2018学年湖州市初中数学竞赛复赛试卷(含答案)

合集下载

2018学年湖州市初三数学竞赛卷(含答案)

2018学年湖州市初三数学竞赛卷(含答案)

2018学年湖州市初三数学竞赛卷学校 班级 学号 得分一、选择题:(每小题5分,共30分)1.已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是 ( ) A.bc ab > B.c b b a +>+ C.c b b a ->- D.cbc a > 2.如果方程()0012>=++p px x 的两根之差是1,那么p 的值为 ( ) A.2 B.4 C.3 D.53.如图,图中平行四边形共有的个数是( )A. 40B.38C.36D.304.如图,AB 为⊙O 的直径,诸角p 、q 、r 、s 之间的关系 (1) p = 2q ;(2) q = r ; (3) p + s = 180° 中,正确的是 ( )A.只有(1)和(2)B. 只有(1)和(3)C.只有(2)和(3)D. (1)、(2)和(3) 5.设“●,▲,■”分别表示三种不同的物体,如下图所示,前两架天平保持平衡,如果要使第三架天平也平衡,那么“?”处应放“■”的个数为 ( )A. 5B. 4C. 3D. 26.如图,正方形ABCD 边长为1,E 、F 、G 、H 分别为各边上的点, 且AE=BF=CG=DH, 设小正方形EFGH 的面积为S ,AE 为x ,则S 关于x 的函数图象大致是( )●● ▲■●■▲●▲?(1) (2)(3)A.B.C.D.G(第3 (第4题图) (第6题图)二、填空题:(每小题5分,共30分)7.已知a 、b 是一元二次方程012=--x x 的两个根,则代数式b a b a 232322--+的值等于 . 8.设15+=m ,那么mm 1+的整数部分是 . 9.在一次剪纸活动中,小聪依次剪出6张正方形纸片 拼成如图所示的图形,若小聪所拼得的图形中正方形 ① 的面积为1,且正方形⑥与正方形③面积相等, 那么正方形⑤的面积为 .10.在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________ .11.B 船在A 船的西偏北450处,两船相距210km ,若A 船向西航行,B 船同时向南航行,且B 船的速度为A 船速度的2倍,那么A 、B 两船的最近距离是___________km .12.直角三角形ABC 中,直角边AB 上有一点M ,斜边BC 上有一点P , 已知BMP BC MP ∆⊥,的面积等于四边形MPCA 的面积的一半, BP =2厘米, PC =3厘米,那么直角三角形ABC 的面积是__________平方厘米.三、解答题(每题15分,共60分)13.如图,在等腰三角形ABC 中,AB=1,∠A=900, 点E 为腰AC 中点,点F 在底边BC 上,且FE ⊥BE , 求△CEF 的面积.AB CEF(第9题图)(第12题图)14.某仓储系统有20条输入传送带,20条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(1),每条输出传送带每小时出库的货物流量如图(2),而该日仓库中原有货物8吨,在0时至5时,仓库中货物存量变化情况如图(3),则在0时至2时有多少条输入传送带和输出传送带在工作? 在4时至5时有多少条输入传送带和输出传送带在工作?15.如图,正方形EFGH内接于△ABC,设BC=ab(ab表示一个两位数),EF=c,三角形中高线AD=d,已知a,b,c,d恰好是从小到大的四个连续正整数,试求△ABC的面积.16. 设,,,321x x x …2006,x 是整数,且满足下列条件:① -1≤n x ≤2,n =1,2,3,…,2006; ②+++321x x x …2002006=+x ;③+++232221x x x …200622006=+x .求 +++333231x x x (32006)x + 的最小值和最大值.2006学年初三数学竞赛卷参考答案一、选择题1.B2.D3.C4.A5.A6.B 二、填空题7.5 8.3 9.36 10.601311.三、解答题13.作EG ⊥BC 于G可得:EG=4, FG=12,CF=6,……10分 得:△CEF 的面积为:124. ……5分14.在0时至2时有14条输入传送带和12条输出传送带在工作;……8分 在4时至5时有6条输入传送带和6条输出传送带在工作. ……7分15.由题意可知:a 、b 、c 、d 为连续四个整数故可设为a ,a +1,a +2,a +3,其中BC =11a +1,(1≤a ≤8的正整数)……5分 由题意△AEF ∽△ABC 可得:311112+=++a a a 解得a =1;a =5可求得△ABC 的面积为24或224.均符合题意.……10分16.解:设,,,321x x x …2006,x 中有r 个-1、s 个1、t 个2,则⎩⎨⎧=++=++-.20064,2002t s r t s r ……5分 两式相加,得s +3t =1103,故0367t ≤≤. ……2分∵ +++333231x x x …t s r x 832006++-=+ ……2分=2006+t . ……2分∴ 200≤+++333231x x x (32006)x +≤6×367+200=2402. 当0,1103,903t s r ===时,+++333231x x x (32006)x +取最小值200,......2分 当367,2,536t s r ===时,+++333231x x x (32006)x +取最大值2402.……2分。

最新-2018年全国初中数学竞赛(浙江赛区)复赛试题及参考答案02018 精品

最新-2018年全国初中数学竞赛(浙江赛区)复赛试题及参考答案02018 精品

2018年全国初中数学竞赛(浙江赛区)复赛试题(2018年4月1月 下午1∶00-3∶00)班级__________学号__________姓名______________得分______________一、选择题(共6小题,每小题5分,满分30分) 1.若x 3+x 2+x +1=0,则x -27+x-26+…+x -1+1+x +…+x 26+x 27的值是( )(A )1(B )0 (C )-1(D )22.定义:定点A 与⊙O 上的任意一点之间的距离的最小值称为点A 与⊙O 之间的距离.现有一矩形ABCD 如图,AB =14cm ,BC =12cm ,⊙K 与矩形的边AB 、BC 、CD 分别相切于点E 、F 、G ,则点A 与⊙K 的距离为 ( )(A )4cm(B )8cm(C )10cm(D )12cm3.某班选举班干部,全班有50名同学都有选举权和被选举权,他们的编号分别为1,2,…,50.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”.如果令a i ,j =⎩⎨⎧1,第i 号同学同意第j 号同学当选,2,第i 号同学不同意第j 号同学当选.其中i =1,2,…,50;j =1,2,…,50.则同时同意第1号和第50号同学当选的人数可表示为 ( )(A )a 1,1+a 1,2+…+a 1,50+a 50,1+a 50,2+…+a 50,50 (B )a 1,1+a 2,1+…+a 50,1+a 1,50+a 2,50+…+a 50,50 (C )a 1,1a 1,50+a 2,1a 2,50+…+a 50,1a 50,50 (D )a 1,1a 50,1+a 1,2a 50,2+…+a 1,50a 50,504.若a b +c =b c +a =ca +b =t ,则一次函数y =tx +t 2的图象必定经过的象限是( )(A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限(D )第三、四象限5.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A )1个 (B )2个 (C )3个 (D )无穷多个 6.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =62,那么AC 的长等于( )(A )12 (B )16 (C )43 (D )8 2 二、填空题(共6小题,每小题6分,共满分36分)7.函数y =|x +1|+|x +2|+|x +3|,当x =___________时,y 有最小值,最小值等于___________.AFA8.以立方体的8个顶点中的任意3个顶点为顶点的三角形中,正三角形的个数为__________.9.如图,△ABC中,∠A的平分线交BC于D,若AB=6cm,AC=4cm,∠A=60º,则AD 的长为___________cm.10.设x1,x2,x3,...,x2018为实数,且满足x1x2x3...x2018=x1-x2x3...x2018=x1x2-x3 (x2018)=…=x1x2x3…x2018-x2018=1,则x2000的值是__________.11.正六边形轨道ABCDEF的周长为7.2米,甲、乙两只机器鼠分别从A,C两点同时出发,均按A→B→C→D→E→F→A→…方向沿轨道奔跑,甲的速度为9.2厘米/秒,乙的速度为8厘米/秒,那么出发后经过___________秒钟时,甲、乙两只机器鼠第一次出现在同一条边上.12.正整数M的个位上的数字与数20132015的个位上的数字相同,把M的个位上的数字移到它的左边第一位数字之前就形成一个新的数N.若N是M的4倍,T是M的最小值,则T的各位数字之和等于___________.三、解答题(共4小题,满分54分)13.(本题满分12分)已知二次函数y=ax2+bx+c的图象G和x轴有且只有一个交点A,与y轴的交点为B(0,4),且ac=b.(1)求该二次函数的解析表达式;(2)将一次函数y=-3x的图象作适当平移,使它经过点A,记所得的图象为L,图象L与G的另一个交点为C,求△ABC的面积.14.(本题满分12分)如图,AB ∥CD 、AD ∥CE ,F 、G 分别是AC 和FD 的中点,过G 的直线依次交AB 、AD 、CD 、CE 于点M 、N 、P 、Q ,求证:MN +PQ =2PN .15.(本题满分14分)2018个质点均匀分布在半径为R 的圆周上,依次记为P 1,P 2,P 3,…,P 2018.小明用红色按如下规则去涂这些点:设某次涂第i 个质点,则下次就涂第i 个质点后面的第i 个质点.按此规则,小明能否将所有的质点均涂成红色?若能,请给出一种涂点方案;若不能,请说明理由.A B CD E F G P Q M N16.(本题满分16分)从连续自然数1,2,3,…,2018中任意取n个不同的数.(1)求证:当n=1018时,无论怎样选取这n个数,总存在其中的4个数的和等于4017;(2)当n≤1018(n是正整数)时,上述结论成立否?请说明理由.2018年全国初中数学竞赛(浙江赛区)复赛试题参考答案一、选择题(共6小题,每小题5分,满分30分) 1.答案:C解:由3210x x x +++=,得1x =-,所以2627--+x x + … +x x ++-11+ … +2726x x +=-1.2.答案:A解:连结AK 、EK ,设AK 与⊙O 的交点为H ,则AH 即为所求, 因为AK =22AE EK +=10,所以AH = 4. 3.答案:C解:由题意得C 正确. 4.答案:A解:由已知可得t c b a c b a )(2++=++,当0a b c ++≠时,12t =,1124y x =+,直线过第一、二、三象限; 当0a b c ++=时,1t =-,1y x =-+,直线过第一、二、四象限.综合上可得,直线必定经过的象限是第一、二象限.5.答案:C解:设直角三角形的两条直角边长为,a b (a b ≤),则12a b k ab ++=⋅(a ,b ,k 均为正整数),化简,得(4)(4)8ka kb --=,所以4148ka kb -=⎧⎨-=⎩或4244ka kb -=⎧⎨-=⎩.解得1512k a b =⎧⎪=⎨⎪=⎩或234k a b =⎧⎪=⎨⎪=⎩或⎪⎩⎪⎨⎧===.8,6,1b a k 即有3组解.6.答案:B解:在AC 上取一点G ,使CG =AB =4,连接OG ,则△OG C ≌△OAB ,所以OG =OA =26, ∠AOG =90°,所以△AOG 是等腰直角三角形,AG =12,所以AC =16.二、填空题(共6小题,每小题6分,满分36分)7.答案:-2,2解:当x ≤-3时,y = -3x -6;当-3<x ≤-2时,y = -x ; 当-2<x ≤-1时,y =x +4;AD(第2题)AB CEFO G(第6题)当x >-1时,y =3x +6.;所以当x =-2时,y 的值最小,最小值为2. 8.答案:8个解:正三角形的各边必为立方体各面的对角线,共有8个正三角形. 9.答案:5312 解:由S △ABC =S △ABD + S △ADC ,得︒⋅⋅60sin 21AC AB =︒⋅⋅+︒⋅⋅30sin 2130sin 21AC AD AD AB . 解得AD =5312.10.答案:1,或253±-解:由已知,321x x x ...200032120001x x x x x -=1,321x x x (1999)32119991x x x x x -=1,解得123200012319991515,22x x x x x x x x±±==. 所以12000=x ,或200032x ±=-. 11.答案:238104解:设甲跑完x 条边时,甲、乙两老鼠第一次出现在同一条边上,此时甲走了120x 厘米,乙走了2.91208x ⨯厘米,于是⎪⎪⎩⎪⎪⎨⎧≤-+⨯>--+-⨯.,1201202402.91208120)1(1202402.9)1(1208x x x x解得328327<≤x .因x 是整数,所以x =8,即经过2.98120⨯=232400=238104秒时,甲、乙两只机器鼠第一次出现在同一条边上.12.答案:36 解:20152013的个位数字是7,所以可设710+=k M ,其中k 是m 位正整数,则k N m+⨯=107.由条件N =4M ,得k m+⨯107=)710(4+k ,即39)410(7-=m k .当m =5时,k 取得最小值17948.所以T =179487,它的各位数字之和为36. 三、解答题(共4题,满分54分) 13.(12分)解:(1)由B (0,4)得,c =4.G 与x 轴的交点A (2ba-,0),由条件ac b =,得b c a =,所以2b a -=22c -=-,即A (2-,0).所以4,4240.b a a b =⎧⎨-+=⎩解得1,4.a b =⎧⎨=⎩所求二次函数的解析式为244y x x =++.(2)设图象L 的函数解析式为y =3-x +b ,因图象L 过点A (2-,0),所以6b =-,即平移后所得一次函数的解析式为y =36x --.令36x --=244x x ++, 解得12x =-,25x =-.将它们分别代入y =36x --, 得10y =,29y =.所以图象L 与G 的另一个交点为C (5-,9). 如图,过C 作CD ⊥x 轴于D ,则 S △ABC =S 梯形BCDO -S △ACD -S △ABO =111(49)53924222+⨯-⨯⨯-⨯⨯=15.(第13题)14.(12分)证明:延长BA 、EC ,设交点为O ,则四边形OADC 为平行四边形. ∵ F 是AC 的中点, ∴ DF 的延长线必过O 点,且31=OG DG . ∵ AB ∥CD , ∴DNANPN MN =. ∵ AD ∥CE ,∴DNCQPN PQ =. ∴ +PN MN =PN PQ DN AN DNCQ+ =DNCQ AN +.又=OQ DN 31=OG DG , ∴ OQ =3DN .∴ CQ =OQ -OC =3DN -OC =3DN -AD ,AN =AD -DN , 于是,AN +CQ =2DN , ∴+PN MN =PNPQ DN CQAN +=2,即 MN +PQ =2PN .15.(14分)解:不能.理由:设继i P 点涂成红色后被涂到的点是第j 号,则j =2,22007,22007,22007.i i i i ≤⎧⎨->⎩若i =2018,则j =2018,即除2007P 点涂成红色外,其余均没有涂到. 若i ≠2018,则2i ≠2018,且2i ≠4014,即2i -2018≠2018, 表明2007P 点永远涂不到红色.16.(16分)解:(1)设123x x x ,,,…,1007x 是1,2,3,…,2018中任意取出的1018个数.首先,将1,2,3,…,2018分成1004对,每对数的和为2018,BACMN P E FQDG O每对数记作(m ,2018-m ) ,其中m =1,2,3, (1004)因为2018个数取出1018个数后还余1001个数,所以至少有一个数是1001个数之一的数对至多为1001对,因此至少有3对数,不妨记为112233(2009)(2009)(2009)m m m m m m ---,,,,, (123m m m ,,互不相等)均为123x x x ,,,…,1007x 中的6个数.其次,将这2018个数中的2018个数(除1004、2018 外)分成1003对,每对数的和为2018,每对数记作(k ,2018-k ) ,其中k =1,2, (1003)2018个数中至少有1018个数被取出,因此2018个数中除去取出的数以外最多有1001个数,这1003对数中,至少有2对数是123x x x ,,,…,1007x 中的4个数,不妨记其中的一对为11(2008)k k -,.又在三对数112233(2009)(2009)(2009)m m m m m m ---,,,,,,(123m m m ,,互不相等)中至少存在1对数中的两个数与11(2008)k k -,中的两个数互不相同,不妨设该对数为11(2009)m m -,,于是1111200920084017m m k k +-++-=. (2)不成立.当1006n =时,不妨从1,2,…,2018中取出后面的1018个数:1003 ,1004, (2018)则其中任何四个不同的数之和不小于1003+1004+1018+1018=4018>4017; 当1006n <时,同样从1,2,…,2018中取出后面的n 个数,其中任何4数之和大于1003+1004+1018+1018=4018>4017. 所以1006n ≤时都不成立.。

