数学知识点人教A版数学必修二 4.3.1《空间直角坐标系》学案2-总结
金版学案高中数学(人教A版,必修二)同步辅导与检测课件:4.3.1《空间直角坐标系 》

解析:建立如图所示坐标系 . 解法一:E点在 xOy 面上的射影为 B,B(1,1,0), 竖坐标为12.
∴E1,1,12.
金品质•高追求 我们让你更放心!
返回
◆数学•必修2•(配人教A版)◆
F 在 xOy 面上的射影为 BD 的中点 G,竖坐标为 1
∴F12,12,1.
解法二:B1(1,1,1),D1(0,0,1),B(1,1,0),E 为 B1B 中点,F 为 B1D1 中点.
金品质•高追求 我们让你更放心!
返回
◆数学•必修2•(配人教A版)◆ 2.点A(-1,2,1)在x轴上的投影点和在xOy平面上的
投影点的坐标分别为( )
A.(-1,0,1),(Байду номын сангаас1,2,0)
B.(-1,0,0),(-1,2,0)
C.(-1,0,0),(-1,0,0)
D.(-1,2,0),(-1,2,0) 解析:点A(-1,2,1)在x轴上的投影点的横坐标是-1, 纵坐标、竖坐标都为0,故为(-1,0,0),点A(-1,2,1)在xOy 平面上横、纵坐标不变且竖坐标是0,故为(-1,2,0). 答案:B
故 E 点的坐标为1+2 1,1+2 1,1+2 0=1,1,12, F 点的坐标为1+2 0,1+2 0,1+2 1=12,12,1. 点评:熟记坐标轴上的点的坐标和坐标平面上点的坐标的 特征.
金品质•高追求 我们让你更放心!
返回
◆数学•必修2•(配人教A版)◆
跟踪训练
②相关概念:______叫做坐标原点,______轴叫做坐标 轴.通过____________的平面叫做坐标平面,分别称为 ______平面、______平面、______平面.
(2)右手直角坐标系
2017人教a版数学必修二4.3.1空间直角坐标系学案

4.3.1 空间直角坐标系学案一.学习目标:通过具体情境,感受成立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置.二.重点、难点:重点:难点:三.知识要点:1. 空间直角坐标系:从空间某一个定点O 引三条彼此垂直且有相同单位长度的数轴Ox 、Oy 、Oz ,如此的坐标系叫做空间直角坐标系O-xyz ,点O 叫做坐标原点,x 轴、y 轴、z 轴叫做坐标轴. 通过每两个坐标轴的平面叫做坐标平面,别离称为xOy 平面、yOz 平面、zOx 平面.2. 右手直角坐标系:在空间直角坐标系中,让右手拇指指向x 轴的正方向,食指指向y 轴的正方向,若中指指向z 轴的正方向,则称那个坐标系为右手直角坐标系.3. 空间直角坐标系中的坐标:对于空间任一点M ,作出M 点在三条坐标轴Ox 轴、Oy 轴、Oz 轴上的射影,若射影在相应数轴上的坐标依次为x 、y 、z ,则把有序实数组(x, y, z)叫做M 点在此空间直角坐标系中的坐标,记作M(x, y, z),其中x 叫做点M 的横坐标,y 叫做点M 的纵坐标,z 叫做点M 的竖坐标.4. 在xOy 平面上的点的竖坐标都是零,在yOz 平面上的点的横坐标都是零,在zOx 平面上的点的纵坐标都是零;在Ox 轴上的点的纵坐标、竖坐标都是零,在Oy 轴上的点的横坐标、竖坐标都是零,在Oz 轴上的点的横坐标、纵坐标都是零 四.自主探讨:(一)例题精讲: 【例1】在空间直角坐标系中,作出点M(6,-2, 4).解:点M 的位置可按如下步骤作出:先在x 轴上作出横坐标是6的点1M ,再将1M 沿与y 轴平行的方向向左移动2个单位取得点2M ,然后将2M 沿与z 轴平行的方向向上移动4个单位即得点M. M 点的位置如图所示.【例2】在长方体1111ABCD A B C D 中,AB=12,AD=8,1AA =5,试成立适当的空间直角坐标系,写出各极点的坐标.解:以A 为原点,射线AB 、AD 、1AA 别离为x 轴、y 轴、z 轴的正半轴,成立空间直角坐标系,则A(0,0,0)、B(12,0,0)、C(12,8,0)、D(0,8,0)、1A (0,0,5)、1B (12,0,5)、1C (12,8,5)、1D (0,8,5).【例3】已知正四棱锥P-ABCD 的底面边长为4,侧棱长为10,试成立适当的空间直角坐标系,写出各极点的坐标. 分析:先由条件求出正四棱锥的高,再按照正四棱锥的对称性,成立适当的空间直角坐标系. 解:正四棱锥P-ABCD 的底面边长为4,侧棱长为10,∴正四棱锥的高为223.以正四棱锥的底面中心为原点,平行于AB 、BC 所在的直线别离为x轴、y 轴,成立如图所示的空间直角坐标系,则正四棱锥各极点的坐标别离为A(2,-2,0)、B(2,2,0)、C(-2,2,0)、D(-2,-2,0)、P(0,0,223).点评:在求解此类问题时,关键是能按照已知图形,成立适当的空间直角坐标系,从而便于计算所需肯定的点的坐标. 1M 2M M (6,-2,4) O x yz6 2 4【例4】在空间直角坐标系中,求出通过A(2,3,1)且平行于坐标平面yOz 的平面α的方程.分析:求与坐标平面yOz 平行的平面的方程,即寻觅此平面内任一点所要知足的条件,可利用与坐标平面yOz 平行的平面内的点的特点来求解. 解:坐标平面yOz ⊥x 轴,而平面α与坐标平面yOz 平行,∴平面α也与x 轴垂直,∴平面α内的所有点在x 轴上的射影都是同一点,即平面α与x 轴的交点, ∴平面α内的所有点的横坐标都相等。
高中数学第四章圆与方程4.3.1空间直角坐标系4.3.2空间两点间的距离公式学案含解析新人教A版必修2

