八年级下第9单元导学案

合集下载

人教版英语八年级下册导学案

人教版英语八年级下册导学案

Unit4Section A一、学习目标:1) Important words: mad, anymore, message, suppose, hard-working2) Important phrases: watch soap operas, be supposed to do, first of all, pass on, sth. happen on …3) Important Sentences①She said she was mad at Marcia. ②She said she was having a party for Lana.③What happened on “Young Lives” last night? ④You are supposed to meet at the bus stop to return it.4) Grammar: 直接引语和间接引语二、学法指导:运用任务型学习,驱动学生掌握直接引语与间接引语之间的转化三、学习过程:Step1自学单元语法:(直接引语和间接引语)(一) 直接引语和间接引语的含义:引述别人的话时,一般采用两种形式:一是引用别人的原话,两边用引号标出,称为直接引语;二是用自己的语言转述别人的话,称为间接引语。

间接引语在句中实际上就是宾语从句。

(二) 直接引语变间接引语的方法:1.从句人称的变化:由直接引语变间接引语时,从句的主语人称要遵循一主、二宾、三不变的原则。

1)直接引语的主语是第一人称时,变为间接引语时要和主句的主语保持一致。

2)eg:①They said,“We will go there by bus”。

→They said they would go there by bus.3)②He said,“I am visiting my aunt next week.”→He said that he was visiting his aunt next week.2)如果直接引语的主语是第二人称,变为间接引语时要与主句的宾语保持一致。

人教版八年级数学下册单元导学案-第十六章 二次根式(单元学案)

人教版八年级数学下册单元导学案-第十六章 二次根式(单元学案)

