其端点坐标为A(a,b),B(c,d),
AB中点为D(x,y)
bd
时,x=___a_2_c____,
y=_____2______.(不必证明)
论正方形A1B1C1O绕点O怎样转动,两 个正方形重叠部分的面积,总等于一个
正方形面积的1/4,想一想为什么?
A
D
A1
E
M
O
B1
B
FN
C
C1
还能发现哪些结论?
A1
AE=BF, BE=CF,OE=OF
⊿OEF是等腰直角三角形 ∠1= ∠ 2, ∠3+∠4=180° B1 BE+BF=AB=√2 AO,
AB、BC交DE、DF于M、N;图3延长FD 、 ED 交BC、AB于N 、M.则DM与DN,BM
与CN有怎样的数量关系,请写出结论.
A
F
D
B M
E
N C
图2
A E
D FM
B

《中考数学专题讲座》课件

《中考数学专题讲座》课件

PART 02
代数部分
代数基础知识梳理
代数基础知识
包括代数式、方程、不等 式、函数等基本概念和性 质。
代数式化简
掌握代数式的化简方法, 如合并同类项、提取公因 式等。
方程与不等式解法
理解方程与不等式的解法 ,包括一元一次方程、一 元二次方程、分式方程、 一元一次不等式等。
代数解题方法与技巧
代数恒等变换
中考数学复习计划与时间安排
制定复习计划
根据中考数学的考试大纲和考试时间,制定详细的复习计划,合理 分配时间,把握重点和难点。
注重基础知识
在复习过程中,要注重基础知识的学习和掌握,不要忽视课本上的 例题和练习题,因为这些是最基本的题目,能够帮你理解概念和方 法。
练习历年真题
多做中考数学真题,熟悉考试形式和题型,有助于提高应试能力和自 信心。
考试内容
包括数与式、方程与不等 式、函数、几何、概率与 统计等部分。
考试形式
闭卷、笔试,时间为120 分钟。
中考数学考试形式与试卷结构
试卷结构
满分120分,包括选择题、填空题 和解答题三种题型。
分值分布
选择题40分,填空题30分,解答 题50分。
考试时间分配
选择题每题2分,共20题,用时30 分钟;填空题每题3分,共10题, 用时15分钟;解答题每题8分,共5 题,用时65分钟。
中考数学答题技巧与注意事项
仔细审题
在答题前,要认真审题,理解题意, 避免因误解题目而失分。
表达清晰
在答题时,要思路清晰,表达准确, 注意解题步骤和细节。
检查答案
在答完题后,要仔细检查答案,确保 没有遗漏或错误。
注意时间分配
在考试过程中,要合理分配时间,不 要在某一道题目上花费太多时间而影 响其他题目的完成。

