七年级数学上册_3.4《实际问题与一元一次方程》第三课时球赛积分表问题教案_

合集下载

七年级数学上册(人教版)3.4实际问题与一元一次方程(第3课时)球赛积分表问题优秀教学案例

七年级数学上册(人教版)3.4实际问题与一元一次方程(第3课时)球赛积分表问题优秀教学案例
(二)讲授新知
1.引导学生回顾一元一次方程的基本概念和性质,为学生解决球赛积分表问题打下基础。
2.讲解胜负场次与积分之间的关系,引导学生理解球赛积分表的原理,学会如何根据胜负场次计算球队积分。
3.通过具体案例和示例,演示如何列出一元一次方程来解决球赛积分表问题,让学生跟随教师一起动手操作和思考。
(三)学生小组讨论
为了提高学生的实践能力,我设计了一个小组活动,让学生分组讨论并解决实际问题。问题如下:已知甲队和乙队进行了一场比赛,甲队获胜。已知甲队的胜场数是乙队的两倍,甲队的负场数是乙队的一半。求甲队和乙队的积分分别是多少?
二、教学目标
(一)知识与技能
1.让学生掌握一元一次方程在实际问题中的应用,能够通过设定变量和列出方程解决球赛积分表问题。
七年级数学上册(人教版)3.4实际问题与一元一次方程(第3课时)球赛积分表问题优秀教学案例
一、案例背景
本节课是人教版七年级数学上册第三单元“实际问题与一元一次方程”的第三课时,主要内容是球赛积分表问题。在教学案例中,我以学校举办的篮球赛为背景,设计了一系列与学生生活密切相关的问题,引导学生运用一元一次方程解决实际问题。
3.利用多媒体教学资源,如图片、图表和视频等,形象直观地展示球赛积分表问题,帮助学生更好地理解和掌握知识。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和热情,让学生感受数学与实际生活的紧密联系,提高学生对数学学习的积极性。
2.培养学生面对困难时积极思考、勇于尝试和坚持的精神,培养学生的耐心和毅力。
四、教学内容与过程
(一)导入新课
1.利用学校举办的篮球赛实际场景,引导学生关注球赛积分表,激发学生的学习兴趣和参与热情。
2.向学生展示篮球赛积分表的图片或视频,让学生直观地了解球赛积分表的构成和作用,引导学生关注实际问题与数学知识的联系。

人教版七年级数学上册3.4实际问题与一元一次方程球赛积分问题优秀教学案例

人教版七年级数学上册3.4实际问题与一元一次方程球赛积分问题优秀教学案例
此外,我还会结合生活实际,让学生明白数学在生活中的重要性,从而提高学生学习数学的积极性。通过本节课的学习,希望学生能熟练运用一元一次方程解决实际问题,提高自身的数学素养。
二、教学目标
(一)知识与技能
1.理解球赛积分问题的背景和意义,能够将实际问题转化为数学问题,并运用一元一次方程进行求解。
2.掌握一元一次方程的解法和应用,能够运用方程解决实际问题,提高学生的数学应用能力。
3.运用案例分析法,以球赛积分问题为例,引导学生学会将实际问题转化为数学问题,培养学生解决问题的能力。
4.采用启发式教学法,引导学生运用一元一次方程解决实际问题,培养学生的创新思维和独立思考能力。
(三)情感态度与价值观
1.通过解决球赛积分问题,使学生感受到数学在实际生活中的重要性,提高学生学习数学的兴趣和积极性。
3.问题导向教学:以问题驱动的方式,引导学生从实际问题中发现数学问题,激发学生的思考,培养学生的创新思维和独立思考能力,使学生能够更好地理解和掌握一元一次方程的解法和应用。
4.情景创设:利用多媒体展示球赛积分问题的实际场景,让学生身临其境地感受问题的背景和意义,激发学生的学习兴趣,使学生能够更好地理解和掌握一元一次方程的实际应用。
2.通过设计具有挑战性和趣味性的球赛积分问题,引发学生的思考,激发学生解决问题的内在动机。
3.以生活实际为例,让学生认识到数学在生活中的重要性,培养学生学习数学的积极性和主动性。
4.创设轻松、愉快的学习氛围,鼓励学生敢于提出问题、发表见解,尊重学生的个性差异。
(二)问题导向
1.引导学生从实际问题中发现数学问题,激发学生的好奇心,培养学生的问题解决能力。
2.分配不同难度的球赛积分问题,让各小组成员共同探讨、分工合作,提高解决问题的效率。