人教版八年级数学下册单元导学案16.1.1 二次根式(第1课时)学习目标1.能根据算术平方根的意义了解二次根式的概念.2.知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数.(难点)3.会求二次根式中被开方数字母的取值范围.(重点)学习过程一、合作探究【问题1】你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为 ,面积为S 的正方形的边长为 .(2)一个物体从高处自由落下,落到地面所用的时间t (单位:s)与开始落下的高度h (单位:m)满足关系h=5t 2,如果用含有h 的式子表示t ,则t= .【问题2】上面得到的式子√3,√S,√ℎ5有什么共同特征?【问题3】你能用一个式子表示一个非负数的算术平方根吗?什么样的式子叫做二次根式?追问:在二次根式的概念中,为什么要强调“a ≥0”?【问题4】你能比较√a 与0的大小吗?二、跟踪练习1.下列式子,哪些是二次根式,哪些不是二次根式:√2,√33,1x ,√x (x>0),√0,√24,-√2,1x+y,√x +y (x ≥0,y ≥0).2.当x 是多少时,√3x -1在实数范围内有意义?3.当x是什么实数时,下列各式有意义.;(3)√-x2;(4)√x-2−√2-x.(1)√3-4x;(2)√xx-1三、变化演练1.使式子√1-x有意义的x的取值范围是.2+x2.若|x-y|+√y-2=0,则x y-3的值为.3.若√x+1+√y-3=0,则(x-1)2+(y+3)2=..求x2+y2的值.4.若x,y为实数,且y=√1-4x+√4x-1+12四、达标检测(一)选择题1.下列式子中,是二次根式的是()3 C.√x D.xA.-√7B.√72.下列式子中,不是二次根式的是()A.√4B.√16C.√8D.1x3.已知一个正方形的面积是5,那么它的边长是()A.5B.√5D.以上皆不对C.154.(2017东营中考)若|x2-4x+4|与√2x-y-3互为相反数,则x+y的值为()A.3B.4C.6D.9(二)填空题5.当√2x+3在实数范围内有意义时,x的取值范围是.x6.若√3-x+√x-3有意义,则√x-2=.(三)解答题7.如图,长方形ABCD在直角坐标系中,边BC在x轴上,B点坐标为(m,0)且m>0,AB=a,BC=b,且满足b=√6-a−√a-6+8.(1)求a,b的值及用m表示出点D的坐标;(2)连接OA ,AC ,若△OAC 为等腰三角形,求m 的值;(3)△OAC 能为直角三角形吗?若能,求出m 的值;若不能,说明理由.参考答案一、合作探究问题1√3,√S,√ℎ5问题2都表示一个非负数(包括字母或式子表示的非负数)的算术平方根. 问题3 √a (a ≥0)一般地,我们把形如√a (a ≥0)的式子叫做二次根式,“√ ”称为二次根号. 因为负数没有算术平方根,所以二次根式的被开方数一定是非负数. 问题4当a>0时,√a 表示a 的算术平方根,因此√a >0, 当a=0时,√a 表示0的算术平方根,因此√a =0, 这就是说,√a (a ≥0)是一个非负数. 二、跟踪练习1.解:二次根式有:√2,√x (x>0),√0,-√2,√x +y (x ≥0,y ≥0); 不是二次根式的有:√33,1x ,√24,1x+y . 2.解:由3x-1≥0,得x ≥13,当x ≥13时,√3x -1在实数范围内有意义. 3.(1)x ≤34 (2)x ≥0且x ≠1 (3)x=0 (4)x=2 三、变化演练 1.x ≤1且x ≠-22.12解析:因为|x-y|≥0,√y -2≥0,所以x=y=2,x y-3=12.3.13 解析:由题意知,x=-1,y=3,所以原式=(-1-1)2+(3+3)2=40.4.解:由题意知x=14,y=12,原式=(14)2+(12)2=516.四、达标检测 1.A 2.D 3.B4.A 解析:因为|x 2-4x+4|与√2x -y -3互为相反数, 所以|x 2-4x+4|+√2x -y -3=0,所以{x 2-4x +4=0,2x -y -3=0,则{x =2,y =1. 所以x+y=3. 5.x ≥-32且x ≠0 6.137.解:(1)∵√6-a 与√a -6有意义,∴{6-a ≥0,a -6≥0.∴a=6, ∴b=8.∵B 点坐标为(m ,0),四边形ABCD 是矩形, ∴D (m+8,6);(2)∵AB=6,BC=8, ∴AC=√62+82=10, ∵B (m ,0),∴OA 2=m 2+62=m 2+36,OC=m+8,当OA=AC 时,m 2+36=100,解得m=8或m=-8(舍去); 当AC=OC 时,10=m+8,解得m=2;当OA=OC 时,m 2+36=(m+8)2,解得m=-74(舍去). 综上所述,m=8或m=2; (3)能.∵m>0,点C 在x 轴上, ∴只能是∠OAC=90°,∴OA 2+AC 2=OC 2,即m 2+36+100=(m+8)2,解得m=92.人教版数学八年级下册导学案16.1.2 二次根式(第2课时)学习目标1.理解二次根式的性质(√a )2=a (a ≥0),并能利用这一结论进行计算.(重点)2.掌握二次根式的基本性质:√a 2=|a|,进行计算和化简.(难点)3.了解代数式的意义,会判断一个式子是否是代数式.学习过程一、合作探究1.根据算术平方根的意义填空: (√3)2= ,(√5)2=,(√23)2= ,(√0)2=从以上等式中,同学们能得出结论:(√a )2= 2.计算:√42=,√0.22=,√(45)2= ,√202= .观察其结果与根号内幂底数的关系,归纳得到:当a>0时,√a 2= .3.计算:√(-4)2= ,√(-0.2)2= ,√(-45)2= ,√(-20)2= .观察其结果与根号内幂底数的关系,归纳得到:当a<0时,√a 2= . 4.计算:√02= ,当a=0时,√a 2= . 归纳总结:将上面做题过程中得到的结论综合起来,得到二次根式的又一条非常重要的性质: √a 2=|a|={a ,a >0,0,a=0,-a ,a <0.二、跟踪练习1.计算:(1)(√32)2= ,(2)(3√5)2=,(3)(√56)2= .2.化简:(1)√0.32= ,(2)√(-0.5)2= ,(3)√(-6)2= ,(4)√(2a )2= (a<0).3.(1)化简:√(a -3)2(a ≥3) (2)√2x +32(x<-2)4.把下列非负数写成一个数的平方的形式: (1)5 (2)3.4 (3)16 (4)x (x ≥0)三、变化演练1.填空:(1)√(2x -1)2-(√2x -3)2(x ≥2)= .(2)√(π-4)2= .(3)若a ,b ,c 为三角形的三条边,则√(a +b -c )2+|b-a-c|= .2.已知2<x<3,化简:√(x -2)2+|x-3|.3.在实数范围内分解下列因式: (1)x 2-2 (2)x 4-9四、达标检测(一)选择题1.√(3-√10)2的值等于( )A.±(3-√10)B.3±√10C.3-√10D.√10-32.化简:√x 2-6x +9-(√3-x )2=( ) A.2x-6 B.0 C.6-2x D.2x+63.下列各式中,二次根式有( )①√(-3)2;②√12-13;③√(a -b )2;④√-a 2-1;⑤√83.A.2个B.3个C.4个D.5个4.下列运算中,错误的有( )①√125144=1512;②√(-4)2=±4;③√-22=-√22=-2;④√116+14=14+12.A.1个B.2个C.3个D.4个(二)填空题5.当1<x<3时,|1-x|+√x 2-6x +9= .6.我们知道:√32=3,√72=7,将两等式反过来得到:3=√32,7=√72,据此我们可以化简:如3×√13=√32×13=√3和7×√27=√72×27=√14,按照上面的方法,化简下列各式:(1)2×√12= ;(2)6×√512= . 7.化简√(1-√3)2的结果是 .8.已知1<x<2,则式子√(x -1)2+|x-2|化简的结果为 . 9.化简:√(-3)2= .10.化简(√3-a )2+√(a -3)2= .11.已知0≤x ≤3,化简√x 2+√x 2-6x +9= .参考答案一、合作探究1.35230a2.40.24520a3.40.24520-a4.00.二、跟踪练习1.(1)32(2)45(3)562.(1)0.3(2)0.5(3)6(4)2a3.解:(1)原式=a-3(2)原式=-2x-34.