九年级数学专题讲座

九年级数学专题讲座

九年级数学专题讲座一、函数专题1. 一次函数知识点回顾一次函数的表达式为公式(公式,公式为常数,公式)。

当公式时,函数为正比例函数公式。

一次函数的图象是一条直线,公式决定直线的倾斜程度(公式,直线从左到右上升;公式,直线从左到右下降),公式决定直线与公式轴的交点(公式)。

题目解析例:已知一次函数公式,求它的图象与公式轴、公式轴的交点坐标。

解:当公式时,公式,解得公式,所以与公式轴交点坐标为公式。

当公式时,公式,所以与公式轴交点坐标为公式。

2. 二次函数知识点回顾二次函数的表达式一般式为公式(公式,公式,公式为常数,公式)。

顶点式为公式(公式为顶点坐标)。

二次函数图象是抛物线,公式决定抛物线的开口方向(公式开口向上;公式开口向下),对称轴为公式(一般式)或公式(顶点式)。

题目解析例:求二次函数公式的顶点坐标和对称轴。

解:对于二次函数公式,其中公式,公式,公式。

对称轴公式。

把公式代入函数得公式,所以顶点坐标为公式。

3. 反比例函数知识点回顾反比例函数表达式为公式(公式为常数,公式)。

图象是双曲线。

当公式时,双曲线在一、三象限;当公式时,双曲线在二、四象限。

题目解析例:已知反比例函数公式,求当公式时公式的值,以及当公式时公式的值。

解:当公式时,公式。

当公式时,公式,解得公式。

二、几何专题1. 三角形知识点回顾三角形内角和为公式。

三角形的分类:按角分为锐角三角形、直角三角形、钝角三角形;按边分为等边三角形、等腰三角形、不等边三角形。

相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。

题目解析例:在公式中,公式,公式,求公式的度数。

解:因为三角形内角和为公式,所以公式。

例:已知公式和公式,公式,公式,判断这两个三角形是否相似。

解:因为在公式和公式中,公式,公式,两角分别相等,所以公式。

2. 四边形知识点回顾平行四边形的性质:对边平行且相等,对角相等,对角线互相平分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学专题讲座一:选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,2012年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考典例剖析考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。

运用此种方法解题需要扎实的数学基础.例1 (2012•白银)方程的解是()A.x=±1 B.x=1 C.x=﹣1 D.x=0思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘(x+1),得x2﹣1=0,即(x+1)(x﹣1)=0,解得:x1=﹣1,x2=1.检验:把x=﹣1代入(x+1)=0,即x=﹣1不是原分式方程的解;把x=1代入(x+1)=2≠0,即x=1是原分式方程的解.则原方程的解为:x=1.故选B.点评:此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.对应训练1.(2012•南宁)某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有()A.7队B.6队C.5队D.4队考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。

用特例法解选择题时,特例取得愈简单、愈特殊愈好.例2 (2012•常州)已知a 、b 、c 、d 都是正实数,且 a c b d <,给出下列四个不等式: ①a c a b c d <++;②c a c d a b <++;③ d b c d a b <++;④b d a b c d <++。

其中不等式正确的是( )A .①③B .①④C .②④D .②③思路分析:由已知a 、b 、c 、d 都是正实数,且a cb d <,取a=1,b=3,c=1,d=2,代入所求四个式子即可求解。

解:由已知a 、b 、c 、d 都是正实数,且 a c b d<,取a=1,b=3,c=1,d=2,则 1111,134123a c a b c d ====++++,所以a c a b c d<++,故①正确; 2233,123134d b c d a b ====++++,所以d b c d a b<++,故③正确。

故选A 。

点评:本题考查了不等式的性质,用特殊值法来解,更为简单.对应训练2.(2012•南充)如图,平面直角坐标系中,⊙O 的半径长为1,点P (a ,0),⊙P 的半径长为2,把⊙P 向左平移,当⊙P 与⊙O 相切时,a 的值为( )A .3B .1C .1,3D .±1,±3考点三:筛选法(也叫排除法、淘汰法)分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。

使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确.例3 (2012•东营)方程(k-1)x 2-1k -x+14=0有两个实数根,则k 的取值范围是( ) A .k≥1 B .k≤1 C .k >1 D .k <1思路分析:原方程有两个实数根,故为二次方程,二次项系数不能为0,可排除A 、B ;又因为被开方数非负,可排除C 。

故选D .解:方程(k-1)x 2-1k -x+14=0有两个实数根,故为二次方程,二次项系数10k -≠,1k ≠,可排除A 、B ;又因为10,1kk -,可排除C 。