2018年浙江省湖州市中考数学试卷有答案

2018年浙江省湖州市中考数学试卷有答案

数学试卷 第1页(共26页) 数学试卷 第2页(共26页)绝密★启用前浙江省湖州市2018年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2 018的相反数是( )A.2 018B .2018-C .12018D .12018- 2.计算3(2)a b -g ,正确的结果是( )A .6ab -B .6abC .ab -D .ab 3.如图所示的几何体的左视图是( )ABCD4.某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:)A.5件B.11件C.12件D.15件5.如图,AD ,CE 分别是ABC △的中线和角平分线.若AB AC =,20CAD ∠=︒,则ACE ∠的度数是 ( )A .20︒B .35︒C .40︒D .70︒6.如图,已知直线11(0)y k x k =≠与反比例函数22(0)k y k x=≠的图象交于M ,N 两点.若点M 的坐标是(1,2),则点N 的坐标是( )A .(1,2)--B .(1,2)-C .(1,2)-D .(2,1)--7.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )A .19 B .16 C .13D.238.如图,已知在ABC △中,90BAC ∠︒>,点D 为BC 的中点,点E 在AC 上,将CDE △沿DE 折叠,使得点C 恰好落在BA 的延长线上的点F 处,连结AD ,则下列结论不一定正确的是( ) A .AE EF =B .2AB DE =C .ADF △和ADE △的面积相等D .ADE △和FDE △的面积相等毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共26页) 数学试卷 第4页(共26页)9.尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣: ①将半径为r 的O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点;②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点;③连结OG .问:OG 的长是多少? 大臣给出的正确答案应是( )AB .(1)2r +C .(1)2r +D10.在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(1,2)-,(2,1),若抛物线22(0)y ax x a =-+≠与线段MN 有两个不同的交点,则a 的取值范围是( )A .1a -≤或1143a ≤<B .1143a ≤<C .14a ≤或13a >D .1a -≤或14a ≥第Ⅱ卷(非选择题 共90分)二、填空题(本大题共6小题,每小题4分,共24分.把答案填写在题中的横线上) 11.中字母x 的取值范围是 .12.当1x =时,分式2xx +的值是 .13.如图,已知菱形ABCD ,对角线AC ,BD 相交于点O .若1tan 3BAC ∠=,6AC =,则BD 的长是 .14.如图,已知ABC △的内切圆O e 与BC 边相切于点D ,连结OB ,OD .若40ABC ∠=︒,则BOD ∠的度数是 .15.如图,在平面直角坐标系xOy 中,已知抛物线2(0)y ax bx a =+>的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线2(0)y ax a =>交于点B .若四边形ABOC 是正方形,则b 的值是 .16.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD 的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E ,F ,G ,H 都是格点,且四边形EFGH 为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD,此时正方形EFGH 的面积为5.问:当格点弦图中的正方形ABCD时,正方形EFGH 的面积的所有可能值是 (不包括5).数学试卷 第5页(共26页) 数学试卷 第6页(共26页)三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分6分) 计算:211(6)()23-⨯-.18.(本小题满分6分) 解不等式3222x -…,并把它的解表示在数轴上.19.(本小题满分6分)已知抛物线23(0)y ax bx a =+-≠经过点(1,0)-,(3,0),求a ,b 的值.20.(本小题满分8分)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A ,B ,C ,D 四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).(1)求扇形统计图中交通监督所在扇形的圆心角度数; (2)求D 班选择环境保护的学生人数,并补全折线统计图;(3)若该校共有学生2 500人,试估计该校选择文明宣传的学生人数.21.(本小题满分8分) 如图,已知AB 是O 的直径,C ,D 是O e 上的点,OC BD ∥,交AD 于点E ,连结BC .(1)求证:AE ED =;(2)若10AB =,36CBD ∠=︒,求AC 的长.22.(本小题满分10分)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A ,B 两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A ,B 两个果园分别需用110吨和70吨有机化肥.两个仓库到A ,B 两个果园的路程如表所示:设甲仓库运往, (1)根据题意,填写下表.机化肥时,总运费最省?最省的总运费是多少元?-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共26页) 数学试卷 第8页(共26页)23.(本小题满分10分)已知在Rt ABC △中,90BAC ∠=︒,AB AC ≥,D ,E 分别为AC ,BC 边上的点(不包括端点),且DC ACm BE BC==,连结AE ,过点D 作DM AE ⊥,垂足为点M ,延长DM 交AB 于点F .(1)如图1,过点E 作EH AB ⊥于点H ,连结DH . ①求证:四边形DHEC 是平行四边形;②若m =求证:AE DF =; (2)如图2,若35m =,求DF AE的值.24.(本小题满分12分)如图1,在平面直角坐标系xOy 中,已知ABC △,90ABC ∠=︒,顶点A 在第一象限,B ,C 在x 轴的正半轴上(C 在B 的右侧),2BC =,AB =,ADC △与ABC △关于AC 所在的直线对称.(1)当2OB =时,求点D 的坐标;(2)若点A 和点D 在同一个反比例函数的图象上,求OB 的长;(3)如图2,将(2)中的四边形ABCD 向右平移,记平移后的四边形为1111A B C D ,过点1D 的反比例函数(0)ky k x=≠的图象与BA 的延长线交于点P .问:在平移过程中,是否存在这样的k ,使得以点P ,1A ,D 为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k 的值;若不存在,请说明理由.数学试卷 第9页(共26页) 数学试卷 第10页(共26页)浙江省湖州市2018年初中学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】B【解析】2018的相反数是2018-,故选:B . 【考点】相反数 2.【答案】A【解析】3(2)6a b ab -=-g ,故选:A . 【考点】单项式乘单项式 3.【答案】D【解析】从左边看是一个圆环,故选:D . 【考点】简单组合体的三视图 4.【答案】B【解析】由表可知,11件的次数最多,所以众数为11件,故选:B . 【考点】众数 5.【答案】B【解析】AD Q 是ABC △的中线,AB AC =,20CAD ∠=︒,240CAB CAD ∴∠=∠=︒,1(180)702B ACB CAB ∠=∠=︒-∠=︒.CE Q 是ABC ∆的角平分线,1352ACE ACB ∴∠=∠=︒.故选:B .【考点】等腰三角形的性质 6.【答案】A【解析】Q 直线11(0)y k x k =≠与反比例函数22(0)ky k x=≠的图象交于M ,N 两点,M ∴,N 两点关于原点对称,Q 点M 的坐标是(1,2),∴点N 的坐标是(1,2)--.故选:A .【考点】反比例函数与一次函数的交点问题 7.【答案】C【解析】将三个小区分别记为A 、B 、C , 列表如下:3种, 所以两个组恰好抽到同一个小区的概率为3193=, 故选:C .【考点】列表法与树状图法 8.【答案】C【解析】如图,连接CF , Q 点D 是BC 中点,BD CD ∴=,由折叠知,ACB DFE ∠=∠,CD DF =,BD CD DF ∴==,BFC ∴△是直角三角形,90BFC ∴∠=︒, BD DF =Q , B BFD ∴∠=∠,EAF B ACB BFD DFE AFE ∴∠=∠+∠=∠+∠=∠, AE EF ∴=,故A 正确,由折叠知,EF CE =,数学试卷 第11页(共26页) 数学试卷 第12页(共26页)AE CE ∴=, BD CD =Q ,DE ∴是ABC △的中位线, 2AB DE ∴=,故B 正确,AE CE =Q ,ADE CDE S S ∴=△△,由折叠知,CDE FDE △≌△,CDE FDE S S ∴=△△,ADE FDE S S ∴=△△,故D 正确,当12AD AC =时,ADF △和ADE △的面积相等 ∴C 选项不一定正确,故选:C .【考点】翻折变换(折叠问题) 9.【答案】D【解析】如图连接CD ,AC ,DG ,AG .AD Q 是O e 直径, 90ACD ∴∠=︒,在Rt ACD △中,2AD r =,30DAC ∠=︒,AC ∴=,DG AG CA ==Q ,OD OA =, OG AD ∴⊥, 90GOA ∴∠=︒,OG ∴==,故选:D .【考点】正多边形和圆;作图——复杂作图 10.【答案】A【解析】Q 抛物线的解析式为22y ax x =-+.观察图象可知当0a <时,1x =-时,2y …时,且112a---≥,满足条件,可得1a -≤; 当0a >时,2x =时,1y ≥,且抛物线与直线MN 有交点,且122a--≤满足条件, 14a ∴≥,Q 直线MN 的解析式为1533y x =-+, 由215332y x y ax x ⎧=-+⎪⎨⎪=-+⎩,消去y 得到,23210ax x -+=,Q 0∆>,13a ∴<,数学试卷 第13页(共26页) 数学试卷 第14页(共26页)∴1143a ≤<满足条件, 综上所述,满足条件的a 的值为1a -≤或1143a ≤<,故选:A .【考点】二次函数图象与系数的关系,二次函数图象上点的坐标特征第Ⅱ卷二、填空题 11.【答案】3x …【解析】当30x -…时,有意义, 则3x …; 故答案为:3x ….【考点】二次根式有意义的条件12.【答案】13【解析】当1x =时,原式11123==+, 故答案为:13.【考点】分式的值 13.【答案】2【解析】解:Q 四边形ABCD 是菱形,6AC =,AC BD ∴⊥,132OA AC ==,2BD OB =. 在Rt OAB △中,90AOD ∠=︒Q ,1tan 3OB BAC OA ∴∠==,1OB ∴=, 2BD ∴=.故答案为2.【考点】菱形的性质,解直角三角形14.【答案】70︒【解析】解:ABC Q △的内切圆O e 与BC 边相切于点D ,OB ∴平分ABC ∠,OD BC ⊥,11402022OBD ABC ∴∠=∠=⨯︒=︒,9070BOD OBD ∴∠=︒-∠=︒.故答案为70︒.【考点】圆周角定理,三角形的内切圆与内心 15.【答案】2-【解析】Q 四边形ABOC 是正方形,∴点B 的坐标为(2b a -,)2ba-. Q 抛物线2y ax =过点B ,2()22b ba a a∴-=-, 解得:10b =(舍去),22b =-. 故答案为:2-.【考点】二次函数的性质,二次函数图象上点的坐标特征,抛物线与x 轴的交点,正方形的性质16.【答案】13或49或9【解析】解:当DGCG =时,满足222DG CG CD +=,此时HG 可得正方形EFGH 的面积为13. 当8DG =,1CG =时,满足222DG CG CD +=, 此时7HG =,可得正方形EFGH 的面积为49当7DG =,4CG =时,此时3HG =,四边形EFGH 的面积为9.数学试卷 第15页(共26页) 数学试卷 第16页(共26页)故答案为13或49或9.【考点】全等三角形的判定,勾股定理,作图——应用与设计作图 三、解答题 17.【答案】6【解析】原式1136()1812623=⨯-=-=.【考点】有理数的混合运算 18.【答案】2x …【解析】去分母,得:324x -…, 移项,得:342x +…, 合并同类项,得:36x …, 系数化为1,得:2x …,将不等式的解集表示在数轴上如下:【考点】在数轴上表示不等式的解集;解一元一次不等式19.【答案】12a b =⎧⎨=-⎩【解析】Q 抛物线23(0)y ax bx a =+-≠经过点(1,0)-,(3,0),∴309330a b a b --=⎧⎨+-=⎩,解得,12a b =⎧⎨=-⎩, 即a 的值是1,b 的值是2-.【考点】二次函数图象上点的坐标特征 20.【答案】(1)54 27%97.2° (2)15 (3)950【解析】(1)选择交通监督的人数是:1215131454+++=(人), 选择交通监督的百分比是:54100%27%200⨯=, 扇形统计图中交通监督所在扇形的圆心角度数是:36027%97.2︒⨯=︒; (2)D 班选择环境保护的学生人数是:20030%15141615⨯---=(人). 补全折线统计图如图所示;(3)2500(130%27%5%)950⨯---=(人), 即估计该校选择文明宣传的学生人数是950人. 【考点】用样本估计总体;扇形统计图;折线统计图 21.【答案】(1)证明:AB Q 是O e 的直径,90ADB ∴∠=︒, OC BD Q ∥,90AEO ADB ∴∠=∠=︒,数学试卷 第17页(共26页) 数学试卷 第18页(共26页)即OC AD ⊥,AE ED ∴=;(2)2π【解析】(1)证明:AB Q 是O e 的直径,90ADB ∴∠=︒, OC BD Q ∥,90AEO ADB ∴∠=∠=︒,即OC AD ⊥,AE ED ∴=;(2)OC AD ⊥Q ,∴»»AC CD =, 36ABC CBD ∴∠=∠=︒,223672AOC ABC ∴∠=∠=⨯︒=︒,∴»7252180AC ππ⨯==. 【考点】勾股定理,垂径定理,圆周角定理,弧长的计算 22.【答案】(1)80x -10x -220(80)x ⨯⨯-220(10)x ⨯⨯-(2)6 700【解析】(1)填表如下:(2)215225(110)220(80)220(10)y x x x x =⨯+⨯⨯-+⨯⨯-+⨯⨯-,即y 关于x 的函数表达式为208300y x =-+,200-Q <,且1080x ≤≤,∴当80x =时,总运费y 最省,此时208083006700y =-⨯+=最小.故当甲仓库运往A 果园80吨有机化肥时,总运费最省,最省的总运费是6 700元. 【考点】一次函数的应用23.【答案】(1)①证明:EH AB⊥Q ,90BAC ∠=︒,//EH CA ∴,BHE BAC ∴△∽△, ∴BE HEBC AC =, QDC ACBE BC =, ∴BE DCBC AC =, ∴HE DCAC AC=, HE DC ∴=, EH DC Q ∥,∴四边形DHEC 是平行四边形;②QAC BC =,90BAC ∠=︒, AC AB ∴=,QDC BE =,HE DC =, HE DC ∴=,∴2HE BE =, 90BHE ∠=︒Q ,sin HE B BE ∴==, 45B ∴∠=︒,数学试卷 第19页(共26页) 数学试卷 第20页(共26页)45BEH B ∴∠=∠=︒ BH HE ∴=,HE DC =Q , BH CD ∴=, AH AD ∴=,DM AE ⊥Q ,EH AB ⊥, 90EHA AMF ∴∠=∠=︒,90HAE HEA HAE AFM ∴∠+∠=∠+∠=︒, HEA AFD ∴∠=∠,90EHA FAD ∠=∠=︒Q , HEA AFD ∴△≌△, AE DF ∴=;(2)34【解析】(1)①证明:EH AB ⊥Q ,90BAC ∠=︒,EH CA ∴∥,BHE BAC ∴△∽△,∴BE HE BC AC=, QDC ACBE BC =, ∴BE DCBC AC =, ∴HE DCAC AC=, HE DC ∴=, EH DC Q ∥,∴四边形DHEC 是平行四边形;②QAC BC =,90BAC ∠=︒, AC AB ∴=,QDC BE =,HE DC =, HE DC ∴=,∴2HE BE =, 90BHE ∠=︒Q,sin HE B BE ∴==, 45B ∴∠=︒, 45BEH B ∴∠=∠=︒ BH HE ∴=,HE DC =Q , BH CD ∴=, AH AD ∴=,DM AE ⊥Q ,EH AB ⊥, 90EHA AMF ∴∠=∠=︒,90HAE HEA HAE AFM ∴∠+∠=∠+∠=︒, HEA AFD ∴∠=∠,数学试卷 第21页(共26页) 数学试卷 第22页(共26页)90EHA FAD ∠=∠=︒Q , HEA AFD ∴△≌△, AE DF ∴=;(2)如图2,过点E 作EG AB ⊥于G ,CA AB ⊥Q , EG CA ∴∥,EGB CAB ∴△∽△, ∴EG BECA BC =, ∴35EG CA BE BC ==, Q35CD BE =, EG CD ∴=,设3EG CD x ==,3AC y =,5BE x ∴=,5BC y =, 4BG x ∴=,4AB y =, 90EGA AMF ∠=∠=︒Q ,GEA EAG EAG AFM ∴∠+∠=∠+∠, AFM AEG ∴∠=∠, 90FAD EGA ∠=∠=︒Q ,FAD EGA ∴△∽△, ∴333444DF AD y x AE AG y x -===-【考点】相似形综合题24.【答案】(1) (2)3 (3)【解析】(1)如图1中,作DE x ⊥轴于E .90ABC ∠=︒Q,tan ABACB BC∴∠==, 60ACB ∴∠=︒,根据对称性可知:2DC BC ==,60ACD ACB ∠=∠=︒,60DCE ∴∠=︒,906030CDE ∴∠=︒-︒=︒, 1CE ∴=,DE 5OE OB BC CE ∴=++=,∴点D坐标为.(2)设OB a =,则点A 的坐标(a,, 由题意1CE =.DE =可得(3D a +, Q 点A 、D 在同一反比例函数图象上,)a ∴=+,3a ∴=,3OB ∴=.(3)存在.理由如下:数学试卷 第23页(共26页) 数学试卷 第24页(共26页)①如图2中,当点1A 在线段CD 的延长线上,且1PA AD ∥时,190PA D ∠=︒.在1Rt ADA △中,130DAA ∠=︒Q,AD =14cos30ADAA ∴==︒,在1Rt APA △中,160APA ∠=︒Q,3PA ∴=, 3PB ∴=, 由(2)可知(3,3P, k ∴=②如图3中,当190PDA ∠=︒时.作DM AB ⊥于M ,1A N MD ⊥交MD 的延长线于N .190PAK KDA ∠=∠=︒Q ,1AKP DKA ∠=∠, 1AKP DKA ∴△∽△, ∴1AK PKKD KA =. ∴1KA PK AK DK=,1AKD PKA ∠=∠Q , 1KAD KPA ∴△∽△, 130KPA KAD ∴∠=∠=︒1PD D ∴=,Q 四边形1AMNA 是矩形,1AN AM ∴==PDM ∆Q ∽△1DA N,PM ∴=,设DN m =,则PM =,)P ∴,1(9D m +,P Q ,1D 在同一反比例函数图象上,))m ∴=+,解得3m =,(3P ∴k ∴=【考点】反比例函数综合题数学试卷第25页(共26页)数学试卷第26页(共26页)。