解:(1)(√5)2(2)(√855)2(3)(√66)2(4)(√x)2三、变化演练1.(1)2(2)4-π(3)2a2.解:√(x-2)2+|x-3|=x-2+3-x=1.3.解:(1)x2-2=(x+√2)(x-√2).(2)x4-9=(x2+3)(x2-3)=(x2+3)(x+√3)(x-√3).四、达标检测1.D2.B3.B4.D5.26.(1)√2(2)√157.√3-18.19.310.6-2a11.3人教版数学八年级下册导学案16.2.1 二次根式的乘除(第1课时)学习目标1.理解√a·√b=√ab(a≥0,b≥0),√ab=√a·√b,并利用它们进行计算和化简.(重点)2.通过探究特殊练习,总结归纳一般规律,二次根式乘法法则√a·√b=√ab(a≥0,b≥0),再进行逆向思维得√ab=√a·√b(a,b取值有何要求),最后通过讲练结合,掌握二次根式乘法计算与化简.(难点)学习过程一、合作探究1.计算:(1)√4×√9=,√4×9=(2)√16×√25=,√16×25=(3)√100×√36=,√100×36=2.根据上题计算结果,用“>”“<”或“=”填空:(1)√4×√9√4×9(2)√16×√25√16×25(3)√100×√36√100×36同学们讨论上面的练习存在什么规律,如果用字母怎么表示?√a·√b√ab(a≥0,b≥0),√ab√a·√b(a≥0,b≥0).二、跟踪练习ay21.计算:(1)√16×√8(2)5√5×2√15(3)√12a3·√132.化简:(1)√20;(2)√18;(3)√24;(4)√54;(5)2b2三、变式演练1.若2=√x+3·√x-3,则x的取值范围是()A.x≥3B.x≤-3C.-3≤x≤3D.不存在根号外的因式移入根号内的结果是()2.把a√-1aA.√-aB.-√-aC.√aD.-√a3.化简:(1)√(-36)×16×(-9);(2)√362+482;(3)√x3+6x2y+9xy2.四、达标检测(一)选择题1.等式√x+1·√x-1=√x2-1成立的条件是()A.x≥1B.x≥-1C.-1≤x≤1D.x≥1或x≤-12.下列各等式成立的是()A.4√5×2√5=8√5B.5√3×4√2=20√5C.4√3×3√2=7√5D.5√3×4√2=20√63.二次根式√(-2)2×6的计算结果是()A.2√6B.-2√6C.6D.12=0,则√b2·√a·√c=()4.若|a-2|+b2+4b+4+√c2-c+14A.4B.2C.-2D.15.下列各式的计算中,不正确的是( ) A.√=√-4×√-6=(-2)×(-4)=8 B.√4a 4=√4×√a 4=√22×√(a 2)2=2a 2C.√32+42=√9+16=√25=5D.√132-122=√(13+12)(13-12)=√13+12×√13-12=√25×1=5 (二)化简与计算6.(1)√360;(2)√32x 4;(3)√18×√30;(4)√3×√2757.计算:(1)6√8×(-2√6);(2)√8ab ×3;8.不改变式子的值,把根号外的非负因式适当变形后移入根号内. (1)-3√23 (2)-2a √12a参考答案一、合作探究略二、跟踪练习1.解:(1)原式=8√2 (2)原式=50√3 (3)原式=2a 2y2.解:(1)原式=2√5;(2)原式=3√2;(3)原式=2√6;(4)原式=3√6;(5)原式=2ab √3. 三、变式演练1.A 解析:要使√x 2-9=√x +3·√x -3有意义,必须x+3≥0且x-3≥0,解得x ≥3,故选A .2.B 解析:∵a<0,∴a √-1a =-√a 2×(-1a )=-√-a ;故选B .3.解:(1)√(-36)×16×(-9)=√36×16×9=√62×42×32=√62×√42×√32=6×4×3=72;(2)√362+482=√(12×3)2+(12×4)2=√122×(32+42)=√122×√52=12×5=60;(3)√x 3+6x 2y +9xy 2=√x (x +3y )2=√(x +3y )2·√x =(x+3y )√x . 四、达标检测1.A2.D3.A4.B5.A6.解:(1)原式=6√10 (2)原式=4√2x 2 (3)原式=6√15 (4)原式=√25 7.解:(1)原式=-48√3 (2)原式=4√3ab 2 8.解:(1)原式=-√32×23=-√9×23=-√6. (2)原式=-√(2a )2·12a =-√4a 2·12a =-√2a .人教版数学八年级下册导学案16.2.2 二次根式的乘除(第2课时)学习目标1.掌握二次根式的除法法则和商的算术平方根的性质.(重点)2.能熟练进行二次根式的除法运算及化简.(难点)学习过程一、合作探究填空:(1)√9√16= ,√916= ;规律:√9√16√916; (2)√1636= ,√1636= ;√16√36 √1636; (3)√4√16= ,√416= ;√4√16√416; (4)√36√81= ,√3681= ;√36√81√3681. 一般地,对二次根式的除法规定:√a √b= (a ≥0,b>0),反过来,√b= (a ≥0,b>0).二、跟踪练习1.计算:(1)√12√3(2)√32÷√18 (3)√14÷√116 (4)√6482.化简:(1)√364(2)√64b 29a 2 (3)√9x 64y 2 (4)√5x169y 2注:1.当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,被开方数之商作为被开方数.2.化简二次根式达到的要求:(1)被开方数不含分母;(2)分母中不含有二次根式.三、变式演练1.阅读下列运算过程:√3=√3√3×√3=√33√5=√5√5×√5=2√55数学上将这种把分母的根号去掉的过程称作“分母有理化”.利用上述方法化简: (1)6= (2)32= (3)12=(4)√102√5=四、达标检测(一)选择题1.计算√6a ÷√3a 的结果是( )A.√2B.√22C.√2aD.√2a22.下列计算正确的是( ) A.√3÷√5=15√3 B.√3÷√25=15√3 C.√125÷√5=√5 D.√x ÷x=√x3.等式√3x -1x -2=√3x -1√x -2成立的条件是( )A.x>13 B.x ≥13 C.x>2D.13≤x<24.如果ab>0,a+b<0,那么下面各式:①√ab =√a√b,②√a b ·√b a =1,③√ab ÷√ab=-b ,其中正确的是( )A.①②B.②③C.①③D.①②③5.计算:√2×√6√3-1的结果是( )A.1B.√2C.√3D.√6(二)填空题6.计算:13√12x ÷2√13x = . 7.计算:√3×√5√5= .8.计算:√6√24的结果为 ,√3×√6÷√2= .9.有一个矩形的面积是√30 m 2,宽为√5 m,则它的长是 m . (三)计算题 10.计算:(1)6√6÷3√3;(2)√18÷8×√272.11.将下列各式化成最简二次根式:(1)√2-2;(2)√12xy÷23√y.12.化简35√xy5÷(-415√yx)·(-56√x3y).参考答案一、合作探究略二、跟踪练习1.解:(1)2(2)2√3(3)2(4)2√22.解:(1)√38(2)8b3a(3)38y√x(4)√5x13y三、变式演练略四、达标检测1.A解析:原式=√6a=√2,故选A.2.B解析:A.√3÷√5=√3√5=√155,故本选项错误;B.√3÷√25=√3√25=15√3,正确;C.√125÷√5=√125√5=√5√5=5,故本选项错误;D.√x÷x=√xx,故本选项错误,故选B.3.C解析:∵等式√3x-1x-2=√3x-1√x-2成立,∴{3x -1≥0,x -2>0,解得x>2.故选C .4.B 解析:∵ab>0,a+b<0, ∴a<0,b<0,①√ab =√ab,被开方数应大于等于0,a ,b 不能做被开方数,故①错误,②√ab ·√b a =√a b ·ba =√1=1,故②正确. ③√ab ÷√a b =√ab ÷√ab-b =√ab ·√ab=-b ,故③正确. 故选B .5.A 解析:原式=√12√3-1=2-1=1,故选A .6.x 解析:13√12x ÷2√13x =13·2√3x ÷2·√3x3x =23×3x2√3x ÷3x =x.故答案为x.7.5√3 解析:原式=√3×√5×√5=5√3,故答案为:5√3. 8.123 解析:√624=√624=√14=12,√3×√6÷√2=√3×6÷2=3.