4.3.1 空间直角坐标系4.3.2 空间两点间的距离公式知识导图学法指导1.结合长方体、正棱锥等常见几何体,把握建系的方法,并能写出空间中的点在坐标系中的坐标.2.类比平面上两点间的距离,熟记空间两点间的距离公式.3.体会利用空间直角坐标系解决问题的步骤.高考导航1.空间直角坐标系的应用很少单独命题,一般是在解答题中应用建立空间直角坐标系的方法求解,分值为2~3分.2.通过建立空间直角坐标系,计算两点间的距离公式或确定点的坐标,是常考知识点,常与后面将要学习的立体几何等知识相结合,分值为4~6分.知识点一空间直角坐标系的建立及坐标表示1.空间直角坐标系(1)空间直角坐标系及相关概念①空间直角坐标系:从空间某一定点O引三条两两垂直,且有相同单位长度的数轴:x 轴、y轴、z轴,这样就建立了一个空间直角坐标系Oxyz.②相关概念:点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,通过每两个坐标轴的平面叫作坐标平面,分别称为xOy平面、yOz平面、zOx平面.(2)右手直角坐标系在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,如果中指指向z轴的正方向,则称这个坐标系为右手直角坐标系.2.空间一点的坐标空间一点M的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫作点M 在此空间直角坐标系中的坐标,记作M(x,y,z),其中x叫作点M的横坐标,y叫作点M的纵坐标,z叫作点M的竖坐标.空间直角坐标系的画法(1)x 轴与y 轴成135 °(或45 °),x 轴与z 轴成135 °(或45 °).(2)y 轴垂直于z 轴,y 轴和z 轴的单位长相等,x 轴上的单位长则等于y 轴单位长的12.知识点二 空间两点间的距离公式1.空间中任意一点P (x ,y ,z )与原点之间的距离|OP |=x 2+y 2+z 2; 2.空间中任意两点P 1(x 1,y 1,z 1),P 2(x 2,y 2,z 2)之间的距离 |P 1P 2|=x 2-x 12+y 2-y 12+z 2-z 12.1.空间两点间的距离公式可以类比平面上两点间的距离公式,只是增加了对应的竖坐标的运算.2.空间中点坐标公式:设A(x 1,y 1,z 1),B(x 2,y 2,z 2),则AB 中点P(x 1+x 22,y 1+y 22,z 1+z 22).[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)空间直角坐标系中,在x 轴上的点的坐标一定是(0,b ,c )的形式.( ) (2)空间直角坐标系中,在xOz 平面内的点的坐标一定是(a,0,c )的形式.( ) (3)空间直角坐标系中,点(1,3,2)关于yOz 平面的对称点为(-1,3,2).( ) 答案:(1)× (2)√ (3)√2.在空间直角坐标系中,下列各点中位于yOz 平面内的是( ) A .(3,2,1) B .(2,0,0) C .(5,0,2) D .(0,-1,-3)解析:位于yOz 平面内的点,其x 坐标为0,其余坐标任意,故(0,-1,-3)在yOz 平面内.答案:D3.点(2,0,3)在空间直角坐标系中的( ) A .y 轴上 B .xOy 平面上 C .zOx 平面上 D .第一象限内解析:点(2,0,3)的纵坐标为0,所以该点在zOx 平面上. 答案:C4.若已知点A(1,1,1),B(-3,-3,-3),则线段AB的长为( )A.4 3 B.2 3C.4 2 D.3 2解析:|AB|=-3-2+-3-2+-3-2=4 3.答案:A类型一空间中点的坐标的确定例1 如图,在长方体ABCD-A1B1C1D1中,|AD|=3,|AB|=5,|AA1|=4,建立适当的直角坐标系,写出此长方体各顶点的坐标.【解析】如图,以DA所在直线为x轴,以DC所在直线为y轴,以DD1所在直线为z 轴,建立空间直角坐标系Oxyz.因为长方体的棱长|AD|=|BC|=3,|DC|=|AB|=5,|DD1|=|AA1|=4,显然D(0,0,0),A在x轴上,所以A(3,0,0);C在y轴上,所以C(0,5,0);D1在z轴上,所以D1(0,0,4);B在xOy平面内,所以B(3,5,0);A1在xOz平面内,所以A1(3,0,4);C1在yOz平面内,所以C1(0,5,4).由B1在xOy平面内的射影为B(3,5,0),所以B1的横坐标为3,纵坐标为5,因为B1在z轴上的射影为D1(0,0,4),所以B1的竖坐标为4,所以B1(3,5,4).(1)建立适当的空间直角坐标系.(2)利用线段长度结合符号写出各点坐标.要注意与坐标轴正向相反的坐标为负.方法归纳(1)建立空间直角坐标系时,要考虑如何建系才能使点的坐标简单、便于计算,一般是要使尽量多的点落在坐标轴上.(2)对于长方体或正方体,一般取相邻的三条棱为x轴、y轴、z轴建立空间直角坐标系;确定点的坐标时,最常用的方法就是求某些与轴平行的线段的长度,即将坐标转化为与轴平行的线段长度,同时要注意坐标的符号,这也是求空间点的坐标的关键.跟踪训练1 在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.