2018年初中数学联赛试题及答案

2018年初中数学联赛试题及答案

2018年初中数学联赛试题参考答案及评分标准说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a ax x y ++=的图象的顶点为A ,与x 轴的交点为C B ,.当△ABC 为等边三角形时,其边长为 ( )A.6.B.22.C.32.D.23. 【答】C.由题设知)2,(2a a A --.设)0,(1x B ,)0,(2x C ,二次函数的图象的对称轴与x 轴的交点为D ,则222212212122444)(||a a a x x x x x x BC =⨯-=-+=-=.又BC AD 23=,则22223|2|a a ⋅=-,解得62=a 或02=a (舍去).所以,△ABC 的边长3222==a BC .2.如图,在矩形ABCD 中,BAD ∠的平分线交BD 于点E ,1AB =,15CAE ∠=︒,则BE =( ). B.22. C.12-.1.【答】D.延长AE 交BC 于点F ,过点E 作BC 的垂线,垂足为H .由已知得︒=∠=∠=∠=∠45HEF AFB FAD BAF ,1==AB BF , ︒=∠=∠30ACB EBH .设x BE =,则2xHE HF ==,23x BH =. 因为HF BH BF +=,所以2231xx +=,解得13-=x .所以 13-=BE .3.设q p ,均为大于3的素数,则使2245q pq p ++为完全平方数的素数对),(q p 的个数为( ) A.1. B.2. C.3. D.4.【答】B.设22245m q pq p =++(m 为自然数),则22)2(m pq q p =++,即pq q p m q p m =++--)2)(2(.由于q p ,为素数,且q q p m p q p m >++>++2,2,所以21m p q --=,2m p q pq ++=,从而0142=---q p pq ,即9)2)(4(=--q p ,所以(,)(5,11)p q =或(7,5).所以,满足条件的素数对),(q p 的个数为2.4.若实数b a ,满足2=-b a ,4)1()1(22=+--ab b a ,则=-55b a ( )A.46.B.64.C.82.D.128. 【答】C.由条件4)1()1(22=+--ab b a 得04223322=-+----b a ab b a b a ,即 0]3))[((]4)[(2)(22=+--++---ab b a b a ab b a b a ,又2=-b a ,所以0]34[2]44[22=+++-ab ab ,解得1=ab .所以222()26a b a b ab +=-+=,332()[()3]14a b a b a b ab -=--+=,82)())((22332255=---+=-b a b a b a b a b a .5.对任意的整数y x ,,定义xy y x y x -+=@,则使得(@)@(@)@x y z y z x +(@)@z x y +0=的整数组),,(z y x 的个数为 ( )A.1.B.2.C.3.D.4.【答】D.z xy y x z xy y x z xy y x z y x )()(@)(@)@(-+-+-+=-+=xyz zx yz xy z y x +---++=,由对称性,同样可得xyz zx yz xy z y x x z y +---++=@)@(,xyz zx yz xy z y x y x z +---++=@)@(.所以,由已知可得 0=+---++xyz zx yz xy z y x ,即1)1)(1)(1(-=---z y x . 所以,z y x ,,为整数时,只能有以下几种情况:⎪⎩⎪⎨⎧-=-=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=--=-=-,11,11,11z y x 或⎪⎩⎪⎨⎧=-=--=-,11,11,11z y x 或⎪⎩⎪⎨⎧-=--=--=-,11,11,11z y x 所以,)0,2,2(),,(=z y x 或)2,0,2(或)2,2,0(或)0,0,0(,故共有4个符合要求的整数组.6.设20501202012019120181++++=M ,则M1的整数部分是 ( ) A.60. B.61. C.62. D.63.【答】B.因为3320181⨯<M ,所以335613320181=>M . 又)205012032120311()203012019120181(+++++++= M83230134520205011320301=⨯+⨯>, 所以13451185611345832301=<M ,故M1的整数部分为61.二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,AB BC 2=,AB CE ⊥于E ,F 为AD 的中点,若︒=∠48AEF ,则=∠B _______.【答】84︒. 设BC 的中点为G ,连结FG 交CE 于H ,由题设条件知FGCD 为菱形. 由DC FG AB ////及F 为AD 的中点,知H 为CE 的中点. 又AB CE ⊥,所以FG CE ⊥,所以FH 垂直平分CE ,故 ︒=∠=∠=∠=∠48AEF EFG GFC DFC . 所以︒=︒⨯-︒=∠=∠84482180FGC B .2.若实数y x ,满足2154133=+++)(y x y x ,则y x +的最大值为 . 【答】3.由2154133=+++)(y x y x 可得22115()()()42x y x xy y x y +-+++=,即 22115()()42x y x xy y +-++=. ①令k y x =+,注意到2222131()04244y x xy y x y -++=-++>,故0>=+k y x .又因为22211()344x xy y x y xy -++=+-+,故由①式可得3115342k xyk k -+=,所以kk k xy 3215413-+=. 于是,y x ,可看作关于t 的一元二次方程032154132=-++-kk k kt t 的两根,所以 3211542()403k k k k+-∆=--⋅≥, 化简得 0303≤-+k k ,即0)103)(3(2≤++-k k k ,所以30≤<k . 故y x +的最大值为3.B3.没有重复数字且不为5的倍数的五位数的个数为 . 【答】21504.显然首位数字不能为0,末位不能为0和5.当首位数字不为5时,则首位只能选0,5之外的8个数.相应地个位数只能选除0,5及万位数之外的7个数,千位上只能选万位和个位之外的8个数,百位上只能选剩下的7个数,十位上只能选剩下的6个数.所以,此时满足条件的五位数的个数为1881667878=⨯⨯⨯⨯个.当首位数字为5时,则个位有8个数可选,依次千位有8个数可选,百位有7个数可选, 十位有6个数可选.所以,此时满足条件的五位数的个数为26886788=⨯⨯⨯个.所以,满足条件的五位数的个数为21504268818816=+(个).4.已知实数c b a ,,满足0a b c ++=,2221a b c ++=,则=++abcc b a 555 .【答】52. 由已知条件可得21)]()[(212222-=++-++=++c b a c b a ca bc ab ,abc c b a 3333=++,所以 555c b a ++)]()()([))((332332332333222b a c c a b c b a c b a c b a +++++-++++= 2222223[()()()]abc a b a b a c a c b c b c =-+++++)(3222222a c b b c a c b a abc +++=abc abc abc ca bc ab abc abc 25213)(3=-=+++=.所以 25555=++abc c b a .第一试(B)一、选择题:(本题满分42分,每小题7分) 1.满足1)1(22=-++x x x 的整数x 的个数为 ( )A.1.B.2.C.3.D.4. 【答】C.当02=+x 且012≠-+x x 时,2-=x . 当112=-+x x 时,2-=x 或1=x . 当112-=-+x x 且2+x 为偶数时,0=x . 所以,满足条件的整数x 有3个.2.已知123123,,()x x x x x x <<为关于x 的方程323(2)0x x a x a -++-=的三个实数根,则22211234x x x x -++= ( )A.5.B.6.C.7.D.8.【答】A.方程即0)2)(1(2=+--a x x x ,它的一个实数根为1,另外两个实数根之和为2,其中必有一根小于1,另一根大于1,于是2,1312=+=x x x ,故2221123313113114()()412()41x x x x x x x x x x x x -++=+-++=-++312()15x x =++=.3.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CE CD 4=,FBC EFB ∠=∠,则 =∠ABF tan ( )A.21. B.53. C.22. D.23. 【答】B.不妨设4=CD ,则3,1==DE CE .设x DF =,则x AF -=4,92+=x EF .作EF BH ⊥于点H .因为AFB FBC EFB ∠=∠=∠,BHF BAF ∠=︒=∠90,BF 公共,所以△BAF ≌△BHF ,所以4==BA BH .由BCE DEF BEF ABF ABCD S S S S S ∆∆∆∆+++=四边形得14213219421)4(421422⋅⋅+⋅⋅++⋅⋅+-⋅⋅=x x x , 解得58=x .所以5124=-=x AF ,53tan ==∠AB AF ABF .4.=( )A.0.B.1.C.2.D.3.【答】B.令y =0y ≥,且29x y =-=1y =或6y =,从而可得8x =-或27x =.检验可知:8x =-是增根,舍去;27x =是原方程的实数根. 所以,原方程只有1个实数根.5.设c b a ,,为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组),,(c b a 的个数为 ( )A.4.B.5.C.6.D.7. 【答】B.由已知得, 20182017=+bc a ,20182017=+ac b ,20182017=+ab c ,两两作差,可得0)20171)((=--c b a ,0)20171)((=--a c b ,0)20171)((=--b a c .E由0)20171)((=--c b a ,可得 b a =或20171=c . (1)当c b a ==时,有020*******=-+a a ,解得1=a 或20172018-=a . (2)当c b a ≠=时,解得20171==b a , 201712018-=c . (3)当b a ≠时,20171=c ,此时有:201712018,20171-==b a ,或20171,201712018=-=b a . 故这样的三元数组),,(c b a 共有5个.6.已知实数b a ,满足15323=+-a a a ,55323=+-b b b ,则=+b a ( ) A.2. B.3. C.4. D.5.【答】A.有已知条件可得 2)1(2)1(3-=-+-a a ,2)1(2)1(3=-+-b b ,两式相加得33(1)2(1)(1)2(1)0a a b b -+-+-+-=,因式分解得22(2)[(1)(1)(1)(1)2]0a b a a b b +-----+-+=. 因为02)1(43)]1(21)1[(2)1()1)(1()1(2222>+-+---=+-+----b b a b b a a , 所以 02=-+b a ,因此 2=+b a .二、填空题:(本题满分28分,每小题7分)1.已知r q p ,,为素数,且pqr 整除1-++rp qr pq ,则=++r q p _______. 【答】10. 设11111pq qr rp k pqr p q r pqr++-==++-,由题意知k 是正整数,又2,,≥r q p ,所以23<k ,从而1=k ,即有pqr rp qr pq =-++1,于是可知r q p ,,互不相等.当r q p <<≤2时, qr rp qr pq pqr 31<-++=,所以3<q ,故2=q .于是222qr qr q r =++1-,故3)2)(2(=--r q ,所以32,12=-=-r q ,即5,3==r q ,所以,)5,3,2(),,(=r q p .再由r q p ,,的对称性知,所有可能的数组(,,)p q r 共有6组,即(2,3,5),)3,5,2(,)5,2,3(,)2,5,3(,)3,2,5(,)2,3,5(.于是10=++r q p .2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为 . 【答】8.设这两个数为)(,22n m n m >,则 100022-=+n m n m ,即2(1)(1)1001m n --=.又100110011143791117713=⨯=⨯=⨯=⨯,所以 2(1,1)m n --=(1001,1)或(143,7)或(91,11)或(77,13),验证可知只有)7,143()1,1(2=--n m 满足条件,此时8,1442==n m .3.已知D 是△ABC 内一点,E 是AC 的中点,6AB =,10BC =,BCD BAD ∠=∠,ABD EDC ∠=∠,则=DE .【答】4.延长CD 至F ,使DC DF =,则AF DE //且AF DE 21=,所以ABD EDC AFD ∠=∠=∠,故D B F A ,,,四点共圆,于是BCD BAD BFD ∠=∠=∠,所以10==BC BF ,且FC BD ⊥,故90FAB FDB ∠=∠=︒.又6=AB ,故861022=-=AF ,所以421==AF DE .4.已知二次函数)504()12(2222++++++=n m x n m x y 的图象在x 轴的上方,则满足条件的正整数对),(n m 的个数为 .【答】15.因为二次函数的图象在x 轴的上方,所以0)504(4)]12(2[222<++-++=∆n m n m ,整理得49424<++n m mn ,即251)12)(1(<++n m .因为n m ,为正整数,所以25)12)(1(≤++n m . 又21≥+m ,所以22512<+n ,故5≤n . 当1=n 时,3251≤+m ,故322≤m ,符合条件的正整数对),(n m 有7个;当2=n 时,51≤+m ,故4≤m ,符合条件的正整数对),(n m 有4个;当3=n 时,7251≤+m ,故718≤m ,符合条件的正整数对),(n m 有2个; 当4=n 时,9251≤+m ,故917≤m ,符合条件的正整数对),(n m 有1个;当5=n 时,11251≤+m ,故1114≤m ,符合条件的正整数对),(n m 有1个.综合可知:符合条件的正整数对),(n m 有7+4+2+1+1=15个.第二试 (A )一、(本题满分20分)设d c b a ,,,为四个不同的实数,若b a ,为方程011102=--d cx x 的根,d c ,为方程011102=--b ax x 的根,求d c b a +++的值.解 由韦达定理得10a b c +=,10c d a +=,两式相加得)(10c a d c b a +=+++.……………………5分因为a 是方程011102=--d cx x 的根,所以011102=--d ac a ,又c a d -=10,所以010111102=-+-ac c a a . ① ……………………10分类似可得 010111102=-+-ac a c c . ② ……………………15分 ①-②得 0)121)((=-+-c a c a .因为c a ≠,所以121=+c a ,所以1210)(10=+=+++c a d c b a . ……………………20分二、(本题满分25分)如图,在扇形OAB 中,︒=∠90AOB ,12=OA ,点C 在OA 上,4=AC ,点D 为OB 的中点,点E 为弧AB 上的动点,OE 与CD 的交点为F .(1)当四边形ODEC 的面积S 最大时,求EF ;(2)求DE CE 2+的最小值.解 (1)分别过E O ,作CD 的垂线,垂足为N M ,. 由8,6==OC OD ,得10=CD .所以)(21EN OM CD S S S ECD OCD +⋅=+=∆∆ 6012102121=⨯⨯=⋅≤OE CD , ……………………5分 当DC OE ⊥时,S 取得最大值60.此时,536108612=⨯-=-=OF OE EF . ……………………10分 (2)延长OB 至点G ,使12==OB BG ,连结GE GC ,. 因为21==OG OE OE OD ,EOG DOE ∠=∠,所以△ODE ∽△OEG ,所以21=EG DE ,故DE EG 2=.……………………20分所以108824222=+=≥+=+CG EG CE DE CE ,当G E C ,,三点共线时等号成立.故DE CE 2+的最小值为108. ……………………25分C三、(本题满分25分)求所有的正整数n m ,,使得22233)(n m n m n m +-+是非负整数.解 记22233)(n m n m n m S +-+=,则22222)(3)()(]3))[((nm mn n m mn n m n m n m mn n m n m S +-+-+=+--++=. 因为n m ,为正整数,故可令pqn m mn =+,q p ,为正整数,且1),(=q p . 于是 22223)(3)(pq pq n m p q p q n m S +-+=--+=.因为S 为非负整数,所以2|q p ,又1),(=q p ,故1=p ,即mn n m |)(+. ①……………………10分所以nm mn n n m n +-=+2是整数,所以2|)(n n m +,故n m n +≥2,即n m n ≥-2. 又由0≥S ,知02233≥-+n m n m . ② 所以n m m n m m n m n 2223223)(≥-=-≥,所以m n ≥.由对称性,同理可得n m ≥,故n m =. ……………………20分 把n m =代入①,得m |2,则2≥m .把n m =代入②,得0243≥-m m ,即2≤m . 故2=m .所以,满足条件的正整数n m ,为2=m ,2=n . ……………………25分第二试 (B )一、(本题满分20分)若实数c b a ,,满足59)515151)((=-++-++-+++b a c a c b c b a c b a ,求)111)((cb ac b a ++++的值.解 记x c b a =++,y ca bc ab =++,z abc =,则)616161()515151)((cx b x a x x b a c a c b c b a c b a -+-+-=-++-++-+++abc x ca bc ab x c b a x ca bc ab x c b a x x 216)(36)(6)](36)(123[232-+++++-+++++-=23(936)536216x x y x xy z-+=-+-, ……………………10分结合已知条件可得23(936)95362165x x y x xy z -+=-+-,整理得z xy 227=.所以 227)111)((==++++z xy c b a c b a . ……………………20分二、(本题满分25分)如图,点E 在四边形ABCD 的边AB 上,△ABC 和△CDE 都是等腰直角三角形,AC AB =,DC DE =.(1)证明:BC AD //;(2)设AC 与DE 交于点P ,如果︒=∠30ACE ,求PEDP. 解 (1)由题意知45ACB DCE ∠=∠=︒,BC =,EC =,所以DCA ECB ∠=∠,AC DCBC EC=,所以△ADC ∽△BEC ,故DAC ∠= 45EBC ∠=︒,所以ACB DAC ∠=∠,所以BC AD //.……………………10分(2)设x AE =,因为︒=∠30ACE ,可得x AC 3=,2CE x =,DE DC ==.因为90EAP CDP ∠=∠=︒,EPA CPD ∠=∠,所以△APE ∽△DPC ,故可得DPC APE S S ∆∆=21. ……………………15分 又223x S S S ACE APE EPC ==+∆∆∆,2x S S S CDE DPC EPC ==+∆∆∆,于是可得 2)32(x S DPC -=∆,2)13(x S EPC -=∆. ……………………20分所以2131332-=--==∆∆EPC DPC S S PE DP . ……………………25分 三、(本题满分25分)设x 是一个四位数,x 的各位数字之和为m ,1+x 的各位数字之和为n ,并且m 与n 的最大公约数是一个大于2的素数.求x .解 设abcd x =,由题设知m 与n 的最大公约数),(n m 为大于2的素数.若9≠d ,则1+=m n ,所以(,)1m n =,矛盾,故9=d . ……………………5分 若9≠c ,则891-=-+=m m n ,故(,)(,8)m n m =,它不可能是大于2的素数,矛盾,故9=c .……………………10分若9=b ,显然9≠a ,所以269991-=---+=m m n ,故(,)(,26)13m n m ==,但此时可得13≥n ,363926>≥+=n m ,矛盾. ……………………15分若9≠b ,则17991-=--+=m m n ,故(,)m n (,17)17m ==,只可能34,17==m n . ……………………20分 于是可得8899=x 或9799. ……………………25分。