故答案为123.9.√6 解析:∵有一个矩形的面积是√30m 2,宽为√5m,∴它的长是√30÷√5=√6m .故答案为√6.10.解:(1)原式=(6÷3)×√6÷3=2√2;(2)原式=3√2×1×√272=9√3.11.解:(1)原式=(√2-1)√22=1-√22;(2)原式=√18x =3√2x . 12.解:原式=35×(-154)×(-56)×√xy 5·xy ·x 3y =158x 2y 2√xy .人教版数学八年级下册导学案16.3.1 二次根式的加减(第1课时)学习目标1.理解同类二次根式,并能判定哪些是同类二次根式.(重点)2.理解和掌握二次根式加减的方法.(重点)3.先提出问题,分析问题,在分析问题中,渗透对二次根式进行加减的方法的理解.再总结经验,用它来指导根式的计算和化简.(难点)学习过程一、合作探究1.计算.(1)2x+3x ;(2)2x 2-3x 2+5x 2;(3)x+2x+3y ;(4)3a 2-2a 2+a 22.(小组互助)学生活动:类比着计算1,尝试计算下列各式.(小组互助)(1)2√2+3√2=(2)2√8-3√8+5√8= (3)√7+2√7+√9×7= (4)3√3-2√3+√2=总结:(1)二次根式的被开方数相同也是可以合并的,如2√2与√8表面上看是不相同的,但它们可以合并吗?也可以.(与整数中同类项的意义相类似,我们把3√3与-2√3,3√a ,-2√a 与4√a 这样的几个二次根式,称为同类二次根式)(2)二次根式加减时,可以先将二次根式化成最简二次根式,再将同类二次根式进行合并.二、跟踪练习1.下列计算正确的是( )A.√45-2√5=√5B.√2+√3=√5C.3+√2=3√2D.√(-16)(-9)=√-16·√-92.下列根式中能与√3合并的二次根式为( ) A.√32B.√24C.√12D.√183.与-√5是同类二次根式的是( ) A.√10B.√15C.√20D.√254.计算:3√48-9√13+3√18-4√18.5.化简:√32-4√0.5+3√8;三、变式演练(1)√12−(√1-√1); (2)(√48+√20)+(√12−√5); (3)x √1x+√4y −√x2+y √1y; (4)2x √9x −(x 2√1-6x√x).四、达标检测(一)选择题1.下列二次根式中与√2是同类二次根式的是( )A.√4B.√6C.√8D.√10 2.下列二次根式中,不能与√3合并的是( ) A.2√3 B.√12 C.√18D.√273.下列计算正确的是( ) A.√2+√2=2 B.3+√2=3√2 C.√3+√2=√5D.√9+√3=3+√34.下列计算正确的是( )A.6√5-5√5=1B.√3+√7=√10C.2√12=√2D.4+√3=4√35.计算2√12−√18的结果是( ) A.-√2B.-2√2C.-4√2D.-8√2(二)填空题6.下列二次根式,不能与√12合并的是 (填写序号即可).①√48;②√18;③√32.7.如果最简二次根式√a 2+3a 与√a +15能合并,那么a= . 8.计算(4√6-6√2)+2√2等于 . 9.计算√3+√12= . (三)计算题10.(1)(√24-√12)-2(√18+√6) (2)2√3+√27−√13 (3)4√5+√45−√20 (4)2√12-6√1+3√48参考答案一、合作探究1.(1)原式=5x ;(2)原式=4x 2;(3)原式=3x+3y ;(4)原式=2a 22.(1)原式=5√2;(2)原式=4√2;(3)原式=6√7;(4)原式=2√2 二、跟踪练习1.A 解析:A.原式=3√5-2√5=√5,所以A 选项正确;B.√2与√3不能合并,所以B 选项错误;C.3与√2不能合并,所以C 选项错误;D.原式=√16×9=√16×√9,所以D 选项错误.故选A .2.C 解析:A.√32=√62,和√3不能合并,故本选项错误;B.√24=2√6,和√3不能合并,故本选项错误;C.√12=2√3,和√3能合并,故本选项正确;D.√18=3√2,和√3不能合并,故本选项错误.故选C .3.C 解析:A.√10与-√5的被开方数不同,故A 错误;B.√15与-√5的被开方数不同,故B 错误;C.√20=2√5与-√5的被开方数相同,故C 正确;D.√25=5与-√5的被开方数不同,故D 错误;故选C .4.解:3√48-9√13+3√18-4√18 =3×4√3-9×√33+3×3√2-4×√24 =12√3-3√3+9√2−√2 =9√3+8√2.5.解:√32-4√0.5+3√8 =4√2-4×√22+3×2√2 =8√2三、变式演练解:(1)原式=2√3−(√33-√39)=2√3−√33+√39=169√3 (2)原式=4√3+2√5+2√3−√5=6√3+√5 (3)原式=√x +2√y −√x2+√y =√x2+3√y (4)原式=2x √x -(x √x -3x √x )=4x √x 四、达标检测1.C 解析:A.√4=2,与√2不是同类二次根式;B.√6与√2不是同类二次根式;C.√8=2√2与√2是同类二次根式,正确;C.√10与√2不是同类二次根式.故选C.2.C 解析:A.2√3能与√3合并,故A 不符合题意;B.√12=2√3能与√3合并,故B 不符合题意;C.√18=3√2不能与√3合并,故C 符合题意;D.√27=3√3能与√3合并,故D 不符合题意.故选C .3.D 解析:A .√2+√2=2√2,故A 错误;B.3+√2不能合并,故B 错误;C.√3+√2不能合并,故C 错误;D.√9+√3=3+√3,故D 正确,故选D .4.C 解析:本题考查二次根式的混合运算.熟练地掌握公式是解题的关键.对于选项A,6√5-5√5=√5,故错误;对于选项B,√3+√7没有同类项,不能合并,故错误;对于选项C,2√12=2×√22=√2,故正确;对于选项D,4+√3没有同类项,不能合并,故错误;故选C .5.B 解析:2√12−√18=√2-3√2=-2√2,故选B .6.② 解析:√12=√4×3=2√3,√48=√16×3=4√3,√18=√9×2=3√2,所以√48,√32与√12为同类二次根式,它们可以合并.故答案为②.7.-5或3 解析:最简二次根式√a 2+3a 与√a +15能合并,得a 2+3a=a+15,解得a=-5或a=3.故答案为-5或3.8.4√6-4√2 解析:(4√6-6√2)+2√2=4√6-6√2+2√2=4√6-4√2,故答案为4√6-4√2. 9.3√3 解析:原式=√3+2√3=3√3.故答案为3√3. 10.解:(1)原式=2√6−√22−√22-2√6=-√2. (2)原式=2√3+3√3−√33=14√33.(3)原式=4√5+3√5-2√5=5√5.(4)原式=4√3-2√3+12√3=14√3.人教版数学八年级下册导学案16.3.2 二次根式的加减(第2课时)学习目标1.熟练应用二次根式的加减乘除法法则进行二次根式的混合运算.(重点)2.二次根式混合运算的顺序、乘法公式的综合运用.(难点)学习过程一、合作探究1.探究计算(提示:类比乘法公式计算.) (1)(√8+√3)×√6;(2)(4√2-3√6)÷2√2.2.探究计算(1)(2√3−√2)2;(2)(2√3+3√2)(2√3-3√2).二、自主练习(1)√5-(√3+√15)÷√6×√2; (2)(√48-4√18)−(3√13-2√0.5); (3)(3+√5)(3-√5)-(√3-1)2; (4)(-√3+1)(√3-1)-√(-3)22-√5. 三、变式演练1.计算:(1)√12−(√33)-1+√3(√3-1)-2 0180-|√3-2|; (2)(2√6−√3+√2)×(2√6−√3−√2).2.计算:(1)√48÷√3−√12×√12+√24;(2)先化简再求值:2x-1x2-2x+1·(x-1),其中x=√2+1.四、达标检测(一)选择题1.下列计算正确的是()A.√2+√3=√5B.√2·√3=√6C.√24÷√3=4D.√(-3)2=-32.化简(√3-2)2 018·(√3+2)2 019的结果为()A.-1B.√3-2C.√3+2D.-√3-23.计算√12(√75+3√13-√48)的结果是()A.6B.4√3C.2√3+6D.124.计算√32×√12+√2×√5的结果估计在()A.10到11之间B.9到10之间C.8到9之间D.7到8之间5.计算:(2√48-3√27)÷√6=()A.-5√22B.-√22C.