故选D .点评:此题考查了一元二次方程根的判别式与解的情况,用排除法较为简单. 对应训练3. (2012•临沂)如图,若点M 是x 轴正半轴上任意一点,过点M 作PQ ∥y 轴,分别交函数y= 1k x (x >0)和y=2k x(x >0)的图象于点P 和Q ,连接OP 和OQ .则下列结论正确的是( )A .∠POQ 不可能等于90°B . 12k PM QM kC .这两个函数的图象一定关于x 轴对称D .△POQ 的面积是12(|k 1|+|k 2|)考点四:逆推代入法将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法. 在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度.例4 (2012•贵港)下列各点中在反比例函数y=6x 的图象上的是( ) A .(-2,-3) B .(-3,2) C .(3,-2)D .(6,-1) 思路分析:根据反比例函数y=6x中xy=6对各选项进行逐一判断即可. 解:A 、∵(-2)×(-3)=6,∴此点在反比例函数的图象上,故本选项正确;B 、∵(-3)×2=-6≠6,∴此点不在反比例函数的图象上,故本选项错误;C 、∵3×(-2)=-6≠6,∴此点不在反比例函数的图象上,故本选项错误;D 、∵6×(-1)=-6≠6,∴此点不在反比例函数的图象上,故本选项错误.故选A .点评:本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数中k=xy 的特点是解答此题的关键.对应训练4.(2012•贵港)从2,﹣1,﹣2三个数中任意选取一个作为直线y=kx+1中的k 值,则所得的直线不经过第三象限的概率是( )A .B .C .D . 1考点五:直观选择法利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。