3.4实际问题与一元一次方程销售、球赛积分问题(教案)

3.4实际问题与一元一次方程销售、球赛积分问题(教案)
五、教学反思
在本次教学活动中,我尝试将实际问题与一元一次方程紧密结合,让学生在实践中感受数学的魅力。从教学过程来看,有几个方面值得我反思和总结。
首先,我发现学生们在从实际问题中抽象出一元一次方程的过程中存在一定难度。他们往往难以把握问题的关键信息,从而建立错误的方程。针对这个问题,我意识到在教学中需要更加注重引导学生如何从复杂情境中提炼出关键信息,这是提高他们解决问题能力的重要一环。
3.重点难点解析:在讲授过程中,我会特别强调如程。对于难点部分,我会通过实际案例和对比分析来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与销售、球赛积分相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如模拟购物场景,计算打折后的价格,或设定球赛积分规则,计算球队总积分。
1.培养学生的逻辑推理能力:通过实际问题与一元一次方程的结合,让学生掌握从具体情境中抽象出数学问题的方法,运用逻辑推理能力分析问题,建立方程模型。
2.提升学生的数学建模素养:使学生能够将现实生活中的问题转化为数学方程,培养他们在实际问题中发现数学关系,建立数学模型的能力。
3.增强学生的数学运算与数据分析能力:在解决销售、球赛积分等问题时,培养学生熟练运用一元一次方程进行数学运算,对结果进行分析和解释的能力。
-销售问题:假设一件商品原价为x元,打8折后的售价为0.8x元。教学重点是使学生理解打折实际上是乘以一个小于1的数,并能够建立0.8x =售价的方程。
-球赛积分问题:如果一支球队赢一场得3分,平一场得1分,输一场不得分。教学重点是让学生能够根据比赛结果m(赢的场数)和n(比赛总场数)建立方程,如3m + 1*(n-m) =总积分。

人教版数学七年级上册3.4《实际问题与一元一次方程》(球赛积分表问题)教学设计

人教版数学七年级上册3.4《实际问题与一元一次方程》(球赛积分表问题)教学设计

人教版数学七年级上册3.4《实际问题与一元一次方程》(球赛积分表问题)教学设计一. 教材分析《实际问题与一元一次方程》这一节的内容,主要是让学生学会如何将实际问题转化为数学问题,进而利用一元一次方程来解决问题。

本节课通过球赛积分表问题,让学生了解实际问题中的一元一次方程的运用,培养学生的数学建模能力。

二. 学情分析学生在学习本节课之前,已经掌握了整数、分数、小数的基本运算,对代数概念有一定的了解。

但学生对于如何将实际问题转化为数学问题,并运用一元一次方程来解决,还比较陌生。

因此,在教学过程中,教师需要引导学生将实际问题与数学知识相结合,提高学生的解决问题的能力。

三. 教学目标1.知识与技能:学生能理解实际问题中的一元一次方程,并能运用一元一次方程解决简单的问题。

2.过程与方法:学生通过解决球赛积分表问题,学会将实际问题转化为数学问题,培养学生的数学建模能力。

3.情感态度与价值观:学生能感受到数学在实际生活中的运用,提高学生学习数学的兴趣。

四. 教学重难点1.教学重点:学生能理解实际问题中的一元一次方程,并能运用一元一次方程解决简单的问题。

2.教学难点:学生如何将实际问题转化为数学问题,并找出未知数。

五. 教学方法1.情境教学法:通过球赛积分表问题,激发学生的学习兴趣,引导学生主动参与课堂。

2.案例教学法:分析球赛积分表问题,让学生了解实际问题中的一元一次方程的运用。

3.小组合作学习:学生在小组内讨论如何解决球赛积分表问题,培养学生的合作能力。

六. 教学准备1.教师准备球赛积分表问题相关案例,以及解决问题的方法。

2.学生准备笔记本,用于记录解题过程。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生思考实际问题与数学问题的关系,激发学生的学习兴趣。

例如:“同学们,你们知道篮球比赛中的积分是如何计算的吗?”2.呈现(10分钟)教师展示球赛积分表问题,让学生观察并找出其中的数学问题。

例如:“请大家看这份球赛积分表,思考如何根据比赛结果计算每个队的积分?”3.操练(10分钟)教师引导学生尝试解决球赛积分表问题,指导学生如何将实际问题转化为数学问题。