√22D.5√22(二)填空题6.计算:2√48÷√6√2-1=.7.计算(2√3+3√2)2=.8.计算:√(2-√3)2+√(-√3-1)2=.9.已知√a+√b=√3+√2,√ab=√6−√3,则a+b=.10.已知x1=√3+√2,x2=√3−√2,则x12+x22=.(三)计算题11.计算:(1)√48÷√3−√12×√12+√24.(2)(3√2+2√3)(3√2-2√3)-(√3−√2)2.参考答案一、合作探究1.解:(1)原式=√8×√6+√3×√6=4√3+3√2; (2)原式=(4√2-3√6)×22=4√222-3√622=2-3√32. 2.解:(1)原式=(2√3)2-2×2√3×√2+(√2)2=14-4√6;(2)原式=(2√3)2-(3√2)2=-6. 二、自主学习解:(1)原式=√5-(√3+√15)×√6×√2=√5-(√3+√15)×√3=√5-1-√5=-1;(2)原式=4√3−√2−√3+√2=3√3; (3)原式=9-5-(3-2√3+1)=4-4+2√3=2√3;(4)原式=-(3-2√3+1)-3-(√5+2)=-4+2√3-3-√5-2=2√3−√5-9. 三、变式演练1.解:(1)原式=2√3−√3+3-√3-1+√3-2=√3;(2)原式=[(2√6−√3)+√2][(2√6−√3)-√2]=(2√6−√3)2-(√2)2=24-12√2+3-2=25-12√2. 2.解:(1)原式=√48÷3−√12×12+2√6=4-√6+2√6=4+√6; (2)原式=2x -1(x -1)2·(x-1)=2x -1x -1,当x=√2+1时,原式=√2+1√2+1-1=4+√22. 四、达标检测1.B2.C3.D4.D5.B6.2√2-27.30+12√6 8.1 9.5+2√3 10.10 11.解:(1)原式=√48÷3−√12×12+2√6 =4-√6+2√6 =4+√6;(2)原式=18-12-(3-2√6+2) =6-5+2√6 =1+2√6.人教版数学八年级下册导学案16.4.0本章小结学习目标1.掌握二次根式有意义的条件和基本性质(√a )2=a (a ≥0).(重点)2.能用二次根式的性质√a 2=|a|来化简根式.(难点)3.能识别最简二次根式、同类二次根式.(重点)4.能根据运算法则进行二次根式的加减乘除运算以及混合运算.(难点)学习过程一、梳理知识1.二次根式:一般地,我们把形如的式子叫做二次根式.2.最简二次根式:满足下面两个条件的二次根式是最简二次根式:(1)被开方数中不含分母;(2)被开方数中不含开方开的尽的因数或因式.3.二次根式的性质(1)二次根式√a(a≥0)是一个数.(2)(√a)2=(a≥0).(3)√a2=|a|={(a>0) (a=0) (a<0)4.二次根式的乘除:(1)乘法法则:√a·√b=(a≥0,b≥0).(2)除法法则:√a√b=(a≥0,b>0).5.二次根式的加减:先把各个二次根式化成,再把相同的二次根式进行合并.6.二次根式的混合运算的顺序与运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).二、归纳考点考点一、二次根式概念与性质【例1】二次根式√-2x+4有意义,则实数x的取值范围是()A.x≥-2B.x>-2C.x<2D.x≤2【跟踪练习】1.若代数式√3x-1有意义,则x的取值范围是()A.x<13B.x≤13C.x>13D.x≥132.代数式√x+1x-1有意义,则x的取值范围是() A.x≥-1且x≠1 B.x≠1C.x≥1且x≠-1D.x≥-13.在式子1x-2,1x-3,√x-2,√x-3中,x可以取2和3的是()A.1x-2B.1x-3C.√x-2D.√x-3考点二、二次根式的运算【例2】如果ab>0,a+b<0,那么下面各式:①√ab =√a√b,②√ab·√ba=1,③√ab÷√ab=-b,其中正确的是()A.①②B.②③C.①③D.①②③【跟踪练习】1.下列计算正确的是( ) A.√4−√2=√2B.√202=√10C.√2·√3=√6D.√(-3)2=-3 2.下列计算错误..的是( ) A.√2+√3=√6B.√2·√3=√6C.√12÷√3=2D.√8=2√2 3.计算:√27−√3= . 考点三、二次根式混合运算【例3】计算:√24×√13-4×√18×(1-√2)0 【跟踪练习】1.下列运算中错误的是( )A.√2+√3=√5B.√2×√3=√6C.√8×√2=2D.(-√3)2=32.已知x 1=√6+√5,x 2=√6−√5,则x 12+x 22= . 考点四、二次根式运算中的技巧 【例4】若y=√x -4+√4-x2-2,则(x+y )y = .【跟踪练习】1.若(m-1)2+√n +2=0,则m+n 的值是( ) A.-1 B.0 C.1D.22.已知实数x ,y 满足√x -1+|y+3|=0,则x+y 的值为( ) A.-2 B.2 C.4 D.-4考点五、估算大小【例5】a ,b 是两个连续整数,若a<√7<b ,则a ,b 分别是 ( )A.2,3B.3,2C.3,4D.6,8 【跟踪练习】若a<√13<b ,且a ,b 为连续正整数,则b 2-a 2= . 三、达标检测 (一)选择题1.下列二次根式:√5,√13,√0.5a ,-2√a 2b,√x 2+y 2中,是最简二次根式的有( ) A.2个B.3个C.4个D.5个 2.若√a 2=-a 成立,那么a 的取值范围是( ) A.a ≤0 B.a ≥0 C.a<0D.a>03.无论x 取任何实数,代数式√x 2-6x +m 都有意义,则m 的取值范围是( ) A.m ≥6 B.m ≥8 C.m ≥9 D.m ≥124.已知a=√5-2,b=√5+2,则√a 2+b 2+7的值为( )A.5B.6C.3D.45.已知x+y=-5,xy=3,则x √yx +y √xy 的结果是( )A.2√3B.-2√3C.3√2D.-3√26.等式√3x -1x -2=√3x -1√x -2成立的条件是( )A.x>13B.x ≥13C.x>2D.13≤x<27.计算:6√7×13√21÷2√3的结果是( )A.-4B.-2√3C.40D.7(二)填空题8.如果√(2a -1)2=2a-1,则a 的取值范围是 . 9.计算:(√24+√16)×√6= . 10.计算(4+√7)(4-√7)的结果等于 .11.已知x=12(√7+√5),y=12(√7−√5),则x 2-xy+y 2= . (三)计算题12.计算:(1)√8-2√12;(2)(3√2-2)2; (3)√20+√125√5+5;(4)(√32+√13)×√3-2√163.(四)解答题13.已知实数a ,b 在数轴上的对应点如图所示,化简√a 2+|a+b|+|√2-a|-√(b -√2)2.14.阅读下面材料,并解答后面的问题:√6+√5=(√6-√5)(6+5)(6-5)=√6−√5;√5+2=√5-(5+2)(5-2)=√5-2; √4+√3=√4-√3)(4+3)(4-3)=√4−√3.(1)观察上面的等式,请直接写出√n+1+√n的结果 ;(2)计算(√n +1+√n )(√n +1−√n )= ,此时称√n +1+√n 与√n +1−√n 互为有理化因式;(3)请利用上面的规律与解法计算:√2+1+√3+√2√4+√3+…+√100+√99.参考答案一、梳理知识略二、归纳考点考点一、二次根式概念与性质 【例1】 D【跟踪练习】1.D 2.A 3.C 考点二、二次根式的运算 【例2】 B【跟踪练习】1.C 2.A 3.2√3 考点三、二次根式混合运算 【例3】 解:原式=32√2 【跟踪练习】1.A 2.22考点四、二次根式运算中的技巧 【例4】 14【跟踪练习】1.A 2.A 考点五、估算大小 【例5】 A 【跟踪练习】7 三、达标检测1.A2.A3.C4.A5.B6.C7.D8.a ≥12 9.13 10.9 11.51212.解:(1)原式=2√2−√2=√2;(2)原式=18-12√2+4=22-12√2; (3)原式=√5+5√5√5+5=7+5=12; (4)原式=(4√2+√33)×√3−8√33=4√6+1-8√33. 13.解:由数轴可知:a<b<0,∴a<0,a+b<0,∵√2>0,∴√2-a>0,b-√2<0, ∴原式=|a|-(a+b )+√2-a-|b-√2|=-a-a-b+√2-a+(b-√2) =-3a-b+√2+b-√2=-3a14.(1)√n+1−√n;(2)1;(3)9。