这种解法贯穿数形结合思想,每年中考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速.例5(2012•贵阳)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当-5≤x≤0时,下列说法正确的是()A.有最小值-5、最大值0 B.有最小值-3、最大值6C.有最小值0、最大值6 D.有最小值2、最大值6解:由二次函数的图象可知,∵-5≤x≤0,∴当x=-2时函数有最大值,y最大=6;当x=-5时函数值最小,y最小=-3.故选B.点评:本题考查的是二次函数的最值问题,能利用数形结合求出函数的最值是解答此题的关键.对应训练5.(2012•南宁)如图,在平面直角坐标系中,有两条位置确定的抛物线,它们的对称轴相同,则下列关系不正确的是()A.k=n B.h=m C.k<n D.h<0,k<0考点六:特征分析法对有关概念进行全面、正确、深刻的理解或根据题目所提供的信息,如数值特征、结构特征、位置特征等,提取、分析和加工有效信息后而迅速作出判断和选择的方法例6 (2012•威海)下列选项中,阴影部分面积最小的是()A.B.C.D.分析:根据反比例函数系数k的几何意义对各选项进行逐一分析即可.解:A、∵M、N两点均在反比例函数y=2x的图象上,∴S阴影=2;B、∵M、N两点均在反比例函数y=2x的图象上,∴S阴影=2;C、如图所示,分别过点MN作MA⊥x轴,NB⊥x轴,则S阴影=S△OAM+S阴影梯形ABNM -S△OBN=12×2+12(2+1)×1-12×2=32;D、∵M、N两点均在反比例函数y=2x的图象上,∴12×1×4=2.∵32<2,∴C中阴影部分的面积最小.故选C.点评:本题考查的是反比例函数系数k的几何意义,即在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是||2k,且保持不变.对应训练6.(2012•丹东)如图,点A是双曲线y=在第二象限分支上的任意一点,点B、点C、点D分别是点A关于x轴、坐标原点、y轴的对称点.若四边形ABCD的面积是8,则k的值为()A.﹣1 B.1C.2D.﹣2考点七:动手操作法与剪、折操作有关或者有些关于图形变换的试题是各地中考热点题型,只凭想象不好确定,处理时要根据剪、折顺序动手实践操作一下,动手可以直观得到答案,往往能达到快速求解的目的.例7 (2012•西宁)折纸是一种传统的手工艺术,也是每一个人从小就经历的事,它是一种培养手指灵活性、协调能力的游戏,更是培养智力的一种手段.在折纸中,蕴含许多数学知识,我们还可以通过折纸验证数学猜想,把一张直角三角形纸片按照图①~④的过程折叠后展开,请选择所得到的数学结论()A.角的平分线上的点到角的两边的距离相等B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半C.直角三角形斜边上的中线等于斜边的一半D.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形思路分析:严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来,也可仔细观察图形特点,利用对称性与排除法求解.解:如图②,∵△CDE由△ADE翻折而成,∴AD=CD,如图③,∵△DCF由△DBF翻折而成,∴BD=CD,∴AD=BD=CD,点D是AB的中点,∴CD=12AB,即直角三角形斜边上的中线等于斜边的一半.故选C.点评:本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.对应训练7.(2012•宁德)将一张正方形纸片按图①、图②所示的方式依次对折后,再沿图③中的虚线剪裁,最后将图④中的纸片打开铺平,所得到的图案是()A.B.C.D.四、中考真题演练1.(2012•衡阳)一个圆锥的三视图如图所示,则此圆锥的底面积为()A.30πcm2B.25πcm2C.50πcm2D.100πcm2 2.(2012•福州)⊙O1和⊙O2的半径分别是3cm和4cm,如果O1O2=7cm,则这两圆的位置关系是()A.内含B.相交C.外切D.外离3.(2012•安徽)为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a2 4.(2012•安徽)如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线ℓ,与⊙O 过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A.B.C.D.5.(2012•黄石)有一根长40mm的金属棒,欲将其截成x根7mm长的小段和y根9mm长的小段,剩余部分作废料处理,若使废料最少,则正整数x,y应分别为()A.x=1,y=3 B.x=3,y=2 C.x=4,y=1 D.x=2,y=3 6.(2012•长春)有一道题目:已知一次函数y=2x+b,其中b<0,…,与这段描述相符的函数图象可能是()A.B.C.D.7.(2012•荆门)如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3C.4D.58.