湖州市2018学年九年级(上)数学竞赛试卷(含答案)

湖州市2018学年九年级(上)数学竞赛试卷(含答案)

湖州市2018学年九年级(上)数学竞赛试卷学校 班级 学号 得分一、选择题(每小题5分,共30分) 1.已知0k >,函数y kx k =+和函数ky x =在同一坐标系内的图象大是 ( )2.如果抛物线y=x 2-(k-1)x-k-1与x 轴的交点为A ,B ,顶点为C ,那么三角形ABC的面积的最小值是 ( ) A.1 B. 2 C. 3 D. 43.Rt△ABC 的三个顶点A ,B ,C 均在抛物线2y x =上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则 ( ) A.h<1 B.h=1 C.1<h<2 D.h>24.如图,半圆的直径EF=8,正方形ABCD 的顶点A 、D 在半圆上,一边BC 在EF 上,则这个正方形的面积等于 ( ) A.16 B.15.4 C.12.8 D. 125.侦察机沿以A 为圆心、半径为10公里的圆周飞行,速度为每小时1000公里。

某时刻从A 点发射一枚与飞机具有相同速度的火箭,无论何时火箭总在连结圆心与飞机的直线上,问火箭发射后( )小时可以追上飞机. ( ) A.50p B. 100p C. 150p D. 200p6.如图⊿ABC 中,AB=3,AC=6,AD ⊥BC 于D ,且AD=2,则⊿ABC 的外接圆的半径是( )x x x x (第4题) (第5题)A.9B.C.4.5D.5二、填空题(每题5分,共30分)7.如图,AB 是⊙O 的弦,C 是AB 的三等分点,连结OC 并延长交⊙O 于点D 。

若OC=3,CD=2,则圆心O 到弦AB 的距离是 .8.销售某种商品,如果单价上涨m%,则售出的数量就将减少150m 。

为了使该商品的销售总金额最大,那么的m 值应该确定为 . 9.方程21x x x-=的解有 个. 10.已知点C 是⊙O 上弧AB 的三等分点,∠AOB=90°,⊙O 的半径为2,P 是OB 上任意一点,则PA+PC 的最小值是 .11.如果抛物线 y=a x 2与直线x=1,x=2,y=1,y=2,围成的正方形有公共点,那么实数的取值范围是 .12.如图,矩形AOCB 的两边OC 、OA 分别位于轴、轴上,点B 的坐标为(203-,5), D 是AB 边上的一点。

浙江省湖州市2018年中考数学试题(含解析)(中考真题)

浙江省湖州市2018年中考数学试题(含解析)(中考真题)