解析:如图所示,取AC 的中点O 和A 1C 1的中点O 1,连接BO ,OO 1,可得BO ⊥AC ,OO 1⊥AC ,OO 1⊥BO ,分别以OB ,OC ,OO 1所在直线为x 轴,y 轴,z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32,∵点A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1,C 1在yOz 平面内,∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1. ∵点B 1在xOy 平面内的射影为点B ,且BB 1=1, ∴B 1⎝ ⎛⎭⎪⎫32,0,1,∴各点的坐标分别为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝⎛⎭⎪⎫0,12,0,A 1⎝⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1.建立空间直角坐标系,求出有关线段的长,再写出各点的坐标. 类型二 空间直角坐标系中的点的对称点例2 在空间直角坐标系中,点P (-2,1,4)关于x 轴对称的点P 1的坐标是________;关于xOy 平面对称的点P 2的坐标是________;关于点A (1,0,2)对称的点P 3的坐标是________.【解析】 点P 关于x 轴对称后,它的横坐标不变,纵坐标和竖坐标均变为原来的相反数,所以点P 关于x 轴的对称点P 1的坐标为(-2,-1,-4).点P 关于xOy 平面对称后,它的横坐标和纵坐标均不变,竖坐标变为原来的相反数,所以点P 关于xOy 平面的对称点P 2的坐标为(-2,1,-4).设点P 关于点A 的对称点的坐标为P 3(x ,y ,z ),由中点坐标公式可得⎩⎪⎨⎪⎧-2+x2=1,1+y2=0,4+z 2=2,解得⎩⎪⎨⎪⎧x =4,y =-1,z =0.故点P 关于点A (1,0,2)对称的点P 3的坐标为(4,-1,0).【答案】 (-2,-1,-4) (-2,1,-4) (4,-1,0)利用对称规律解决关于坐标轴、坐标平面的对称问题,利用中点坐标公式解决点关于点的对称问题.方法归纳在空间直角坐标系内,已知点P(x,y,z),则有:①点P关于原点的对称点是P1(-x,-y,-z)②点P关于横轴(x轴)的对称点是P2(x,-y,-z)③点P关于纵轴(y轴)的对称点是P3(-x,y,-z)④点P关于竖轴(z轴)的对称点是P4(-x,-y,z)⑤点P关于xOy坐标平面的对称点是P5(x,y,-z)⑥点P关于yOz坐标平面的对称点是P6(-x,y,z)⑦点P关于xOz坐标平面的对称点是P7(x,-y,z).跟踪训练2 已知M(2,1,3),求M关于原点对称的点M1,M关于xOy平面对称的点M2,M 关于x轴、y轴对称的点M3,M4.解析:由于点M与M1关于原点对称,所以M1(-2,-1,-3);点M与M2关于xOy平面对称,横坐标与纵坐标不变,竖坐标变为原来的相反数,所以M2(2,1,-3);M与M3关于x 轴对称,则M3的横坐标不变,纵坐标和竖坐标变为原来的相反数,即M3(2,-1,-3),同理M4(-2,1,-3).方法归纳求对称点的坐标问题一般依据“关于谁对称谁不变,其余均改变”来解决.如关于横轴(x轴)的对称点,横坐标不变,纵坐标、竖坐标变为原来的相反数;关于xOy 坐标平面的对称点,横坐标、纵坐标不变,竖坐标变为原来的相反数.要特别注意:点关于点的对称要用中点坐标公式解决.类型三空间两点间的距离,,例3 如图,已知正方体ABCD-A′B′C′D′的棱长为a,M为BD′的中点,点N在A′C′上,且|A′N|=3|NC′|,试求|MN|的长.【解析】由题意应先建立坐标系,以D为原点,建立如图所示空间直角坐标系.因为正方体棱长为a,所以B(a,a,0),A′(a,0,a),C′(0,a,a),D′(0,0,a).由于M为BD′的中点,取A′C′的中点O′,所以M ⎝ ⎛⎭⎪⎫a 2,a 2,a 2,O ′⎝ ⎛⎭⎪⎫a 2,a2,a . 因为|A ′N |=3|NC ′|,所以N 为A ′C ′的四等分点,从而N 为O ′C ′的中点,故N ⎝ ⎛⎭⎪⎫a 4,34a ,a .根据空间两点间的距离公式,可得 |MN |=⎝ ⎛⎭⎪⎫a 2-a 42+⎝ ⎛⎭⎪⎫a 2-3a 42+⎝ ⎛⎭⎪⎫a 2-a 2=64a .建立空间直角坐标系,先确定相关点的坐标,然后根据两点间的距离公式求解. 方法归纳求空间两点间的距离时,一般使用空间两点间的距离公式,应用公式的关键在于建立适当的坐标系,确定两点的坐标.确定点的坐标的方法视具体题目而定,一般说来,要转化到平面中求解,有时也利用几何图形的特征,结合平面直角坐标系的知识确定.跟踪训练3 求A (0,1,3),B (2,0,1)两点之间的距离. 解析:|AB |=-2+-2+-2=3.解答本题可直接利用空间两点间的距离公式.[基础巩固](20分钟,40分)一、选择题(每小题5分,共25分)1.点M (0,3,0)在空间直角坐标系中的位置是在( ) A .x 轴上 B .y 轴上 C .z 轴上 D .xOz 平面上解析:因为点M (0,3,0)的横坐标、竖坐标均为0,纵坐标不为0,所以点M 在y 轴上. 答案:B2.点P (1,4,-3)与点Q (3,-2,5)的中点坐标是( ) A .(4,2,2) B .(2,-1,2) C .(2,1,1) D .(4,-1,2)解析:设点P 与点Q 的中点坐标为(x ,y ,z ),则x =1+32=2,y =4-22=1,z =-3+52=1.答案:C3.在空间直角坐标系中,已知点P(1,2,3),过P作平面yOz的垂线PQ,则垂足Q的坐标为( )A.(0,2,0) B.(0,2,3)C.(1,0,3) D.(1,2,0)解析:根据空间直角坐标系的概念知,yOz平面上点Q的x坐标为0,y坐标、z坐标与点P的y坐标2,z坐标3分别相等,∴Q(0,2,3).答案:B4.已知M(4,3,-1),记M到x轴的距离为a,M到y轴的距离为b,M到z轴的距离为c,则( )A.a>b>c B.c>b>aC.c>a>b D.b>c>a解析:借助长方体来思考,a、b、c分别是三条面对角线的长度.