(2012•河池)若a>b>0,则下列不等式不一定成立的是()A.ac>bc B.a+c>b+c C.D.a b>b29.(2012•南通)已知x2+16x+k是完全平方式,则常数k等于()A.64 B.48 C.32 D.16 10.(2012•六盘水)下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x 11.(2012•郴州)抛物线y=(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(1,2)12.(2012•莆田)在一次芭蕾舞比赛中,甲、乙、丙、丁四队女演员的人数相同,身高的平均数均为166cm,且方差分别为=1.5,=2.5,=2.9,=3.3,则这四队女演员的身高最整齐的是()A.甲队B.乙队C.丙队D.丁队13.(2012•怀化)为了比较甲乙两种水稻秧苗是否出苗更整齐,每种秧苗各取10株分别量出每株长度,发现两组秧苗的平均长度一样,甲、乙方差分别是3.9、15.8,则下列说法正确的是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定14.(2012•长春)如图是2012年伦敦奥运会吉祥物,某校在五个班级中对认识它的人数进行了调查,结果为(单位:人):30,31,27,26,31.这组数据的中位数是()A.27 B.29 C.30 D.31 15.(2012•钦州)如图所示,把一张矩形纸片对折,折痕为AB,在把以AB的中点O为顶点的平角∠AOB三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O为顶点的等腰三角形,那么剪出的等腰三角形全部展开平铺后得到的平面图形一定是()A.正三角形B.正方形C.正五边形D.正六边形16.(2012•江西)如图,有a、b、c三户家用电路接入电表,相邻电路的电线等距排列,则三户所用电线()A.a户最长B.b户最长C.c户最长D.三户一样长17.(2012•大庆)平面直角坐标系中,O为坐标原点,点A的坐标为(,1),将OA绕原点按逆时针方向旋转30°得OB,则点B的坐标为()A.(1,)B.(﹣1,)C.(O,2)D.(2,0)18.(2012•长春)在下列正方体的表面展开图中,剪掉1个正方形(阴影部分),剩余5个正方形组成中心对称图形的是()A.B.C.D.19.(2012•凉山州)已知,则的值是()A.B.C.D.20.(2012•南充)下列几何体中,俯视图相同的是()A.①②B.①③C.②③D.②④21.(2012•朝阳)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的俯视图是()A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆22.(2012•河池)如图,把一块含有45°角的直角三角板的两个顶点分别放在直尺的一组对边上.如果∠1=25°,那么∠2的度数是()A.30°B.25°C.20°D.15°23.(2012•长春)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C 的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=1 24.(2012•巴中)如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90°C.B D=AC D.∠B=45°25.(2012•河池)用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形26.(2012•随州)如图,AB是⊙O的直径,若∠BAC=35°,则∠ADC=()A.35°B.55°C.70°D.110°27.(2012•攀枝花)下列四个命题:①等边三角形是中心对称图形;②在同圆或等圆中,相等的弦所对的圆周角相等;③三角形有且只有一个外接圆;④垂直于弦的直径平分弦所对的两条弧.其中真命题的个数有()A.1个B.2个C.3个D.4个28.(2012•莱芜)以下说法正确的有()①正八边形的每个内角都是135°②与是同类二次根式③长度等于半径的弦所对的圆周角为30°④反比例函数y=﹣,当x<0时,y随x的增大而增大.A.1个B.2个C.3个D.4个29.(2012•东营)如图,一次函数y=x+3的图象与x轴,y轴交于A,B两点,与反比例函数的图象相交于C,D两点,分别过C,D两点作y轴,x轴的垂线,垂足为E,F,连接CF,DE.有下列四个结论:①△CEF与△DEF的面积相等;②△AOB∽△FOE;③△DCE≌△CDF;④AC=BD.其中正确的结论是()A.①②B.①②③C.①②③④D.②③④专题一选择题解题方法参考答案三、中考典例剖析对应训练1.C解:设邀请x个球队参加比赛,依题意得1+2+3+…+x-1=10,即(1)2x x=10,∴x2-x-20=0,∴x=5或x=-4(不合题意,舍去).故选C.2.D解:当两个圆外切时,圆心距d=1+2=3,即P到O的距离是3,则a=±3.当两圆相内切时,圆心距d=2-1=1,即P到O的距离是1,则a=±1.故a=±1或±3.故选D.3.D解:A.