271导学案.八年级生物.下.配BS版

271导学案.八年级生物.下.配BS版

预习案 ……………………………………… 0 0 5 探究案 ……………………………………… 0 0 5 训练案 ……………………………………… 0 0 6 第2 1 章复习学案 ……………………………… 0 0 7
第 8 单元 第2 3章
第1节
生物与环境 生态系统及其稳定性
第2 2章
第1节
物种的多样性
生物的分类 ………………………… 0 0 9
生态系统概述 ……………………… 0 2 1
预习案 ……………………………………… 0 0 9 探究案 ……………………………………… 0 0 9 训练案 ……………………………………… 0 1 0
预习案 ……………………………………… 0 2 1 探究案 ……………………………………… 0 2 1 训练案 ……………………………………… 0 2 2
第2节
关注农村环境 ……………………… 0 3 1
Байду номын сангаас
预习案 ……………………………………… 0 3 1 探究案 ……………………………………… 0 3 1 训练案 ……………………………………… 0 3 2
第3节
关注城市环境 ……………………… 0 3 3
预习案 ……………………………………… 0 3 3 探究案 ……………………………………… 0 3 3 训练案 ……………………………………… 0 3 4
第2节
植物的主要类群 …………………… 0 1 1
预习案 ……………………………………… 0 1 1 探究案 ……………………………………… 0 1 1
第 7 单元 第2 1章
第1节
生命的演化 生命的发生和发展
训练案 ……………………………………… 0 1 2