2018年浙江省湖州市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)2018的相反数是()A.2018 B.﹣2018 C .D .2.(3分)计算﹣3a•(2b),正确的结果是()A.﹣6ab B.6ab C.﹣ab D.ab3.(3分)如图所示的几何体的左视图是()A .B .C .D .4.(3分)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:101112131415生产件数(件)人数(人)154321则这一天16名工人生产件数的众数是()A.5件 B.11件C.12件D.15件5.(3分)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°6.(3分)如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)7.(3分)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.8.(3分)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC 上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等9.(3分)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A.r B.(1+)r C.(1+)r D.r10.(3分)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥二、填空题(本题共6小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是.12.(4分)当x=1时,分式的值是.13.(4分)如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是.14.(4分)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是.15.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是.16.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD 的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD 的边长为时,正方形EFGH的面积的所有可能值是(不包括5).三、解答题(本题有8个小题,共66分)17.(6分)计算:(﹣6)2×(﹣).18.(6分)解不等式≤2,并把它的解表示在数轴上.19.(6分)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.20.(8分)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.21.(8分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD 于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.22.(10分)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:路程(千米)甲仓库乙仓库A果园1525B果园2020设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x 2×15x2×25(110﹣x)B果园(2)设总运费为y元,求y关于x 的函数表达式,并求当甲仓库运往A 果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?23.(10分)已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且==m,连结AE,过点D 作DM⊥AE,垂足为点M,延长DM交AB于点F .(1)如图1,过点E作EH⊥AB于点H,连结DH.①求证:四边形DHEC是平行四边形;②若m=,求证:AE=DF;(2)如图2,若m=,求的值.24.(12分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC 与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.2018年浙江省湖州市中考数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.(3分)2018的相反数是()A.2018 B.﹣2018 C.D.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数可得答案.【解答】解:2018的相反数是﹣2018,故选:B.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.(3分)计算﹣3a•(2b),正确的结果是()A.﹣6ab B.6ab C.﹣ab D.ab【分析】根据单项式的乘法解答即可.【解答】解:﹣3a•(2b)=﹣6ab,故选:A.【点评】此题考查单项式的除法,关键是根据法则计算.3.(3分)如图所示的几何体的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是一个圆环,故选:D.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4.(3分)某工艺品厂草编车间共有16名工人,为了了解每个工人的日均生产能力,随机调查了某一天每个工人的生产件数.获得数据如下表:101112131415生产件数(件)人数(人)154321则这一天16名工人生产件数的众数是()A.5件 B.11件C.12件D.15件【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:由表可知,11件的次数最多,所以众数为11件,故选:B.【点评】本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.5.(3分)如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20°B.35°C.40°D.70°【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【解答】解:∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°﹣∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选:B.【点评】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.6.(3分)如图,已知直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标是()A.(﹣1,﹣2)B.(﹣1,2)C.(1,﹣2)D.(﹣2,﹣1)【分析】直接利用正比例函数的性质得出M,N两点关于原点对称,进而得出答案.【解答】解:∵直线y=k1x(k1≠0)与反比例函数y=(k2≠0)的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(﹣1,﹣2).故选:A.【点评】此题主要考查了反比例函数与一次函数的交点问题,正确得出M,N两点位置关系是解题关键.7.(3分)某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.B.C.D.【分析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【解答】解:将三个小区分别记为A、B、C,列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=,故选:C.【点评】此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.8.(3分)如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC 上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A.AE=EF B.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等【分析】先判断出△BFC是直角三角形,再利用三角形的外角判断出A正确,进而判断出AE=CE,得出CE是△ABC的中位线判断出B正确,利用等式的性质判断出D正确.【解答】解:如图,连接CF,∵点D是BC中点,∴BD=CD,由折叠知,∠ACB=∠DFE,CD=DF,∴BD=CD=DF,∴△BFC是直角三角形,∴∠BFC=90°,∵BD=DF,∴∠B=∠BFD,∴∠EAF=∠B+∠ACB=∠BFD+∠DFE=∠AFE,∴AE=AF,故A正确,由折叠知,EF=CE,∴AE=CE,∵BD=CD,∴DE是△ABC的中位线,∴AB=2DE,故B正确,∵AE=CE,∴S△ADE =S△CDE,由折叠知,△CDE≌△△FDE,∴S△CDE =S△FDE,∴S△ADE =S△FDE,故D正确,∴C选项不正确,故选:C.【点评】此题主要考查了折叠的性质,直角三角形的判定和性质,三角形的中位线定理,作出辅助线是解本题的关键.9.(3分)尺规作图特有的魅力曾使无数人沉湎其中.传说拿破仑通过下列尺规作图考他的大臣:①将半径为r的⊙O六等分,依次得到A,B,C,D,E,F六个分点;②分别以点A,D为圆心,AC长为半径画弧,G是两弧的一个交点;③连结OG.问:OG的长是多少?大臣给出的正确答案应是()A.r B.(1+)r C.(1+)r D.r【分析】如图连接CD,AC,DG,AG.在直角三角形即可解决问题;【解答】解:如图连接CD,AC,DG,AG.∵AD是⊙O直径,∴∠ACD=90°,在Rt△ACD中,AD=2r,∠DAC=30°,∴AC=r,∵DG=AG=CA,OD=OA,∴OG⊥AD,∴∠GOA=90°,∴OG===r,故选:D.【点评】本题考查作图﹣复杂作图,正多边形与圆的关系,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.10.(3分)在平面直角坐标系xOy中,已知点M,N的坐标分别为(﹣1,2),(2,1),若抛物线y=ax2﹣x+2(a≠0)与线段MN有两个不同的交点,则a的取值范围是()A.a≤﹣1或≤a<B.≤a<C.a≤或a>D.a≤﹣1或a≥【分析】根据二次函数的性质分两种情形讨论求解即可;【解答】解:∵抛物线的解析式为y=ax2﹣x+2.观察图象可知当a<0时,x=﹣1时,y≤2时,满足条件,即a+3≤2,即a≤﹣1;当a>0时,x=2时,y≥1,且抛物线与直线MN有交点,满足条件,∴a≥,∵直线MN的解析式为y=﹣x+,由,消去y得到,3ax2﹣2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的a的值为a≤﹣1或≤a<,故选:A.【点评】本题考查二次函数的应用,二次函数的图象上的点的特征等知识,解题的关键是灵活运用所学知识解决问题,学会用转化的思想思考问题,属于中考常考题型.二、填空题(本题共6小题,每小题4分,共24分)11.(4分)二次根式中字母x的取值范围是x≥3.【分析】由二次根式有意义的条件得出不等式,解不等式即可.【解答】解:当x﹣3≥0时,二次根式有意义,则x≥3;故答案为:x≥3.【点评】本题考查了二次根式有意义的条件、不等式的解法;熟记二次根式有意义的条件是解决问题的关键.12.(4分)当x=1时,分式的值是.【分析】将x=1代入分式,按照分式要求的运算顺序计算可得.【解答】解:当x=1时,原式==,故答案为:.【点评】本题主要考查分式的值,在解答时应从已知条件和所求问题的特点出发,通过适当的变形、转化,才能发现解题的捷径.13.(4分)如图,已知菱形ABCD,对角线AC,BD相交于点O.若tan∠BAC=,AC=6,则BD的长是2.【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,OA=AC=3,BD=2OB.再解Rt△OAB,根据tan∠BAC==,求出OB=1,那么BD=2.【解答】解:∵四边形ABCD是菱形,AC=6,∴AC⊥BD,OA=AC=3,BD=2OB.在Rt△OAB中,∵∠AOD=90°,∴tan∠BAC==,∴OB=1,∴BD=2.故答案为2.【点评】本题考查了菱形的性质,解直角三角形,锐角三角函数的定义,掌握菱形的对角线互相垂直平分是解题的关键.14.