∵P点坐标不知道,当PM=MO=MQ时,∠POQ=90°,故此选项错误;B .根据图形可得:k 1>0,k 2<0,而PM ,QM 为线段一定为正值,故12k PM QM k ,故此选项错误;C .根据k 1,k 2的值不确定,得出这两个函数的图象不一定关于x 轴对称,故此选项错误; 故选:D .4.C5.A6.D解:∵点B 、点C 、点D 分别是点A 关于x 轴、坐标原点、y 轴的对称点,∴四边形ABCD 是矩形,∵四边形ABCD 的面积是8,∴4×|﹣k|=8,解得|k|=2,又∵双曲线位于第二、四象限,∴k <0,∴k=﹣2.故选D .7. B .四、中考真题演练1.B2.C3.A解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a ,∴AB=a ,且∠CAB=∠CBA=45°,∴sin45°===, ∴AC=BC=a , ∴S △ABC =×a ×a=,∴正八边形周围是四个全等三角形,面积和为:×4=a 2. 正八边形中间是边长为a 的正方形,∴阴影部分的面积为:a 2+a 2=2a 2,故选:A .4.D解:当P与O重合,∵A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,∴AO=2,OP=x,则AP=2﹣x,∴tan60°==,解得:AB=(2﹣x)=﹣x+2,=×PA×AB=(2﹣x)••(﹣x+2)=x2﹣6x+6,∴S△ABP故此函数为二次函数,∵a=>0,∴当x=﹣=﹣=2时,S取到最小值为:=0,根据图象得出只有D符合要求.故选:D.5.B解:根据题意得:7x+9y≤40,则x≤,∵40﹣9y≥0且y是非负整数,∴y的值可以是:1或2或3或4.当x的值最大时,废料最少,当y=1时,x≤,则x=4,此时,所剩的废料是:40﹣1×9﹣4×7=3mm;当y=2时,x≤,则x=3,此时,所剩的废料是:40﹣2×9﹣3×7=1mm;当y=3时,x≤,则x=1,此时,所剩的废料是:40﹣3×9﹣7=6mm;当y=4时,x≤,则x=0(舍去).则最小的是:x=3,y=2.故选B.6.A7.D解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=5.故选D.8.A9.A10.D11.D12.A13.A14.C15.D16.D17.A解:如图,作AC⊥x轴于C点,BD⊥y轴于D点,∵点A的坐标为(,1),∴AC=1,OC=,∴OA==2,∴∠AOC=30°,∵OA绕原点按逆时针方向旋转30°得OB,∴∠AOB=30°,OA=OB,∴∠BOD=30°,∴Rt△OAC≌Rt△OBD,∴DB=AC=1,OD=OC=,∴B点坐标为(1,).故选A.18.D19.D20.C21.B22.C解:∵△GEF是含45°角的直角三角板,∴∠GFE=45°,∵∠1=25°,∴∠AFE=∠GEF﹣∠1=45°﹣25°=20°,∵AB∥CD,∴∠2=∠AFE=20°.故选C.23.B解:∵OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,∴C点在∠BOA的角平分线上,∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,即m﹣2n=1.故选:B.24.A25.B26.B27.B解:∵等边三角形是轴对称图形,但不是中心对称图形,∴①是假命题;如图,∠C和∠D都对弦AB,但∠C和∠D不相等,即②是假命题;三角形有且只有一个外接圆,外接圆的圆心是三角形三边垂直平分线的交点,即③是真命题;垂直于弦的直径平分弦,且平分弦所对的两条弧,即④是真命题.故选B.28.C解:①正八边形的每个内角都是:=135°,故①正确;②∵=3,=,∴与是同类二次根式;故②正确;③如图:∵OA=OB=AB,∴∠AOB=60°,∴∠C=∠AOB=30°,∴∠D=180°﹣∠C=150°,∴长度等于半径的弦所对的圆周角为:30°或150°;故③错误;④反比例函数y=﹣,当x<0时,y随x的增大而增大.故④正确.故正确的有①②④,共3个.故选C.29.C解:①设D(x,),则F(x,0),由图象可知x>0,∴△DEF的面积是:×||×|x|=2,设C(a,),则E(0,),由图象可知:<0,a>0,△CEF的面积是:×|a|×||=2,∴△CEF的面积=△DEF的面积,故①正确;②△CEF和△DEF以EF为底,则两三角形EF边上的高相等,故EF∥CD,∴FE∥AB,∴△AOB∽△FOE,故②正确;③∵C、D是一次函数y=x+3的图象与反比例函数的图象的交点,∴x+3=,解得:x=﹣4或1,经检验:x=﹣4或1都是原分式方程的解,∴D(1,4),C(﹣4,﹣1),∴DF=4,CE=4,∵一次函数y=x+3的图象与x轴,y轴交于A,B两点,∴A(﹣3,0),B(0,3),∴∠ABO=∠BAO=45°,∵DF∥BO,AO∥CE,∴∠BCE=∠BAO=45°,∠FDA=∠OBA=45°,∴∠DCE=∠FDA=45°,在△DCE和△CDF中,∴△DCE≌△CDF(SAS),故③正确;④∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,故④正确;正确的有4个.