人教版七年级数学上册3.4实际问题与一元一次方程球赛积分表问题优秀教学案例

人教版七年级数学上册3.4实际问题与一元一次方程球赛积分表问题优秀教学案例
本章节的教学内容与过程注重引导学生主动探究、合作交流,培养学生的数学应用能力和问题解决能力。同时,关注学生的情感态度与价值观的培养,使学生在学习过程中体验到数学的乐趣,提高学生的数学素养。
五、案例亮点
1.贴近生活:本案例以球赛积分表问题为背景,紧密结合学生的兴趣爱好,使学生在解决实际问题的过程中,感受到数学与生活的紧密联系,提高了学生的数学应用意识。
3.教师对学生的学习情况进行评价,关注学生的知识掌握和能力培养,为今后的教学提供有力支持。
(五)作业小结
1.教师布置适量的球赛积分表问题,让学生进行课后练习,巩固所学知识。
2.提醒学生注意作业的完成质量,要求字迹工整、步骤清晰。
3.鼓励学生在课后进行自我学习,探索更多的球赛积分表问题,提高自己的数学应用能力。
2.引导学生了解一元一次方程的解法,如代入法、加减法、移项法等。
3.结合球赛积分表问题,讲解一元一次方程在实际问题中的应用,让学生理解实际问题与数学知识的联系。
4.举例讲解球赛积分表问题的解题思路和方法,引导学生学会运用一元一次方程解决问题。
(三)学生小组讨论
1.教师布置具有挑战性的球赛积分表问题,让学生进行小组讨论。
(一)导入新课
1.利用多媒体展示球赛积分表,引导学生关注球赛积分表中的实际问题。
2.提出问题:“小明和小华看球赛,为什么小明比小华多获得5个积分?”激发学生的思考和兴趣。
3.引导学生回顾已学的方程知识,为新课的学习做好铺垫。
(二)讲授新知
1.讲解一元一次方程的基本概念,使学生明确一元一次方程的定义和特点。
三、教学策略
(一)情景创设
1.利用多媒体展示球赛积分表的实际问题,让学生置身于真实的学习情境中,激发学生的学习兴趣。

人教版七年级数学上册3.4实际问题与一元一次方程球赛积分表问题教学设计

人教版七年级数学上册3.4实际问题与一元一次方程球赛积分表问题教学设计
(一)教学重难点
1.重点:掌握一元一次方程在实际问题中的应用,特别是球赛积分表问题的解决方法。
难点:如何引导学生从实际问题中抽象出一元一次方程,并正确求解。
2.重点:培养学生的数据分析能力,提高他们解决实际问题的能力。
难点:帮助学生克服对实际问题分析的恐惧,培养他们勇于挑战困难的信心。
3.重点:加强小组合作学习,提高学生的团队协作能力。
2.教学过程设计:
a.导入:通过生活中的球赛积分表实例,引导学生关注实际问题,为新课的学习做好铺垫。
b.新课:以小组合作的形式,让学生探讨球赛积分表问题,互相交流,共同解决问题。
c.巩固:设置不同难度的练习题,让学生独立完成,巩固所学知识,提高解题能力。
d.应用:让学生将所学知识运用到其他实际问题中,如购物优惠、旅游行程等,提高知识迁移能力。
4.学生在小组合作中,可能存在分工不明确、讨论效率低下等问题,教师应引导学生学会有效沟通、合理分工。
针对以上学情分析,教师在教学过程中应注重启发式教学,引导学生主动探究,帮助他们将实际问题转化为数学模型。同时,关注学生的合作学习过程,培养他们的团队协作能力,提高课堂学习效果。
三、教学重难点和教学设想
人教版七年级数学上册3.4实际问题与一元一次方程球赛积分表问题教学设计
一、教学目标
(一)知识与技能
1.理解球赛积分表的基本概念,掌握球赛积分的计算方法。
2.运用一元一次方程解决实际问题,特别是球赛积分表问题。
3.能够根据实际问题,正确列出相应的一元一次方程,并运用等式性质进行求解。
4.通过对球赛积分表问题的探讨,提高数据分析与解决问题的能力。
在设计本章节的教学活动时,教师应关注学生的个体差异,因材施教,使每位学生都能在原有基础上得到提高。同时,注重培养学生的数学素养,将数学知识与实际生活紧密结合,提高学生的综合素质。在教学过程中,关注学生的情感态度,营造轻松、愉快的学习氛围,使学生在愉悦的情感体验中学习数学。

人教版七年级数学上册3.4 第3课时《 球赛积分表问题》教案2

人教版七年级数学上册3.4 第3课时《 球赛积分表问题》教案2

人教版七年级数学上册3.4 第3课时《球赛积分表问题》教案2一. 教材分析球赛积分表问题是人教版七年级数学上册3.4节的内容,主要让学生通过实际问题情境,理解并掌握用方程和不等式解决实际问题的方法。