(4分)如图,已知△ABC的内切圆⊙O与BC边相切于点D,连结OB,OD.若∠ABC=40°,则∠BOD的度数是70°.【分析】先根据三角形内心的性质和切线的性质得到OB平分∠ABC,OD⊥BC,则∠OBD=∠ABC=20°,然后利用互余计算∠BOD的度数.【解答】解:∵△ABC的内切圆⊙O与BC边相切于点D,∴OB平分∠ABC,OD⊥BC,∴∠OBD=∠ABC=×40°=20°,∴∠BOD=90°﹣∠OBD=70°.故答案为70°.【点评】本题考查了三角形内切圆与内心:三角形的内心到三角形三边的距离相等;三角形的内心与三角形顶点的连线平分这个内角.也考查了等腰三角形的判定与性质和三角形的外接圆.15.(4分)如图,在平面直角坐标系xOy中,已知抛物线y=ax2+bx(a>0)的顶点为C,与x轴的正半轴交于点A,它的对称轴与抛物线y=ax2(a>0)交于点B.若四边形ABOC是正方形,则b的值是﹣2.【分析】根据正方形的性质结合题意,可得出点B的坐标为(﹣,﹣),再利用二次函数图象上点的坐标特征即可得出关于b的方程,解之即可得出结论.【解答】解:∵四边形ABOC是正方形,∴点B的坐标为(﹣,﹣).∵抛物线y=ax2过点B,∴﹣=a(﹣)2,解得:b1=0(舍去),b2=﹣2.故答案为:﹣2.【点评】本题考查了抛物线与x轴的交点、二次函数图象上点的坐特征以及正方形的性质,利用正方形的性质结合二次函数图象上点的坐标特征,找出关于b 的方程是解题的关键.16.(4分)在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.以顶点都是格点的正方形ABCD的边为斜边,向内作四个全等的直角三角形,使四个直角顶点E,F,G,H都是格点,且四边形EFGH为正方形,我们把这样的图形称为格点弦图.例如,在如图1所示的格点弦图中,正方形ABCD 的边长为,此时正方形EFGH的而积为5.问:当格点弦图中的正方形ABCD 的边长为时,正方形EFGH的面积的所有可能值是13或49(不包括5).【分析】当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.【解答】解:当DG=,CG=2时,满足DG2+CG2=CD2,此时HG=,可得正方形EFGH的面积为13.当DG=8,CG=1时,满足DG2+CG2=CD2,此时HG=7,可得正方形EFGH的面积为49.故答案为13或49.【点评】本题考查作图﹣应用与设计、全等三角形的判定、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.三、解答题(本题有8个小题,共66分)17.(6分)计算:(﹣6)2×(﹣).【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值.【解答】解:原式=36×(﹣)=18﹣12=6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.(6分)解不等式≤2,并把它的解表示在数轴上.【分析】先根据不等式的解法求解不等式,然后把它的解集表示在数轴上.【解答】解:去分母,得:3x﹣2≤4,移项,得:3x≤4+2,合并同类项,得:3x≤6,系数化为1,得:x≤2,将不等式的解集表示在数轴上如下:【点评】本题考查了解一元一次不等式,解答本题的关键是掌握不等式的解法以及在数轴上表示不等式的解集.19.(6分)已知抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),求a,b的值.【分析】根据抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),可以求得a、b的值,本题得以解决.【解答】解:∵抛物线y=ax2+bx﹣3(a≠0)经过点(﹣1,0),(3,0),∴,解得,,即a的值是1,b的值是﹣2.【点评】本题考查二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.20.(8分)某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整)(1)求扇形统计图中交通监督所在扇形的圆心角度数;(2)求D班选择环境保护的学生人数,并补全折线统计图;(温馨提示:请画在答题卷相对应的图上)(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.【分析】(1)由折线图得出选择交通监督的人数,除以总人数得出选择交通监督的百分比,再乘以360°即可求出扇形统计图中交通监督所在扇形的圆心角度数;(2)用选择环境保护的学生总人数减去A,B,C三个班选择环境保护的学生人数即可得出D班选择环境保护的学生人数,进而补全折线图;(3)用2500乘以样本中选择文明宣传的学生所占的百分比即可.【解答】解:(1)选择交通监督的人数是:12+15+13+14=54(人),选择交通监督的百分比是:×100%=27%,扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).补全折线统计图如图所示;(3)2500×(1﹣30%﹣27%﹣5%)=950(人),即估计该校选择文明宣传的学生人数是950人.【点评】本题考查折线统计图、用样本估计总体、扇形统计图,解题的关键是明确题意,找出所求问题需要的条件、利用数形结合的思想解答问题.21.(8分)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD 于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.【分析】(1)根据平行线的性质得出∠AEO=90°,再利用垂径定理证明即可;(2)根据弧长公式解答即可.【解答】证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.【点评】此题考查弧长公式,关键是根据弧长公式和垂径定理解答.22.(10分)“绿水青山就是金山银山”,为了保护环境和提高果树产量,某果农计划从甲、乙两个仓库用汽车向A,B两个果园运送有机化肥,甲、乙两个仓库分别可运出80吨和100吨有机化肥;A,B两个果园分别需用110吨和70吨有机化肥.两个仓库到A,B两个果园的路程如表所示:路程(千米)甲仓库乙仓库A果园1525B果园2020设甲仓库运往A果园x吨有机化肥,若汽车每吨每千米的运费为2元,(1)根据题意,填写下表.(温馨提示:请填写在答题卷相对应的表格内)运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园80﹣x x﹣102×20×(80﹣x)2×20×(x﹣10)(2)设总运费为y元,求y关于x的函数表达式,并求当甲仓库运往A果园多少吨有机化肥时,总运费最省?最省的总运费是多少元?【分析】(1)设甲仓库运往A果园x吨有机化肥,根据题意求得甲仓库运往B 果园(80﹣x)吨,乙仓库运往A果园(110﹣x)吨,乙仓库运往B果园(x﹣10)吨,然后根据两个仓库到A,B两个果园的路程完成表格;(2)根据(1)中的表格求得总运费y(元)关于x(吨)的函数关系式,根据一次函数的增减性结合自变量的取值范围,可知当x=80时,总运费y最省,然后代入求解即可求得最省的总运费.【解答】解:(1)填表如下:运量(吨)运费(元)甲仓库乙仓库甲仓库乙仓库A果园x110﹣x2×15x2×25(110﹣x)B果园80﹣x x﹣102×20×(80﹣x)2×20×(x﹣10)故答案为80﹣x,x﹣10,2×20×(80﹣x),2×20×(x﹣10);(2)y=2×15x+2×25×(110﹣x)+2×20×(80﹣x)+2×20×(x﹣10),即y关于x的函数表达式为y=﹣20x+8300,∵﹣20<0,且10≤x≤80,=﹣20×80+8300=6700.∴当x=80时,总运费y最省,此时y最小故当甲仓库运往A果园80吨有机化肥时,总运费最省,最省的总运费是6700元.【点评】此题考查了一次函数的实际应用问题.此题难度较大,解题的关键是理解题意,读懂表格,求得一次函数解析式,然后根据一次函数的性质求解.23.(10分)已知在Rt△ABC中,∠BAC=90°,AB≥AC,D,E分别为AC,BC边上的点(不包括端点),且==m,连结AE,过点D作DM⊥AE,垂足为点M,延长DM交AB于点F.(1)如图1,过点E作EH⊥AB于点H,连结DH.①求证:四边形DHEC是平行四边形;②若m=,求证:AE=DF;(2)如图2,若m=,求的值.【分析】(1)①先判断出△BHE∽△BAC,进而判断出HE=DC,即可得出结论;②先判断出AC=AB,BH=HE,再判断出∠HEA=∠AFD,即可得出结论;(2)先判断出△EGB∽△CAB,进而求出CD:BE=3:5,再判断出∠AFM=∠AEG 进而判断出△FAD∽△EGA,即可得出结论.【解答】解:(1)①证明:∵EH⊥AB,∠BAC=90°,∴EH∥CA,∴△BHE∽△BAC,∴,∵,∴,∴,∴HE=DC,∵EH∥DC,∴四边形DHEC是平行四边形;②∵,∠BAC=90°,∴AC=AB,∵,HE=DC,∴HE=DC,∴,∵∠BHE=90°,∴BH=HE,∵HE=DC,∴BH=CD,∴AH=AD,∵DM⊥AE,EH⊥AB,∴∠EHA=∠AMF=90°,∴∠HAE+∠HEA=∠HAE+∠AFM=90°,∴∠HEA=∠AFD,∵∠EHA=∠FAD=90°,∴△HEA≌△AFD,∴AE=DF;(2)如图2,过点E作EG⊥AB于G,∵CA⊥AB,∴EG∥CA,∴△EGB∽△CAB,∴,∴,∵,∴EG=CD,设EG=CD=3x,AC=3y,∴BE=5x,BC=5y,∴BG=4x,AB=4y,∵∠EGA=∠AMF=90°,∴∠GEA+∠EAG=∠EAG+∠AFM,∴∠AFM=∠AEG,∵∠FAD=∠EGA=90°,∴△FAD∽△EGA,∴=【点评】此题是相似形综合题,主要考查了平行四边形的判定和性质,相似三角形的判定和性质,全等三角形的判定和性质,判断出∠HEA=∠AFD是解本题的关键.24.(12分)如图1,在平面直角坐标系xOy中,已知△ABC,∠ABC=90°,顶点A在第一象限,B,C在x轴的正半轴上(C在B的右侧),BC=2,AB=2,△ADC 与△ABC关于AC所在的直线对称.(1)当OB=2时,求点D的坐标;(2)若点A和点D在同一个反比例函数的图象上,求OB的长;(3)如图2,将第(2)题中的四边形ABCD向右平移,记平移后的四边形为A1B1C1D1,过点D1的反比例函数y=(k≠0)的图象与BA的延长线交于点P.问:在平移过程中,是否存在这样的k,使得以点P,A1,D为顶点的三角形是直角三角形?若存在,请直接写出所有符合题意的k的值;若不存在,请说明理由.【分析】(1)如图1中,作DE⊥x轴于E,解直角三角形清楚DE,CE即可解决问题;(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(3+a,),点A、D在同一反比例函数图象上,可得2a=(3+a),清楚a即可;(3)分两种情形:①如图2中,当∠PA1D=90°时.②如图3中,当∠PDA1=90°时.分别构建方程解决问题即可;【解答】解:(1)如图1中,作DE⊥x轴于E.∵∠ABC=90°,∴tan∠ACB==,∴∠ACB=60°,根据对称性可知:DC=BC=2,∠ACD=∠ACB=60°,∴∠D CE=60°,∴∠CDE=90°﹣60°=30°,∴CE=1,DE=,∴OE=OB+BC+CE=5,∴点D坐标为(5,).(2)设OB=a,则点A的坐标(a,2),由题意CE=1.DE=,可得D(3+a,),∵点A、D在同一反比例函数图象上,∴2a=(3+a),∴a=3,∴OB=3.(3)存在.理由如下:①如图2中,当∠PA1D=90°时.∵AD∥PA1,∴∠ADA1=180°﹣∠PA1D=90°,在Rt△ADA1中,∵∠DAA1=30°,AD=2,∴AA1==4,在Rt△APA1中,∵∠APA1=60°,∴PA=,∴PB=,设P(m,),则D1(m+7,),∵P、A1在同一反比例函数图象上,∴m=(m+7),解得m=3,∴P(3,),∴k=10.②如图3中,当∠PDA1=90°时.∵∠PAK=∠KDA1=90°,∠AKP=∠DKA1,∴△AKP∽△DKA1,∴=.∴=,∵∠AKD=∠PKA1,∴△KAD∽△KPA1,∴∠KPA1=∠KAD=30°,∠ADK=∠KA1P=30°,∴∠APD=∠ADP=30°,∴AP=AD=2,AA1=6,设P(m,4),则D1(m+9,),∵P、A1在同一反比例函数图象上,∴4m=(m+9),解得m=3,∴P(3,4),∴k=12.【点评】本题考查反比例函数综合题、相似三角形的判定和性质、锐角三角函数、解直角三角形、待定系数法等知识,解题的关键是学会用分类讨论的思想思考问题,学会了可以参数构建方程解决问题,属于中考压轴题.。