故选C.2013年中考数学专题讲座二:新概念型问题一、中考专题诠释所谓“新概念”型问题,主要是指在问题中概念了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新概念进行运算、推理、迁移的一种题型.“新概念”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新概念型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.考点二:运算题型中的新概念解:根据题意化简1111x xx x+--+=8,得:(x+1)2-(1-x)2=8,整理得:x2+2x+1-(1-2x+x2)-8=0,即4x=8,解得:x=2.故答案为:2点评:此题考查了整式的混合运算,属于新概念的题型,涉及的知识有:完全平方公式,去括号、合并同类项法则,根据题意将所求的方程化为普通方程是解本题的关键.对应训练2.(2012•株洲)若(x1,y1)•(x2,y2)=x1x2+y1y2,则(4,5)•(6,8)=.考点三:探索题型中的新概念例3 (2012•南京)如图,A、B是⊙O上的两个定点,P是⊙O上的动点(P不与A、B重合)、我们称∠APB是⊙O上关于点A、B的滑动角.(1)已知∠APB是⊙O上关于点A、B的滑动角,①若AB是⊙O的直径,则∠APB=°;②若⊙O的半径是1,AB=,求∠APB的度数;(2)已知O2是⊙O1外一点,以O2为圆心作一个圆与⊙O1相交于A、B两点,∠APB是⊙O1上关于点A、B的滑动角,直线PA、PB分别交⊙O2于M、N(点M与点A、点N与点B 均不重合),连接AN,试探索∠APB与∠MAN、∠ANB之间的数量关系.思路分析:(1)①根据直径所对的圆周角等于90°即可求解;②根据勾股定理的逆定理可得∠AOB=90°,再分点P在优弧上;点P在劣弧上两种情况讨论求解;(2)根据点P在⊙O1上的位置分为四种情况得到∠APB与∠MAN、∠ANB之间的数量关系.解:(1)①若AB是⊙O的直径,则∠APB=90.②如图,连接AB、OA、OB.在△AOB中,∵OA=OB=1.AB=,∴OA2+OB2=AB2.∴∠AOB=90°.当点P在优弧上时,∠AP1B=∠AOB=45°;当点P在劣弧上时,∠AP2B=(360°﹣∠AOB)=135°…6分(2)根据点P在⊙O1上的位置分为以下四种情况.第一种情况:点P在⊙O2外,且点A在点P与点M之间,点B在点P与点N之间,如图①∵∠MAN=∠APB+∠ANB,∴∠APB=∠MAN﹣∠ANB;第二种情况:点P在⊙O2外,且点A在点P与点M之间,点N在点P与点B之间,如图②.∵∠MAN=∠APB+∠ANP=∠APB+(180°﹣∠ANB),∴∠APB=∠MAN+∠ANB﹣180°;第三种情况:点P在⊙O2外,且点M在点P与点A之间,点B在点P与点N之间,如图③.∵∠APB+∠ANB+∠MAN=180°,∴∠APB=180°﹣∠MAN﹣∠ANB,第四种情况:点P在⊙O2内,如图④,∠APB=∠MAN+∠ANB.点评:综合考查了圆周角定理,勾股定理的逆定理,点与圆的位置关系,本题难度较大,注意分类思想的运用.对应训练3.(2012•陕西)如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线y=-x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=-x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.考点四:开放题型中的新概念例4 (2012•北京)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下概念:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.例如:点P1(1,2),点P2(3,5),因为|1-3|<|2-5|,所以点P1与点P2的“非常距离”为|2-5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x 轴的直线P2Q交点).(1)已知点A(-12,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=34x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.思路分析:(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的概念可以确定|0-y|=2,据此可以求得y的值;②设点B的坐标为(0,y).因为|- 12-0|≥|0-y|,所以点A与点B的“非常距离”最小值为|-12-0|=12;(2)①设点C的坐标为(x0,34x0+3).根据材料“若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|”知,C、D两点的“非常距离”的最小值为-x0= 34x0+2,据此可以求得点C的坐标;②当点E在过原点且与直线y= 34x+3垂直的直线上时,点C与点E的“非常距离”最小,即E(- 35,45).解答思路同上.