∴a=10,b=17,c=5.答案:B5.已知A点坐标为(1,1,1),B(3,3,3),点P在x轴上,且|PA|=|PB|,则P点坐标为( )A.(0,0,6) B.(6,0,1)C.(6,0,0) D.(0,6,0)解析:设P(x,0,0),|PA|=x-2+1+1,|PB|=x-2+9+9,由|PA|=|PB|,得x=6.答案:C二、填空题(每小题5分,共15分)6.如图,长方体ABCD-A1B1C1D1中,已知A1(a,0,c),C(0,b,0),则点B1的坐标为________.解析:由题中图可知,点B1的横坐标和竖坐标与点A1的横坐标和竖坐标相同,点B1的纵坐标与点C的纵坐标相同,所以点B1的坐标为(a,b,c).答案:(a,b,c)7.在空间直角坐标系中,点(4,-1,2)关于原点的对称点的坐标是________.解析:空间直角坐标系中关于原点对称的点的坐标互为相反数,故点(4,-1,2)关于原点的对称点的坐标是(-4,1,-2).答案:(-4,1,-2)8.点P (-1,2,0)与点Q (2,-1,0)的距离为________. 解析:∵P (-1,2,0),Q (2,-1,0), ∴|PQ |=-1-2+[2--2+02=3 2.答案:3 2三、解答题(每小题10分,共20分)9.已知直三棱柱ABC -A 1B 1C 1中,∠BAC =90°,|AB |=|AC |=|AA 1|=4,M 为BC 1的中点,N 为A 1B 1的中点,求|MN |.解析:如右图,以A 为原点,射线AB ,AC ,AA 1分别为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系,则B (4,0,0),C 1(0,4,4),A 1(0,0,4),B 1(4,0,4),因为M 为BC 1的中点,N 为A 1B 1的中点,所以由空间直角坐标系的中点坐标公式得M (4+02,0+42,0+42),N (0+42,0+02,4+42),即M (2,2,2),N (2,0,4).所以由两点间的距离公式得 |MN |=-2+-2+-2=2 2.10.已知点P (2,3,-1),求:(1)点P 关于各坐标平面对称的点的坐标; (2)点P 关于各坐标轴对称的点的坐标; (3)点P 关于坐标原点对称的点的坐标.解析:(1)设点P 关于xOy 坐标平面的对称点为P ′,则点P ′的横坐标、纵坐标与点P 的横坐标、纵坐标相同,点P ′的竖坐标与点P 的竖坐标互为相反数.所以点P 关于xOy 坐标平面的对称点P ′的坐标为(2,3,1).同理,点P 关于yOz ,xOz 坐标平面的对称点的坐标分别为(-2,3,-1),(2,-3,-1).(2)设点P 关于x 轴的对称点为Q ,则点Q 的横坐标与点P 的横坐标相同,点Q 的纵坐标、竖坐标与点P 的纵坐标、竖坐标互为相反数.所以点P 关于x 轴的对称点Q 的坐标为(2,-3,1).同理,点P 关于y 轴,z 轴的对称点的坐标分别为(-2,3,1),(-2,-3,-1). (3)点P (2,3,-1)关于坐标原点对称的点的坐标为(-2,-3,1).[能力提升](20分钟,40分)11.在空间直角坐标系中,点M 的坐标是(4,7,6),则点M 关于y 轴对称的点在xOz 平面上的射影的坐标为( )A .(4,0,6)B .(-4,7,-6)C .(-4,0,-6)D .(-4,7,0)解析:点M 关于y 轴对称的点是M ′(-4,7,-6),点M ′在xOz 平面上的射影的坐标为(-4,0,-6).答案:C12.已知点P ⎝ ⎛⎭⎪⎫32,52,z 到线段AB 中点的距离为3,其中A (3,5,-7),B (-2,4,3),则z =________.解析:由中点坐标公式,得线段AB 中点的坐标为⎝ ⎛⎭⎪⎫12,92,-2.又点P 到线段AB 中点的距离为3,所以⎝ ⎛⎭⎪⎫32-122+⎝ ⎛⎭⎪⎫52-922+[z --2=3,解得z =0或z =-4. 答案:0或-413.如图,已知长方体ABCD -A 1B 1C 1D 1的对称中心在坐标原点,交于同一顶点的三个面分别平行于三个坐标平面,顶点A (-2,-3,-1),求其他七个顶点的坐标.解析:由题意,得点B 与点A 关于xOz 平面对称, 故点B 的坐标为(-2,3,-1);点D 与点A 关于yOz 平面对称,故点D 的坐标为(2,-3,-1); 点C 与点A 关于z 轴对称,故点C 的坐标为(2,3,-1); 由于点A 1,B 1,C 1,D 1分别与点A ,B ,C ,D 关于xOy 平面对称,故点A 1,B 1,C 1,D 1的坐标分别为A 1(-2,-3,1),B 1(-2,3,1),C 1(2,3,1),D 1(2,-3,1).14.已知点M (3,2,1),N (1,0,5),求: (1)线段MN 的长度;(2)到M ,N 两点的距离相等的点P (x ,y ,z )的坐标满足的条件. 解析:(1)根据空间两点间的距离公式得 |MN |=-2+-2+-2=26,所以线段MN 的长度为2 6.(2)因为点P (x ,y ,z )到M ,N 两点的距离相等,所以x -2+y -2+z -2=x -2+y -2+z -2,化简得x +y -2z +3=0,因此,到M,N两点的距离相等的点P(x,y,z)的坐标满足的条件是x+y-2z+3=0.。
人教版高一数学必修二《空间直角坐标系》教案及教学反思

人教版高一数学必修二《空间直角坐标系》教案及教学反思一、课程背景本课程是高一数学必修二的一部分,主要讲解空间直角坐标系的基本知识和应用。
学生需要掌握三维空间中点、向量及其坐标表示、平面与直线的方程以及空间图形的分析方法等内容。