2018年全国初中数学竞赛(浙江赛区)复赛试题及参考答案

2018年全国初中数学竞赛(浙江赛区)复赛试题及参考答案

2018年全国初中数学竞赛(浙江赛区)复赛试题(2018年4月1日 下午1:00—3:00)答题时注意;1.用圆珠笔或钢笔作答.2.解答书写时不要超过装订线. 3.草稿纸不上交.一、选择题(共6小题,每小题5分,满分30分.以下每小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的.请将正确选项的代号填入题后的括号里.不填、多填或错填均得零分) 1.若3210x x x +++=,则2627--+x x+ … +x x ++-11+ … +2726x x +的值是( )(A )1 (B )0 (C )-1 (D )2 2.定义:定点A 与⊙O 上的任意一点之间的距离的最小值称为点A 与⊙O 之间的距离.现有一矩形ABCD 如图,AB =14cm ,BC =12cm ,⊙K 与矩形的边AB 、BC 、CD 分别相切于点E 、F 、G ,则点A 与⊙K 的距离为( )(A )4cm (B )8cm (C )10cm (D )12cm3.某班选举班干部,全班有50名同学都有选举权和被选举权,他们的编号分别为1,2,…,50.老师规定:同意某同学当选的记“1”,不同意(含弃权)的记“0”. 如果令⎩⎨⎧=号同学当选.号同学不同意第,第号同学当选,号同学同意第,第,j i j i a j i 01其中i =1,2,...,50;j =1,2, (50)则同时同意第1号和第50号同学当选的人数可表示为( ) (A )2111,,a a ++ … ++++250150501,,,a a a … +5050,a (B )1211,,a a ++ … ++++502501150,,,a a a … +5050,a (C ) 50111,,a a +50212,,a a + … +5050150,,a a (D ) 15011,,a a +25021,,a a + … +5050501,,a aA(第2题)4.若a b c t b c c a a b===+++,则一次函数2y tx t =+的图象必定经过的象限是( ) (A )第一、二象限 (B )第一、二、三象限 (C )第二、三、四象限 (D )第三、四象限5.满足两条直角边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( )(A)1个 (B) 2个 (C) 3个 (D)无穷多个 6.如图,以Rt △ABC 的斜边BC 为一边在△ABC 的同侧作正方形BCEF ,设正方形的中心为O ,连结AO ,如果AB =4,AO =26,那么AC 的长等于( )(A) 12 (B) 16(C)(D)二、填空题(共6小题,每小题6分,满分36分)7.函数321+++++=x x x y ,当x = 时,y 有最小值,最小值等于 .8.以立方体的8个顶点中的任意3个顶点为顶点的三角形中,正三角形的个数为 .9.如图,△ABC 中,∠A 的平分线交BC 于D ,若AB =6 cm ,AC =4 cm ,∠A =60°,则AD 的长为 cm . 10.设,,,321x x x … ,2007x 为实数,且满足321x x x …2007x =321x x x -…2007x =321x x x -…2007x =…=321x x x …20072006x x -=1,则2000x 的值是 .11.正六边形轨道ABCDEF 的周长为7.2米,甲、乙两只机器鼠分别从A ,C 两点同时出发,均按A →B →C →D →E →F →A →… 方向沿轨道奔跑,甲的速度为9.2厘米/秒,乙的速度为8厘米/秒,那么出发后经过 秒钟时,甲、乙两只机器鼠第一次出现在同一条边上.12.正整数M 的个位上的数字与数20152013的个位上的数字相同,把M 的个位上的数字移到它的左边第一位数字之前就形成一个新的数N .若N 是M 的4倍,T 是M 的最小值,则T 的各位数字之和等于 .ABCEFO(第6题) (第9题)ABCD三、解答题(共4小题,满分54分)13.(本题满分12分)已知二次函数2y ax bx c =++的图象G 和x 轴有且只有一个交点A ,与y 轴的交点为B (0,4),且ac b =. (1)求该二次函数的解析表达式;(2)将一次函数y =3-x 的图象作适当平移,使它经过点A ,记所得的图象为L ,图象L 与G 的另一个交点为C ,求△ABC 的面积.如图,AB ∥CD 、AD ∥CE ,F 、G 分别是AC 和FD 的中点,过G 的直线依次交AB 、AD 、CD 、CE 于点M 、N 、P 、Q,求证:MN +PQ =2PN .BACMN P EFQDG2007个质点均匀分布在半径为R 的圆周上,依次记为1P ,2P ,3P ,…,2007P .小明用红色按如下规则去涂这些点:设某次涂第i 个质点,则下次就涂第i 个质点后面的第i 个质点.按此规则,小明能否将所有的质点均涂成红色?若能,请给出一种涂点方案;若不能,请说明理由.从连续自然数1,2,3,…,2008中任意取n个不同的数,(1)求证:当n=1007时,无论怎样选取这n个数,总存在其中的4个数的和等于4017.(2)当n≤1006(n是正整数)时,上述结论成立否?请说明理由.2007年全国初中数学竞赛(浙江赛区)复赛试题参考答案一、选择题(共6小题,每小题5分,满分30分) 1.答案:C解:由3210x x x +++=,得1x =-,所以2627--+x x + … +x x ++-11+ … +2726x x +=-1.2.答案:A解:连结AK 、EK ,设AK 与⊙O 的交点为H ,则AH 即为所求, 因为AK =22AE EK +=10,所以AH = 4. 3.答案:C解:由题意得C 正确. 4.答案:A解:由已知可得t c b a c b a )(2++=++,当0a b c ++≠时,12t =,1124y x =+,直线过第一、二、三象限; 当0a b c ++=时,1t =-,1y x =-+,直线过第一、二、四象限.综合上可得,直线必定经过的象限是第一、二象限.5.答案:C解:设直角三角形的两条直角边长为,a b (a b ≤),则12a b k ab ++=⋅(a ,b ,k 均为正整数),化简,得(4)(4)8ka kb --=,所以4148ka kb -=⎧⎨-=⎩或4244ka kb -=⎧⎨-=⎩.解得1512k a b =⎧⎪=⎨⎪=⎩或234k a b =⎧⎪=⎨⎪=⎩或⎪⎩⎪⎨⎧===.8,6,1b a k 即有3组解.6.答案:B解:在AC 上取一点G ,使CG =AB =4,连接OG ,则△OG C ≌△OAB ,所以OG =OA =26, ∠AOG =90°,所以△AOG 是等腰直角三角形,AG =12,所以AC =16.A(第2题)AB CEFO G(第6题)二、填空题(共6小题,每小题6分,满分36分) 7.答案:-2,2解:当x ≤-3时,y = -3x -6;当-3<x ≤-2时,y = -x ; 当-2<x ≤-1时,y =x +4; 当x >-1时,y =3x +6.;所以当x =-2时,y 的值最小,最小值为2. 8.答案:8个解:正三角形的各边必为立方体各面的对角线,共有8个正三角形. 9.答案:5312 解:由S △ABC =S △ABD + S △ADC ,得︒⋅⋅60sin 21AC AB =︒⋅⋅+︒⋅⋅30sin 2130sin 21AC AD AD AB . 解得AD =5312.10.答案:1,或253±-解:由已知,321x x x ...200032120001x x x x x -=1,321x x x (1999)32119991x x x x x -=1,解得123200012319991515,22x x x x x x x x ±±==. 所以12000=x ,或2000x = 11.答案:238104解:设甲跑完x 条边时,甲、乙两老鼠第一次出现在同一条边上,此时甲走了120x 厘米,乙走了2.91208x ⨯厘米,于是⎪⎪⎩⎪⎪⎨⎧≤-+⨯>--+-⨯.,1201202402.91208120)1(1202402.9)1(1208x x x x解得328327<≤x .因x 是整数,所以x =8,即经过2.98120⨯=232400=238104秒时,甲、乙两只机器鼠第一次出现在同一条边上.12.答案:36 解:20152013的个位数字是7,所以可设710+=k M ,其中k 是m 位正整数,则k N m+⨯=107.由条件N =4M ,得k m+⨯107=)710(4+k ,即39)410(7-=m k .当m =5时,k 取得最小值17948.所以T =179487,它的各位数字之和为36.三、解答题(共4题,满分54分) 13.(12分)解:(1)由B (0,4)得,c =4.G 与x 轴的交点A (2ba-,0), 由条件ac b =,得b c a =,所以2b a -=22c -=-,即A (2-,0).所以4,4240.b a a b =⎧⎨-+=⎩解得1,4.a b =⎧⎨=⎩所求二次函数的解析式为244y x x =++.(2)设图象L 的函数解析式为y =3-x +b ,因图象L 过点A (2-,0),所以6b =-,即平移后所得一次函数的解析式为y =36x --.令36x --=244x x ++, 解得12x =-,25x =-.将它们分别代入y =36x --, 得10y =,29y =.所以图象L 与G 的另一个交点为C (5-,9). 如图,过C 作CD ⊥x 轴于D ,则 S △ABC =S 梯形BCDO -S △ACD -S △ABO =111(49)53924222+⨯-⨯⨯-⨯⨯=15.(第13题)14.(12分)证明:延长BA 、EC ,设交点为O ,则四边形OADC 为平行四边形. ∵ F 是AC 的中点, ∴ DF 的延长线必过O 点,且31=OG DG . ∵ AB ∥CD , ∴DNANPN MN =. ∵ AD ∥CE ,∴DNCQPN PQ =. ∴ +PN MN =PN PQ DN AN DNCQ+ =DNCQ AN +.又=OQ DN 31=OG DG , ∴ OQ =3DN .∴ CQ =OQ -OC =3DN -OC =3DN -AD ,AN =AD -DN , 于是,AN +CQ =2DN , ∴+PN MN =PNPQ DN CQAN +=2,即 MN +PQ =2PN .15.(14分)解:不能.理由:设继i P 点涂成红色后被涂到的点是第j 号,则j =2,22007,22007,22007.i i i i ≤⎧⎨->⎩若i =2007,则j =2007,即除2007P 点涂成红色外,其余均没有涂到. 若i ≠2007,则2i ≠2007,且2i ≠4014,即2i -2007≠2007, 表明2007P 点永远涂不到红色.BACMN P E FQDG O初数复赛试题 第11页(共6页) 16.(16分)解:(1)设123x x x ,,,…,1007x 是1,2,3,…,2008中任意取出的1007个数.首先,将1,2,3,…,2008分成1004对,每对数的和为2009,每对数记作(m ,2009-m ) ,其中m =1,2,3, (1004)因为2008个数取出1007个数后还余1001个数,所以至少有一个数是1001个数之一的数对至多为1001对,因此至少有3对数,不妨记为112233(2009)(2009)(2009)m m m m m m ---,,,,, (123m m m ,,互不相等)均为123x x x ,,,…,1007x 中的6个数.其次,将这2008个数中的2006个数(除1004、2008 外)分成1003对,每对数的和为2008,每对数记作(k ,2008-k ) ,其中k =1,2, (1003)2006个数中至少有1005个数被取出,因此2006个数中除去取出的数以外最多有1001个数,这1003对数中,至少有2对数是123x x x ,,,…,1007x 中的4个数,不妨记其中的一对为11(2008)k k -,.又在三对数112233(2009)(2009)(2009)m m m m m m ---,,,,,,(123m m m ,,互不相等)中至少存在1对数中的两个数与11(2008)k k -,中的两个数互不相同,不妨设该对数为11(2009)m m -,,于是1111200920084017m m k k +-++-=.(2)不成立.当1006n =时,不妨从1,2,…,2008中取出后面的1006个数:1003 ,1004, (2008)则其中任何四个不同的数之和不小于1003+1004+1005+1006=4018>4017;当1006n <时,同样从1,2,…,2008中取出后面的n 个数,其中任何4数之和大于1003+1004+1005+1006=4018>4017.所以1006n ≤时都不成立.。