这部分内容既联系了生活实际,又锻炼了学生的数学思维能力。

二. 学情分析七年级的学生已经具备了一定的数学基础,对用方程和不等式解决实际问题已经有了一定的了解。

但学生在解决实际问题时,往往会因为对问题的理解不深入,找不到等量关系,或者列出的方程不正确,导致解题困难。

因此,在教学过程中,需要引导学生正确理解问题,找到等量关系,列出正确的方程。

三. 教学目标1.让学生通过实际问题情境,理解并掌握用方程和不等式解决实际问题的方法。

2.培养学生观察、分析、解决问题的能力。

3.培养学生合作交流、归纳总结的能力。

四. 教学重难点1.教学重点:理解并掌握用方程和不等式解决实际问题的方法。

2.教学难点:找到问题的等量关系,列出正确的方程。

五. 教学方法采用问题驱动法,引导学生通过观察、分析、归纳、总结,自主探索解决问题的方法。

在教学过程中,注重让学生说理,培养学生的逻辑思维能力。

六. 教学准备1.准备相关的球赛积分表问题案例。

2.准备黑板、粉笔等教学用具。

七. 教学过程1.导入(5分钟)通过一个实际的球赛积分表问题,引导学生思考如何用数学方法解决这个问题。

例如,某校举行篮球比赛,甲、乙、丙、丁四支球队进行了循环赛,每队胜一场得2分,负一场得1分,弃权一场不得分,请问哪支球队得分最高?2.呈现(10分钟)呈现球赛积分表问题,让学生观察并思考问题。