二、教学目标知识目标1.掌握三维空间直角坐标系的概念和基本性质;2.掌握点、向量和坐标表示;3.学习平面和直线的方程;4.了解空间图形的分析方法。
能力目标1.能够在三维空间中确定点、向量以及平面和直线的方程;2.能够对空间图形进行分析和判断。
情感目标1.提高学生的数学思维能力;2.培养学生的空间想象能力;3.培养学生的数学兴趣和探究精神。
三、教学重点和难点教学重点1.点、向量和坐标表示的概念和性质;2.平面和直线的方程的求法;3.空间图形的分析方法。
教学难点1.向量和坐标表示的转换;2.平面和直线的方程的求解;3.空间图形的分析和判断。
四、教学过程1. 导入环节本节课主要讲解空间直角坐标系的基本知识和应用。
教师可以通过提问学生空间直角坐标系的概念和应用,引导学生进入学习状态。
2. 知识讲解(1)点、向量和坐标表示在三维空间中,点和向量是基本的空间对象。
点代表一个位置,向量代表从一个位置移动到另一个位置的方向和长度。
点和向量都可以使用坐标进行表示。
在空间直角坐标系中,我们通常用三个互相垂直的坐标轴来表示一个点或一个向量。
这三个坐标轴分别为x轴、y轴和z轴,三个坐标轴上的数值分别为x、y和z。
因此,一个点或向量可以表示为一个三元组(x,y,z)。
(2)平面和直线的方程在三维空间中,平面和直线有各自的方程。
平面的方程一般有三种,分别为点法式、一般式和截距式。
1.点法式:平面上任意一点M(x0,y0,z0)到法向量$\\bold{n}(A,B,C)$ 的距离等于常数d。
平面的标准式为Ax+By+Cz+D=0,其中A,B,C分别为法向量$\\bold{n}$ 的三个元素,D=−d。
2.一般式:平面的一般式为Ax+By+Cz+D=0,其中A,B,C,D为常数,A,B,C不全为零。
数学知识点人教A版数学必修二 4.3.1 《空间直角坐标系》学案2-总结

重庆市万州分水中学高中数学 4.3.1 空间直角坐标系学案新人教A版必修2课前预习学案一、预习目标1.用类比的数学思想方法探索空间直角坐标系的建立方法.2.理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.二、预习内容1. 如何确定一个点在一条直线上的位置?。
2. 如何确定一个点在一个平面内的位置?。
3.从空间某一个定点O引三条互相垂直且有相同单位长度的数轴:x轴,y轴,z轴.这样就建立了,点O叫作,x轴、y轴、z轴叫作,这三条坐标轴中每两条确定一个坐标平面,分别称为 , , .4.在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为。
5.空间任意点A的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点A在此,记作。
其中x 叫做点A的,y 叫做点A的,z叫做点A的。
6.空间两点间的距离公式。
三、提出疑惑1、;2、;3、。
课内探究学案一、学习目标1.让学生用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程.2.理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.学习重点:求一个几何图形的空间直角坐标。
学习难点:空间直角坐标系的理解。
二、学习过程思考1:如何确定一个点在三维空间内的位置?例:如图26-2,在房间(立体空间)内如何确定电灯位置?思考2:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?思考3:(1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?典型例题例1、在空间直角坐标系O—xyz中,作出点P(5,4,6).注意:在分析中紧扣坐标定义,第一步从原点出发沿x 轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z 轴平行的方向向上移动6个单位(如图26-5).变式练习: 已知长方体ABCD -A ′B ′C ′D ′的边长AB =12,AD =8,AA ′=5,以这个长方体的顶点A 为坐标原点,射线AB ,AD ,AA ′分别为x 轴、y 轴和z 轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.讨论:若以C 点为原点,以射线CB ,CD ,CC ′方向分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为21的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz 后,试写出全部钠原子所在位置的坐标。
高一数学人教版A版必修二课件:4.3.1 空间直角坐标系