八年级英语下册全册导学案

八年级英语下册全册导学案

八年级下学期英语教学工作划任课教师:罗雷一、指导思想以“英语课程标准”为宗旨,适应新课程改革的需要,面向全体学生,提高学生的人文素养,增强实践能力和创新精神。

正确把握英语学科特点,积极倡导合作探究的学习方式。

培养学生积极地情感态度和正确的人生价值观,提高学生综合素质为学生全面发展和终身发展奠定基础。

二、全期教学总目标学生应有较明确的英语学习动机和积极主动的学习态度。

能听懂教师对有关熟悉话题的陈述并能参与讨论。

能读供七至八年级学生阅读的简单读物和报纸杂志,克服生词障碍,理解大意。

能根据阅读目的运用适当的阅读策略。

能与他人合作,解决问题并报告结果,共同完成学习任务。

能在学习中互相帮助,克服困难。

能合理计划和安排学习任务,积极探索适合自己的学习方法。

在学习和日常交际中能注意到中外文化的差异。

三.教材简要分析全书共有十个单元,各单元话题灵活,贴近生活实际。

本册书将学习的一些语法知识点有:一般将来时、过去进行时、现在完成时、间接引语、时间状语从句、条件状语从句、反意疑问句等。

每个单元分A和B两个部分,每个部分都提供了一篇阅读文章,用以训练学生的阅读能力,扩大学生的词汇量和阅读量。

四、学情简要分析我班有29人,通过一年半的英语学习,大多数学生已能听懂有关熟悉话题的语段和简短的故事。

能与教师或同学就熟悉的话题交换信息。

能读懂短篇故事,能写便条和简单的书信。

但由于各种因素的影响,学生发展参差不齐。

有少数学生因为基础不够好,学习很吃力而自暴自弃,这给教学带来不少困难。

五、提高教学质量的可行措施及教改措施一)面向全体学生,注重素质教育。

二)以学生为主体,尊重学生个体差异。

三)采用活动途径,倡导体验与参与。

四)开发课程资源,拓展学用渠道。

具体来说:1.认真专研教材和课标,精心备课,认真上好每一堂课。

确定每堂课的基础内容,预备内容和拓展内容,满足不同层次学生的不同需求。

2.充分利用现有的现代化教学设备,加强直观教学,提高课堂效率。

人教版八年级数学下册unit9教案

人教版八年级数学下册unit9教案

人教版八年级数学下册unit9教案
一、教材分析
本次课程主要教授八年级数学下册Unit9的内容。

该单元主要
包括圆的相关知识,例如圆的基本性质、圆的周长和面积的计算等。

本单元是初中数学的一个重要知识点,也是后续研究几何图形的必
备基础。

二、教学目标
1. 了解圆的相关概念和基本性质
2. 掌握圆的周长和面积的计算方法
3. 能够灵活运用相关知识解决实际问题
三、教学重难点
1. 圆的周长和面积的计算方法
2. 如何运用圆的性质解决相关问题
四、教学过程
1. 引入新知识,介绍圆的相关概念和基本性质
2. 讲解圆的周长和面积的计算方法
3. 练圆的周长和面积的计算方法
4. 案例分析,运用圆的性质解决实际问题
5. 课堂小结,强化研究效果
五、教学评估
1. 定期进行课堂测试,检查学生对知识掌握情况
2. 布置作业,巩固和拓展学生的研究内容
3. 定期与学生家长沟通,及时反馈学生研究情况
六、教学资源准备
1. 课本
2. 教案
3. 备课笔记
4. 练册
5. 课堂展示工具
七、教学反思
本次课程主要注重对学生数学基础知识的掌握,以及如何应用于实际问题中。

在教学过程中,学生表现积极,能够认真听讲,并在练习环节中积极配合。

下一步需要更多地引导学生扩展应用,提高数学解题的能力。

新外研版八年级英语下册导学案-Module 3-Journey to space(U1-U3)

新外研版八年级英语下册导学案-Module 3-Journey to space(U1-U3)

外研版八年级英语下册导学案Module 3 Journey to spaceUnit 1 Has it arrived yet?【学习目标】1. 知识目标:熟练掌握本单元的单词、短语和重点句型。

2. 能力目标:能够读懂关于航空航天的短文。

3. 情感目标:培养学生的科技技术意识,引导学生积极探索未知。

【重点及难点】能够读懂关于航空航天的短文。

【学习步骤】:一、课前预习【自主学习】请同学们将预习中的疑难问题写出来。

Ⅰ根据汉语意思默写单词还;但是;已经模型;典型;[航] 宇宙飞船火星发现,找到宇航员,航天员;新闻,消息工程;计划地球;地表月亮;月球行星达到;抵达Ⅲ. 根据句意及汉语提示完成单词。

1. Yang Liwei is a famous _________ (宇航员) of our country.2. They have __________ (发现) many kinds of plants in the forest.3. We haven’t seen each other ________(最近).4. My father watches TV to get the ________ (最新的) news.5. The ______ (地球) goes round the Sun.二、课堂学习过程【合作探究】Step1. Lead inTalk about the questions.Do you know anything about the universe?Is the earth travelling in the universe?Step2.Listen and number the words as you hear them.earth land message moon news planetreach scientistStep3.Listen again and complete the notes.● news about the trip to (1) _________● journey of (2) _________ months● has not sent back any (3) _________ yet● hope to find (4) _______ on MarsS tep4. Watch,read the dialogue and do the exercises.1. Tony has just made a model of the _______.A. space stationB. spaceshipC. rocket2. ______ hasn’t started his homework yet.A. TonyB. DamingC. Jenny3. Some scientists have sent a spaceship to _______.A. the moonB. the sunC. Mars4. It has taken _______ to get to Mars.A. two monthsB. several daysC. several months5. The astronauts ______ life on Mars.A. haven’t discoveredB. ha ve discoveredC. have seen6. There aren’t any astronauts in the ____to Mars.A. spaceshipB. planeC. space stationStep5. Read the dialogue and answer the questions:1.What school project has Daming and Tony got?2.How does Daming feel about the school project?3.What news has Tony heard?4. Has anyone been to Mars? Why?5. Who has been to Mars?Step6. Read again and complete the passage with the correct form of the words in the box.Arrive discover planet send yetIn today’s news, Tony has heard that scientists have a spaceship to Mars and it has on the after a journey of several months from the earth. Scientists have notlife on Mars And no astronaut has ever been to Mars because it is far away.Step7. Check the true sentences.(T or F)( ) 1.The spacecraft has reached Mars.( ) 2. It has landed.( ) 3. It has already sent messages back to Earth.( ) 4. They have found life on the moon.( ) 5. They have found life on MarsStep8.Work in pairs and tell your partner about…1 …something you’ve borrowed this week.2 …something you’ve done recently.3 …a model of something you have seen.4 …something scientists have discovered.Example:A: What have you borrowed recently?B: I have borrowed a story book from the school library.Step9.Listen and underline the words the speaker stresses.1. I’ve just made a model spaceship for our school project.2. I haven’t started yet because I’m not sure how to make it.3. Has it arrived yet?4. Astronauts have already been to the moon.Now listen again and repeat.Step10.Make lists of what we have and have not done in space travel.We have_________________________________________________________________________________________ ___________________________________We have not…___________________________________________________________________________________________________【知识结构】(一)、What are you up to? 你在做什么呢?●up to 表示“正在干,从事着”。

新外研版八年级英语下册导学案-Module 4-Seeing the doctor(U1-U3)

新外研版八年级英语下册导学案-Module 4-Seeing the doctor(U1-U3)

外研版八年级英语下册导学案Module 4 Seeing the doctorUnit 1 I haven’t done much exercise since I got my computer.【学习目标】1. 知识目标:熟记重点词汇和短语,准确率达90%。

2. 能力目标:能够听懂疾病及症状的描述、关于健康生活习惯的表达并提取相关细节信息。

3. 情感目标:能够与同学合作完成医患间的角色表演,谈论疾病及治疗办法,并且识记本单元的单词、重点短语。

【重点及难点】1. 重点:现在完成时与for和since引导的时间状语连用的结构。

2. 难点:与同学合作完成医患间的角色表演,谈论疾病及治疗办法。

【学习步骤】:一、课前预习【自主学习】I、结合课本26页的对话,试着翻译下列词组、重点句子。

1.胃痛2. 你这样有多长时间了?3. 感冒4. 我不这样认为5. 量体温6. 吃早餐7. 不经常8. 快餐9. 锻炼10. 在......前面11. 对......有害12. 别担心13. 每天吃三次14 ①②③怎么了15. at the doctor’sII. 根据首字母提示补全单词。