引导学生发现,要解决这个问题,需要找到每支球队的比赛场次、胜负情况以及得分。

3.操练(10分钟)让学生分组讨论,尝试解决呈现的球赛积分表问题。

教师在这个过程中,引导学生找到问题的等量关系,列出方程。

4.巩固(10分钟)对学生的解答进行讲解,让学生理解并掌握用方程解决实际问题的方法。

人教版七年级数学上册3.4实际问题与一元一次方程球赛积分问题教学设计

人教版七年级数学上册3.4实际问题与一元一次方程球赛积分问题教学设计
五、作业布置
为了巩固本节课所学知识,培养学生的数学应用能力,特布置以下作业:
1.完成课本第62页的练习题第1、2、3题,要求学生独立完成,并在解题过程中注意等量关系的寻找和一元一次方程的列法。
2.结合球赛积分问题,设计一道类似的实际问题,要求学生将其抽象为一元一次方程,并求解。例如:“某篮球队在赛季中共进行了15场比赛,赢了m场,输了n场,平了k场,总共获得了p分。请问该篮球队赢了、输了、平了各多少场?”
4.通过球赛积分问题的解决,提高学生的逻辑思维能力和数学推理能力,培养他们将数学知识应用于生活实际的能力。
(二)过程与方法
1.通过小组合作和探究学习,引导学生从实际问题中提炼数学问题,培养他们的问题发现和解决能力。
2.运用情景教学法,将球赛积分引入课堂,让学生在具体情境中感受数学的应用,提高他们对数学学习的兴趣。
在解决球赛积分问题的基础上,设计一些拓展性问题,让学生运用所学知识进行解决,提高他们运用一元一次方程解决实际问题的能力。
5.知识巩固,反馈评价
设计一定数量的练习题,让学生独立完成,巩固所学知识。同时,通过课堂提问、作业批改等方式,了解学生的学习情况,及时给予反馈和评价。
6.教学重难点的突破设想
(1)针对重点,通过实例讲解、学生模仿、总结提炼等环节,使学生逐步掌握将实际问题抽象为一元一次方程的方法。
2.学生分享自己在解决球赛积分问题过程中的收获和感悟,教师给予肯定和鼓励。
3.教师强调解决实际问题时,要善于从问题中提炼等量关系,将其转化为方程,并运用数学方法解决问题。
4.教师布置课后作业,要求学生运用一元一次方程解决生活中的实际问题,培养学生的数学应用能力。
5.课堂结束前,教师鼓励学生将所学知识分享给家人和朋友,让他们感受到数学的魅力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4.《球赛积分表问题》教案
教学内容
课本第103页至第104页内容.
教学目标
1.知识与技能
掌握应用方程解决实际问题的方法步骤,提高分析问题、解决问题的能力.
2.过程与方法
通过探索球赛积分表中数量关系的过程,进一步体会方程是解决实际问题的数学模型,并且明确用方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.
3.情感态度与价值观
鼓励学生自主探究,合作交流,养成自觉反思的良好习惯.
重、难点与关键
1.重点:把实际问题转化为数学问题,不仅会列方程求出问题的解,•还会进行推理判断.
2.难点:把实际问题转化为数学问题.
3.关键:从积分表中,找出等量关系.
教具准备
投影仪.
教学过程
一、引入新课
教师操作投影仪,展示课本第103页中“某次篮球联赛积分榜”.
学生观察积分榜,并思考下列问题:
(1)用式子表示总积分与胜、负场数之间的数量关系;
(2)某队的胜场总积分能等于它的负场总积分吗?
在学生充分思考、合作交流后,教师引导学生分析.
要解决问题(1)必须求出胜一场积几分,负一场积几分,•你能从积分榜中得到负一场积几分吗?你选择其中哪一行最能说明负一场积几分?
通过观察积分榜,从最下面一行数据可以发现,负一场积1分,•那么胜一场积几分呢?
学生可能会用算术方法,从积分榜中任意一行(除最后一行外),例如,从第一行244110
-⨯=2,即胜一场积2分. 你会用方程解吗?
设胜一场积x 分,从表中其他任何一行可以列方程,求出x 的值,例如从第三行得方程.
9x+5×1=23
解方程,得x=2
用表中其他行可以验证,得出结论,负一场积1分,胜一场积2分.
(1)如果一个队胜m场,则负(14-m)场,胜场积分2m,负场积分为14-m,总积分为2m+(14-m)=m+14.
(2)问题(2),学生可能通过计算积分榜中各队的胜场总积分和负场总积分,说明某队的胜场总积分不能等于它的负场总积分.
你能用方程,说明上述结论吗?
如果设一个队胜了x场,则负了(14-x)场,•如果这个队的胜场总积分等于负场总积分,那么列方程为
2x=14-x
由此,得 x=14 3
想一想,x表示什么量?它可以是分数吗?由此你能得出什么结论?
这里x表示一个队所胜的场数,它是一个整数,所以x=14
3
不符合实际意义.•由此可
以判定没有哪个队的胜场总积分等于负场总积分.
这个问题说明:利用方程不仅能求出具体数值,而且还可以进行推理判断,是否存在某种数量关系.
另外,上面问题还说明,用方程解决实际问题时,不仅要注意方程的过程是否正确,还要检验方程的解是否符合问题的实际意义.
拓展延伸
如果删去积分榜的最后一行,你还能用式子表示总积分与胜、负场数之间的数量关系吗?
我们可以从积分榜中积分不相同的两行数据列方程求得胜、负一场各得几分,例如,从第一、三行.
设胜一场积x分,则前进队胜场积分为10x,负场积分为(24-10x)分,•他负了4场,
所以负一场积分为2410
4
x
-
,同理从第三行得到负一场积分为
239
5
x
-
,从而列方程为
2410
4x
-
=239
5
x
-
去分母,得5(24-10x)=4(23-9x)
去括号,得120-50x=92-36x
移项,得-50x+36x=92-120
合并同类项,得-14x=-28
x=2
当x=2时,2410
4
x
-
=
24102
4
+⨯
=1
仍然可得出结论:负一场积1分,胜一场积2分.
二、巩固练习
有一些分别标有5,10,15,20,25,…的卡片,后一张卡片上的数比前一张卡片上的数大5,小明拿到了相邻的3张卡片,且这些卡片上的数字之和为240.(1)小明拿到了哪3张卡片?
(2)你能拿到相邻的3张卡片,使得这些卡片上的数之和是63吗?
解:(1)设中间一个数为x,则前面一个数为x-5,后面一个数为x+5,根据这三个数之和为240,列方程(x-5)+x+(x+5)=240,解方程得x=80.
所以小明拿到卡片上的数分别是75,80,85.
(2)设中间一个数为x,则(x-5)+x+(x+5)=63,解方程得x=21.•因为卡片上的数都是5的倍数,所以x=21不符合题意,也就是说,卡片上的数之和是63的3张卡片不存在,所以不能拿到这样的3张卡片.
三、课堂小结
通过本节课的探究活动,使我们更加明白利用一元一次方程解决实际问题时,不仅要注意解方程的过程是否正确,还要检验方程的解是否符合问题的实际意义,同时,还可以利用方程对一些问题进行推理判断.
四、作业布置
1.课本第107页习题3.4第8、9题.
2.集训P90。

相关文档
最新文档