第四章 § 4.3 空间直线坐标系4.3.1 空间直角坐标系学习目标1.了解空间直角坐标系的建系方式;2.掌握空间中任意一点的表示方法;3.能在空间直角坐标系中求出点的坐标.问题导学题型探究达标检测问题导学 新知探究 点点落实知识点 空间直角坐标系思考1 在数轴上,一个实数就能确定一个点的位置.在平面直角坐标系中,需要一对有序实数才能确定一个点的位置.为了确定空间中任意一点的位置,需要几个实数?答案 三个.思考2 空间直角坐标系需要几个坐标轴,它们之间什么关系?答案 空间直角坐标系需要三个坐标轴,它们之间两两相互垂直.1.空间直角坐标系及相关概念(1)空间直角坐标系:从空间某一定点引三条两两垂直,且有相同单位长度的数轴: ,这样就建立了一个 (2)相关概念: 叫做坐标原点,叫做坐标轴,通过x 轴、y 轴、z 轴空间直角坐标系Oxyz x 轴、y 轴、z 轴两个坐标轴每点O xOy yOz zOxx 轴y 轴z 轴3.空间一点的坐标空间一点M 的坐标可以用 来表示,_________________叫做点M 在此空间直角坐标系中的坐标,记作 ,其中叫做点M 的横坐标,叫做点M 的纵坐标, 叫做点M 的竖坐标.有序实数组(x ,y ,z )有序实数组(x ,y ,z )(x ,y ,z )x y z题型探究 重点难点 个个击破类型一 求空间点的坐标例1 (1)如图,在长方体ABCD-AB1C1D1中,|AD|=|BC|=3,|AB|=5,1|AA1|=4,建立适当的直角坐标系,写出此长方体各顶点的坐标.(2)在棱长为a的正四棱锥P-ABCD中,建立适当的空间直角坐标系.①写出四棱锥P-ABCD各个顶点的坐标;②写出棱PA的中点M的坐标.跟踪训练1 在棱长为1的正方体ABCD—AB1C1D1中,E、F分别是D1D、1BD的中点,G在棱CD上,且|CG|= |CD|,H为C1G的中点,试建立适当的坐标系,写出E、F、G、H的坐标.类型二 已知点的坐标确定点的位置例2 在空间直角坐标系Oxyz中,作出点P(5,4,6).解 方法一 第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图所示),即得点P.方法二 以O为顶点构造长方体,使这个长方体在点O处的三条棱分别在x轴、y轴、z轴的正半轴上,且棱长分别为5,4,6,则长方体与顶点O相对的顶点即为所求点P.跟踪训练2 在空间直角坐标系Oxyz中,点P(-2,0,3)位于( )AA.xOz平面内B.yOz平面内C.y轴上D.z轴上解析 因为点P的纵坐标y=0,且x,z均不为0,故点P位于xOz平面内.类型三 空间中点的对称问题例3 求点A(1,2,-1)关于坐标平面xOy及x轴对称的点的坐标.解 过A作AM⊥平面xOy于M,并延长到C,使|AM|=|CM|,则A与C关于坐标平面xOy对称且C(1,2,1).过A作AN⊥x轴交x轴于N,并延长到点B,使|AN|=|NB|,则A与B关于x轴对称且B(1,-2,1),∴A(1,2,-1)关于坐标平面xOy对称的点为C(1,2,1),关于x轴对称的点为B(1,-2,1).跟踪训练3 已知点P(2,3,-1),求:(1)点P关于各坐标平面对称的点的坐标;解 设点P关于xOy坐标平面的对称点为P′,则点P′在x轴上的坐标及在y轴上的坐标与点P的坐标相同,而点P′在z轴上的坐标与点P在z轴上的坐标互为相反数.所以,点P关于xOy坐标平面的对称点P′的坐标为(2,3,1).同理,点P关于yOz,xOz坐标平面的对称点的坐标分别为(-2,3,-1),(2,-3,-1).(2)点P关于各坐标轴对称的点的坐标;解 设点P关于x轴的对称点为Q,则点Q在x轴上的坐标与点P的坐标相同,而点Q在y轴上的坐标及在z轴上的坐标与点P在y轴上的坐标及在z轴上的坐标互为相反数.所以,点P关于x轴的对称点Q的坐标为(2,-3,1).同理,点P关于y轴、z轴的对称点的坐标分别为(-2,3,1),(-2,-3,-1).(3)点P关于坐标原点对称的点的坐标.解 点P(2,3,-1)关于坐标原点对称的点的坐标为(-2,-3,1).达标检测 451231.点P(a,b,c)到坐标平面xOy的距离是( )DA. B.|a| C.|b| D.|c|解析 点P在xOy平面的射影的坐标是P′(a,b,0),所以|PP′|=|c|.2.点P(1,4,-3)与点Q(3,-2,5)的中点坐标是( )C A.(4,2,2) B.(2,-1,2)C.(2,1,1)D.(4,-1,2)解析 设点P与Q的中点坐标为(x,y,z),3.在空间直角坐标系中,已知点A(-1,2,-3),则点A在yOz平面内射(0,2,-3)影的点的坐标是__________.解析 由空间直角坐标系中点的坐标的确定可知,点A在yOz平面内的射影的点的坐标是(0,2,-3).4.点P (1,1,1)关于xOy 平面的对称点P 1的坐标为____________;点P 1关于z 轴的对称点P 2的坐标为________________.解析 点P (1,1,1)关于xOy 平面的对称点P 1的坐标为(1,1,-1),点P 1关于z 轴的对称点P 2的坐标为(-1,-1,-1).(1,1,-1)(-1,-1,-1)5.如图,正四棱柱ABCD-A1B1C1D1(底面为正方形的直棱柱)中,|AA1|=2|AB|=4,点E在CC1上且|C1E|=3|EC|.试建立适当的坐标系,写出点B,C,E,A1的坐标.解 以点D为坐标原点,射线DA,DC,DD1为x轴、y轴、z轴的正半轴,建立如图所示的空间直角坐标系Dxyz.依题设,B(2,2,0),C(0,2,0),E(0,2,1),A1(2,0,4).规律与方法1.空间中确定点M坐标的三种方法:(1)过点M作MM1垂直于平面xOy,垂足为M1,求出M1的x坐标和y坐标,再由射线M1M的指向和线段MM1的长度确定z的坐标.(2)构造以OM为体对角线的长方体,由长方体的三个棱长结合点M的位置,可以确定点M的坐标.(3)若题中所给的图形中存在垂直于坐标轴的平面,或点M在坐标轴或坐标平面上,则利用这一条件,再作轴的垂线即可确定点M的坐标.2.求空间对称点的规律方法(1)空间的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.(2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.。
高中数学教案之高一数学人教版必修二4.3.1空间直角坐标系

系的必要性,培养学生类比和数列结合的思想
.