解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|-12-0|=12≠2,∴|0-y|=2,解得,y=2或y=-2;∴点B的坐标是(0,2)或(0,-2);②点A与点B的“非常距离”的最小值为12;(2)①∵C是直线y=34x+3上的一个动点,∴设点C的坐标为(x0,34x0+3),∴-x0=34x0+2,此时,x0=-87,∴点C与点D的“非常距离”的最小值为:87,此时C(-87,157);②E(-35,45).-35-x0=34x0+3-45,解得,x0=-85,则点C的坐标为(-85,95),最小值为1.点评:本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的概念是正确解题的关键.对应训练4.(2012•台州)请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:1⊕2=2⊕1=3,(-3)⊕(-4)=(-4)⊕(-3)=- 76,(-3)⊕5=5⊕(-3)=-415,…你规定的新运算a⊕b= (用a,b的一个代数式表示).考点五:阅读材料题型中的新概念例5 (2012•常州)平面上有两条直线AB、CD相交于点O,且∠BOD=150°(如图),现按如下要求规定此平面上点的“距离坐标”:(1)点O的“距离坐标”为(0,0);(2)在直线CD上,且到直线AB的距离为p(p>0)的点的“距离坐标”为(p,0);在直线AB上,且到直线CD的距离为q(q>0)的点的“距离坐标”为(0,q);(3)到直线AB、CD的距离分别为p,q(p>0,q>0)的点的“距离坐标”为(p,q).设M为此平面上的点,其“距离坐标”为(m,n),根据上述对点的“距离坐标”的规定,解决下列问题:(1)画出图形(保留画图痕迹):①满足m=1,且n=0的点M的集合;②满足m=n的点M的集合;(2)若点M在过点O且与直线CD垂直的直线l上,求m与n所满足的关系式.(说明:图中OI长为一个单位长)思路分析:(1)①以O为圆心,以2为半径作圆,交CD于两点,则此两点为所求;②分别作∠BOC和∠BOD的角平分线并且反向延长,即可求出答案;(2)过M作MN⊥AB于N,根据已知得出OM=n,MN=m,求出∠NOM=60°,根据锐角三角函数得出sin60°=MNOM=mn,求出即可.解:(1)①如图所示:点M1和M2为所求;②如图所示:直线MN和直线EF(O除外)为所求;(2)如图:过M作MN⊥AB于N,∵M的“距离坐标”为(m,n),∴OM=n,MN=m,∵∠BOD=150°,直线l⊥CD,∴∠MON=150°-90°=60°,在Rt△MON中,sin60°=MNOM=mn,即m与n所满足的关系式是:m=32n.点评:本题考查了锐角三角函数值,角平分线性质,含30度角的直角三角形的应用,主要考查学生的动手操作能力和计算能力,注意:角平分线上的点到角两边的距离相等.对应训练5.(2012•钦州)在平面直角坐标系中,对于平面内任意一点(x ,y ),若规定以下两种变换: ①f (x ,y )=(y ,x ).如f (2,3)=(3,2);②g (x ,y )=(-x ,-y ),如g (2,3)=(-2,-3).按照以上变换有:f (g (2,3))=f (-2,-3)=(-3,-2),那么g (f (-6,7))等于( )A .(7,6)B .(7,-6)C .(-7,6)D .(-7,-6)四、中考真题演练一、选择题1.(2012•六盘水)概念:f (a ,b )=(b ,a ),g (m ,n )=(-m ,-n ).例如f (2,3)=(3,2),g (-1,-4)=(1,4).则g[f (-5,6)]等于( )A .(-6,5)B .(-5,-6)C .(6,-5)D .(-5,6)2. (2012•湘潭)文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入 7,则输出的结果为( )A .5B .6C .7D .8点评:本题考查的是实数的运算,根据题意得出输出数的式子是解答此题的关键.3. (2012•丽水)小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是( )A .2010B .2012C .2014D .2016二、填空题 4.(2012•常德)规定用符号[m]表示一个实数m 的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为 .5.(2012•随州)概念:平面内的直线1l 与2l 相交于点O ,对于该平面内任意一点M ,点M 到直线1l 、2l 的距离分别为a 、b ,则称有序非实数对(a ,b )是点M 的“距离坐标”,根据上述概念,距离坐标为(2,3)的点的个数是( )A .2B .1C .4D .36.(2012•荆门)新概念:[a ,b]为一次函数y=ax+b (a≠0,a ,b 为实数)的“关联数”.若“关联数”[1,m-2]的一次函数是正比例函数,则关于x 的方程 11x +1m=1的解为 . 7.(2012•自贡)如图,△ABC 是正三角形,曲线CDEF 叫做正三角形的渐开线,其中弧CD 、弧DE 、弧EF 的圆心依次是A 、B 、C ,如果AB=1,那么曲线CDEF 的长是 .。

相关文档
最新文档