1. Have you caught a c________?2.—What’s wrong with you? You look very weak.—I have a s_____________ .3.He can’t come to the meeting, bec ause he is i________ today.4.You may have a fever. Let me take your t__________________.5. Take the m___________ three times a day.二、课堂学习过程【合作探究】Step1 Match the words in the box with the pictures.cough fever headachestomach ache toothacheStep2 Listen and check (√) what’s wrong with Betty and Daming.Betty Damingcoughfeverheadachestomach achetoothacheStep3. Complete the passage with the words in the box.cough fever health stomachache temperatureIt is easy to look after your (1) _______. Just do some exercise, such as running. Do not eat fast food! It may give you a (2) ___________. Most illnesses are not dangerous but when you catch a cold or get a (3) _______, you may also get a (4) _______. This means your (5) ___________ is higher than usual. You must go to the doctor.Step4. Listen and ch eck (√)what’s wrong with Betty and Daming.(Activity 2)Step5. III. Listen and complete the table about Daming.Illness (1) and .How long (2)For about .Why (3)①food and no .②He spendsin front of the .What to do (4)First, stop eating and.Second, get some .Take some a day.Step6. Listen and notice the intonation1. How can I help you?2. How long have been like this?3. Have you caught a cold?4. Do you do any exercise?分析: 英语有两种基本语调:升调和降调。

Unit9_what_does_he_look_like导学案

Unit9_what_does_he_look_like导学案

Unit9 what does he look like ?第一课时(新词汇)林冲学校郭旬学生姓名【学习目标】1.学习并掌握9单元的新单词。

【学法指导】本单元单词量较大,建议同学们按以下步骤进行预习,并将单词分类进行记忆,这样可以提高学习效率。

Come on! 你一定行!!!第一步:同学们在小组活动中互相帮助,互拼新单词。

第二步:在班上交流,以小组为单位,在课堂上教全班同学读单词。

第三步:跟着磁带或老师齐读并纠正自己的发音。

第四步:小组成员在组长组织下,按照分类法共同记忆新单词。

【学习过程】一.预习指导与检测1.预习指导:A.课前认真预习第9单元的新单词,做到会读知意。

B.根据音标拼读单词。

2.预习导学及自测:你写出9单元的单词吗?相信你是最棒的:头发高度体形队;组卷曲的直的高的中等的像绝不牢记停止总是受欢迎的说瘦的重的人眼镜二.课堂探究1.你能找出本单元一些描述外貌的形容词吗?让我们来试试吧!你一定行!卷曲的直的高的中等的瘦的重的金黄色的漂亮的棕色的矮的长的短的黑色的你发现了那个词既可以做名词又可以做动词了吗?写出来吧:2.大家来完成下列词组吧:卷发直发长发中等身高中等身材漂亮的一点儿长什么样子三、课堂检测1.按要求完成单词。

A.写出这些单词的反义词:short thinlong curlyB.fun(形容词) have(第三人称单数)glass(复数) high(名词)2.你能默写出本节课所学的单词吗?越多越好。

头发高度体形队;组卷曲的直的高的中等的像绝不牢记停止总是受欢迎的说瘦的重的笑话人眼镜3.请翻译下列词组curly hair look like long straight hairmedium build medium height good-looking四、总结与反思1、我的收获:回顾本节课的内容,对重点单词,短语进行二次领会和记忆Words and expressions:2、我的易错点:3、我需要提高的是:五.课后学习指导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A,have painted B,have been painting C,paints D,painted
2,Why do you want to improve your English?
导学:improve为动词,意为“好转,改善”,improvement为名词形式,意为“改进,改善,改进的事物”,常用结构为improve on/upon
A,didn’t arrive B,doesn’t arrive C,isn’t arriving D,hasn’t
arrived
2,The Smiths came to Shanghai in 2008,theythere for
three years since then。
A,live B,lived C,have lived D,will live
3,did you sleep last night?Only five years,
A,How soon B,How often C,How long D,How much
4,Tony wantsa job as a language teacher in China。
A,to find B,finding C,find D,found
Mr Mang isn’t here。HeQing dao。
导学:这是一个现在完成进行时的句子,表示从过去开始一直持续到现在,并且还要持续下去的动作。
七年来我一直在集邮。
[学点训练]
Ithe living room all day,and I will finish it this evening。
ClassName
石齐学校初八年级英语学科课堂设计活页第周第3课时
上课时间:13年月日星期:备课组长签字:教研组长签字:
课题:Unit9 Have you everbeen to an amusement park?Section B (1a-2c)设计人:潘爱苏
学习目标:Ⅰ.词汇和短语:want to do an English-speaking country
6,我到上海已有三年了。
IShanghai for three years。
拓展:
1,start的常用词组to start with开始,起先,start with以。。。开始。
2,start后接动名词或动词不定式,在许多情况下可以互换,但在
下列三种情况下通常用动词不定式。
主语是物不是人时:
冰开始融化。
sth,对Байду номын сангаас。。。。。进行改进。
1,他的健康状况在好转。
2,我看他的写作没有任何进步。
3,他进一步完善了自己的计划。
[学点训练]
I hope the weather will(变好)。
3,When did you start studying English?翻译:
导学:start意为“开始”其同义词为begin,后接名词,代词,动名词或动词不定式。
4,我父亲去过北京两次了。
My fatherBeijing twice。
5,我从未去过长城。Ithe Great Wall。
课后反思:
1,了解英文电影
2,在一个说英语的国家里
3,提高你的英语水平
4,一位交换生
5,学英语的理由
5,仿照例句用现在完成时写出自己的经历:
例:I have ever studied by working with friends。
二.【合作与探究】
1,How long have you been studying English?翻译:
start本身为ing时:
他刚开始学唱英语歌曲。
其后接与想法,感情有关的动词时:
他开始明白这件事了。
【学点训练】
Let’swith new lesson。
三.【当堂检测】
1.选择填空:
1,He promised to pick me up at the school gate。However,he
yet。
5,My aunt is a writer,Shemore than ten books
since 1980。
A,writes B,wrote C,C,has written D,will write
完成句子:
1,吉姆在哪里?Where is Jim?
他去英国了。HeEngland。
2,王先生不在这里,他去青岛了。
2)20分钟自学课文,完成习题。
正课:1)15分钟学生讨论展示,老师点拨难点。
2)30分钟学生操练表演,巩固落实。
一.【自学导航】
1.自学page71的单词。(根据音标拼读拼写单词并牢记)
2.自学完成Section B(1a-2c)
3.标出重要的短语和句型,标出疑难点,准备课堂中讨论解决。
4.预习自评。预习后你能顺利的写出这些词组和句子吗?试试看。
sb need to do sth starting doing
Ⅱ.重点句型:
It’s fun to learn another language.
Have you been to…?
How long have you been studying English?
【学法指导与使用说明】
自学指导:1)10分钟拼读并掌握单词。
相关文档
最新文档