教学
教学内容
备
过程
注
一、 自主 学习
二、 质疑 提问
高中数学教案之高一数学人教版必修二 4.3.1 空间直角坐标系
ห้องสมุดไป่ตู้
高中数学教案之高一数学人教版必修二 4.3.1 空间直角坐标系
高中数学教案之高一数学人教版必修二 4.3.1 空间直角坐标系
三、 问题 探究
高中数学教案之高一数学人教版必修二 4.3.1 空间直角坐标系
高中数学教案之高一数学人教版必修二 4.3.1 空间直角坐标系
高中数学教案之高一数学人教版必修二 4.3.1 空间直角坐标系
四、 课堂 检测
五、 小结 评价
高中数学教案之高一数学人教版必修二 4.3.1 空间直角坐标系
高中数学教案之高一数学人教版必修二 4.3.1 空间直角坐标系
高一数学必修二教案
科目:数学
课题
课型
空间直角坐标系
( 1)使学生理解掌握空间中点的坐标表示
教学
目标
( 2)使学生深刻感受到空间直角坐标系的建立的背景
( 3)建立空间直角坐标系的方法与空间点的坐标表示
新课
( 4)通过数轴与数、平面直角坐标系与一对有序实数,引申出建立空间直角坐标
人教A版高中数学必修二课件4.3.1空间直角坐标系2

E
1
M (x,y,z)
O
•
C
1
y
P1 F
A
z
M (x,y,z)
1
O
•
1 1p
y
x
M’(x, y, -z)
一个房间的示意图如下, 若要给这个房间安装
一个顶灯, 试确定它的位置.
zD H
F
E 3m
G
4m o xA
6m C
y B
一个房间的示意图如下, 若要给这个房间安装
一个顶灯, 试确定它的位置.
z
yoz平面上的点横坐标为0 y xoz平面上的点纵坐标为0
•1
A
•D
x
二、坐标轴上的点
x轴上的点纵坐标和竖坐标都为0
y轴上的点横坐标和竖坐标都为0
z轴上的点横坐标和纵坐标都为0
例1:如图
在长方体OABC - DⅱA BⅱC 中,OA =
3,OC = 4,ODⅱ= 2,写出D ,C,Aⅱ ,B
四点的坐标.
A
•P
y
• P2 y
C
z
z P1
1
P点坐标为 (x,y,z)
x
•o
1
1
xM
P
•
yy
N
•P0
(-,-,+)
Ⅲ
(+,-,+) yz 面
Ⅳ
xy 面
(-,-,-)
Ⅶ
x
Ⅷ
(+,-,-)
z zx 面
(-,+,+)
Ⅱ
•O
Ⅰ
y (+,+,+)
Ⅴ
(+,+,-)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4. 3.1空间直角坐标系(教案)【教学目标】1.让学生经历用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程,学会科学的思维方法.2.理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.3.进一步培养学生的空间想象能力与确定性思维能力.【教学重难点】重点:求一个几何图形的空间直角坐标。
难点:空间直角坐标系的理解。
【教学过程】一、情景导入1. 确定一个点在一条直线上的位置的方法.2. 确定一个点在一个平面内的位置的方法.3. 如何确定一个点在三维空间内的位置?例:如图26-2,在房间(立体空间)内如何确定电灯位置?在学生思考讨论的基础上,教师明确:确定点在直线上,通过数轴需要一个数;确定点在平面内,通过平面直角坐标系需要两个数.那么,要确定点在空间内,应该需要几个数呢?通过类比联想,容易知道需要三个数.要确定电灯的位置,知道电灯到地面的距离、到相邻的两个墙面的距离即可.(此时学生只是意识到需要三个数,还不能从坐标的角度去思考,因此,教师在这儿要重点引导)教师:在地面上建立直角坐标系xOy,则地面上任一点的位置只须利用x,y就可确定.为了确定不在地面内的电灯的位置,须要用第三个数表示物体离地面的高度,即需第三个坐标z.因此,只要知道电灯到地面的距离、到相邻的两个墙面的距离即可.例如,若这个电灯在平面xOy上的射影的两个坐标分别为4和5,到地面的距离为3,则可以用有序数组(4,5,3)确定这个电灯的位置(如图26-3).这样,仿照初中平面直角坐标系,就建立了空间直角坐标系O—xyz,从而确定了空间点的位置.二、合作探究、精讲点拨1. 在前面研究的基础上,先由学生对空间直角坐标系予以抽象概括,然后由教师给出准确的定义.从空间某一个定点O引三条互相垂直且有相同单位长度的数轴,这样就建立了空间直角坐标系O—xyz,点O叫作坐标原点,x轴、y轴、z轴叫作坐标轴,这三条坐标轴中每两条确定一个坐标平面,分别称为xO平面,yO平面,zOx平面.教师进一步明确:(1)在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为右手坐标系,课本中建立的坐标系都是右手坐标系.(2)将空间直角坐标系O—xyz画在纸上时,x轴与y轴、x轴与z轴成135°,而y轴垂直于z轴,y轴和z轴的单位长度相等,但x轴上的单位长度等于y轴和z轴上的单位长度的,这样,三条轴上的单位长度直观上大致相等.2. 空间直角坐标系O—xyz中点的坐标.思考1:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?在学生充分讨论思考之后,教师明确:(1)过点A作三个平面分别垂直于x轴,y轴,z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,这样,对空间任意点A,就定义了一个有序数组(x,y,z).(2)反之,对任意一个有序数组(x,y,z),按照刚才作图的相反顺序,在坐标轴上分别作出点P,Q,R,使它们在x轴、y轴、z轴上的坐标分别是x,y,z,再分别过这些点作垂直于各自所在的坐标轴的平面,这三个平面的交点就是所求的点A.这样,在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)之间就建立了一种一一对应关系:A(x,y,z).教师进一步指出:空间直角坐标系O—xyz中任意点A的坐标的概念对于空间任意点A,作点A在三条坐标轴上的射影,即经过点A作三个平面分别垂直于x轴、y轴和z轴,它们与x轴、y轴、z轴分别交于点P,Q,R,点P,Q,R在相应数轴上的坐标依次为x,y,z,我们把有序数组(x,y,z)叫作点A的坐标,记为A(x,y,z).(如图26-4)思考2:(1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?解:(1)xOy平面、xOz平面、yOz平面内的点的坐标分别形如(x,y,0),(x,0,z),(0,y,z).(2)x轴、y轴、z轴上点的坐标分别形如(x,0,0),(0,y,0),(0,0,z).三、典型例题例1、在空间直角坐标系O—xyz中,作出点P(5,4,6).注意:在分析中紧扣坐标定义,强调三个步骤,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5).变式练习: 已知长方体ABCD -A ′B ′C ′D ′的边长AB =12,AD =8,AA ′=5,以这个长方体的顶点A 为坐标原点,射线AB ,AD ,AA ′分别为x 轴、y 轴和z 轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.注意:此题可以由学生口答,教师点评.解:A (0,0,0),B (12,0,0),D (0,8,0),A ′(0,0,5),C (12,8,0),B ′(12,0,5),D ′(0,8,5),C ′(12,8,5).讨论:若以C 点为原点,以射线CB ,CD ,CC ′方向分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢? 得出结论:建立不同的坐标系,所得的同一点的坐标也不同.例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为21的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz 后,试写出全部钠原子所在位置的坐标。
解:把图中的钠原子分成下、中、上三层来写它们所在位置的坐标。
下层原子全在xOy 平面,它们所在位置的竖坐标全是0,所以下层的五个钠原子所在位置的坐标分别为:(0,0,0),(1,0,0),(1,1,0),(0,1,0),(21,21,0), 中层的四个钠原子所在位置的坐标分别为: (21,0,21),(1,21,21),(21,1, 21),(0,21, 21) 上层的五个钠原子所在位置的坐标分别为: (0,0,1),(1,0,1),(1,1,1),(0,1,1),(21,21,1)。
变式练习:在长方体OABC -D ’A ’B ’C ’中,∣OA ∣=3,∣OC ∣=4,∣OD '∣=2,写出D ' 、C 、 A ' 、B '四点关于平面xOy 对称的坐标。
注意:此题可以由学生口答,教师点评.解:因为D '在z 轴上,且∣OD '∣=2,它的竖坐标为2,它的横坐标与纵坐标都是零,所以D '点的坐标是(0,0,2),点C 在y 轴上,且∣OC ∣=4,所以点C 的坐标为(0,4,0),点A'的坐标为(3,0,2),B'的坐标为(3,4,2)。
所以D'点对称点的坐标是(0,0,-2),点C 对称点的坐标为(0,4,0),点A'对称点的坐标为(3,0,-2),B'的对称点坐标为(3,4,-2)。
四、反思总结:五、当堂检测:1. 在空间直角坐标系中,画出下列各点:A(0,0,3),B(1,2,3),C(2,0,4),D(-1,2,-2).2. 已知:长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=7,以这个长方体的顶点B为坐标原点,射线AB,BC,BB′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.3. 写出坐标平面yOz上∠yOz平分线上的点的坐标满足的条件.【板书设计】一、空间直角坐标系二、例题例1变式1例2变式2【作业布置】作业:P138 24.3.1空间直角坐标系(导学案)课前预习学案一、预习目标1.用类比的数学思想方法探索空间直角坐标系的建立方法.2.理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.二、预习内容1. 如何确定一个点在一条直线上的位置?。
2. 如何确定一个点在一个平面内的位置?。
3.从空间某一个定点O引三条互相垂直且有相同单位长度的数轴:x轴,y轴,z轴.这样就建立了,点O叫作,x轴、y轴、z轴叫作,这三条坐标轴中每两条确定一个坐标平面,分别称为 , , .4.在空间直角坐标系中,让右手拇指指向x轴的正方向,食指指向y轴的正方向,若中指指向z轴的正方向则称这个坐标系为。
5.空间任意点A的坐标可以用有序实数组(x,y,z)来表示,有序实数组(x,y,z)叫做点A在此,记作。
其中x 叫做点A的,y 叫做点A的,z叫做点A的。
6.空间两点间的距离公式。
三、提出疑惑1、;2、;3、。
课内探究学案一、学习目标1.让学生用类比的数学思想方法探索空间直角坐标系的建立方法,进一步体会数学概念、方法产生和发展的过程.2.理解空间直角坐标系与点的坐标的意义,掌握由空间直角坐标系内的点确定其坐标或由坐标确定其在空间直角坐标系内的点,认识空间直角坐标系中的点与坐标的关系.学习重点:求一个几何图形的空间直角坐标。
学习难点:空间直角坐标系的理解。
二、学习过程思考1:如何确定一个点在三维空间内的位置?例:如图26-2,在房间(立体空间)内如何确定电灯位置?思考2:在空间直角坐标系中,空间任意一点A与有序数组(x,y,z)有什么样的对应关系?思考3:(1)在空间直角坐标系中,坐标平面xOy,xOz,yOz上点的坐标有什么特点?(2)在空间直角坐标系中,x轴、y轴、z轴上点的坐标有什么特点?典型例题例1、在空间直角坐标系O—xyz中,作出点P(5,4,6).注意:在分析中紧扣坐标定义,第一步从原点出发沿x轴正方向移动5个单位,第二步沿与y轴平行的方向向右移动4个单位,第三步沿与z轴平行的方向向上移动6个单位(如图26-5).变式练习:已知长方体ABCD-A′B′C′D′的边长AB=12,AD=8,AA′=5,以这个长方体的顶点A为坐标原点,射线AB,AD,AA′分别为x轴、y轴和z轴的正半轴,建立空间直角坐标系,求这个长方体各个顶点的坐标.讨论:若以C 点为原点,以射线CB ,CD ,CC ′方向分别为x ,y ,z 轴的正半轴,建立空间直角坐标系,那么各顶点的坐标又是怎样的呢?例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为21的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子,如图,建立空间直角坐标系Oxyz 后,试写出全部钠原子所在位置的坐标。
变式练习:在长方体OABC -D ´A ´B ´C ´中,∣OA ∣=3,∣OC ∣=4,∣OD '∣=2,写出D '、C 、 A ' 、B '四点关于平面xOy 对称的坐标。