2018年初中数学联赛试题(含答案)

2018年初中数学联赛试题(含答案)

12018年初中数学联赛试题说明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.如果考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试(A)一、选择题:(本题满分42分,每小题7分)1.设二次函数2222a y x ax =++的图象的顶点为A ,与x 轴的交点为B ,C .当△ABC 为等边三角形时,其边长为( )A.6B.22C.23D.322.如图,在矩形ABCD 中,∠BAD 的平分线交BD 于点E ,AB =1,∠CAE =15°,则BE=( )A.33 B.222-1 33.设p ,q 均为大于3的素数,则使p 2+5pq+4q 2为完全平方数的素数对(p ,q )的个2数为( )A.1B.2C.3D.44.若实数a ,b 满足a-b=2,()()22114a b ba-+-=,则a 5-b 5=( )A.46B.64C.82D.1285.对任意的整数x ,y ,定义xy =x +y -xy ,则使得(xy )z +(yz )x +(zx )y =0的整数组(x ,y ,z )的个数为( )A.1B.2C.3D.46.设11112018201920202050M =++++,则1M的整数部分是( ) A.60 B.61 C.62 D.63二、填空题:(本题满分28分,每小题7分)1.如图,在平行四边形ABCD 中,BC =2AB ,CE ⊥AB 于E ,F 为AD 的中点,若∠AEF=48°,则∠B=_______.32.若实数x ,y 满足()3311542x y x y +++=,则x +y 的最大值为_______. 3.没有重复数字且不为5的倍数的五位数的个数为_______.4.已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则555a b cabc++=_______.第一试(B)一、选择题:(本题满分42分,每小题7分)1.满足(x 2+x-1)x+2的整数x 的个数为( )A.1B.2C.3D.42.已知x 1,x 2,x 3 (x 1<x 2<x 3)为关于x 的方程x 3-3x 2+(a+2)x-a=0的三个实数根,则22211234x x x x -++=( )A.5B.6C.7D.83.已知点E ,F 分别在正方形ABCD 的边CD ,AD 上,CD=4CE ,∠EFB=∠FBC ,则tan ∠AB F =( )4A.12B.35C.2D.24.=的实数根的个数为( )A.0B.1C.2D.35.设a ,b ,c 为三个实数,它们中任何一个数加上其余两数之积的2017倍都等于2018,则这样的三元数组(a ,b ,c )的个数为( )A.4B.5C.6D.76.已知实数a ,b 满足a 3-3a 2+5a=1,b 3-3b 2+5b=5,则a +b =( )A.2B.3C.4D.5二、填空题:(本题满分28分,每小题7分)1.已知p ,q ,r 为素数,且pqr 整除pq +qr +rp -1,则p +q +r =_______.2.已知两个正整数的和比它们的积小1000,若其中较大的数是完全平方数,则较小的数为_______.3.已知D是△ABC内一点,E是AC的中点,AB=6,BC=10,∠BAD=∠BCD,∠EDC=∠ABD,则DE =_______.4.已知二次函数y=x2+2(m+2n+1)x+(m2+4n2+50)的图象在x轴的上方,则满足条件的正整数对(m,n)的个数为_______.第二试(A)一、(本题满分20分)设a,b,c,d为四个不同的实数,若a,b为方程x2-10cx-11d=0的根,c,d为方程x2-10ax-b=0的根,求a+b+c+d的值.二、(本题满分25分)如图,在扇形OAB中,∠AOB=90°,OA=12,点C在OA 上,AC=4,点D为OB的中点,点E为弧AB上的动点,OE与CD的交点为F.56(1)当四边形ODEC 的面积S 最大时,求EF ; (2)求CE +2DE 的最小值.三、(本题满分25分)求所有的正整数m ,n ,使得()33222m n m n m n +-+是非负整数.第二试(B )一、(本题满分20分)若实数a ,b ,c 满足(a+b+c)11195555a b c b c a c a b ⎛⎫++= ⎪+-+-+-⎝⎭,求(a+b+c)111a b c ⎛⎫++ ⎪⎝⎭的值.二、(本题满分25分)如图,点E在四边形ABCD的边AB上,△ABC和△CDE都是等腰直角三角形,AB=AC,DE=DC.. (1)证明:ADBC;(2)设AC与DE交于点P,如果∠ACE=30°,求DPPE三、(本题满分25分)设x是一个四位数,x的各位数字之和为m,x+1的各位数字之和为n,并且m与n的最大公约数是一个大于2的素数.求x.7。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018学年湖州市初中数学竞赛复赛试卷
班级 学号 得分__________
一、选择题,(每小题5分,共30分) 1.已知关于x 的不等式a x
<6的解也是不等式352a x ->2
a -1的解,则a 的取值范围
( ) A .a ≥-
116 B .a >-116 C .-11
6
≤a <0 D .以上都不正确 2.将长为15cm 的木棒截成长度为整数的三段,使它们构成一个三角形的三边,则不同的
截法有 ( ) A .5种 B .6种 C .7种 D .8种 3.已知21+=m ,21-=n , 且)763)(147(2
2
--+-n n a m m =8,则a 的值等于( )
A .-5
B .5
C .-9
D .9
4.方程2x(kx ―4)―x 2+6=0没有实数根,则k 的值是 ( ) A .-1 B .2 C .3 D .4
5.如图,有一种动画程序,屏幕上正方形区域ABCD 表示黑色物体甲,其中,A (1,1),B (2,1),C (2,2),D (1,2),用信号枪沿直线y = 2x + b 发射信号,当信号遇到区域甲时,甲由黑变白.甲能由黑变白,则 b 的取值范围为 ( ) A .0≤ b ≤ 3 B .一3≤ b ≤ 0 C .一3≤ b ≤ 3 D .b ≤ 3 6.如图,AB 为圆的直径.若AB = AC = 5,BD = 4,则 AE
BE
的值为 ( ) A .
13 B .827 C .724 D .727
二、填空题:(每小题5分,共30分)
7.设a 、b 、c 是△ABC 的三边的长,化简(a – b – c )2 + (b – c – a )2 + (c – a – b )2 的结果是 .
第5题 第6题
8.如图,把10个两两互不相等的正整数,a1a2…a10写成下列图表的形式,其中两个箭头所指的数等于这两个箭头始点两个数的和,例如表示a2=a1+a5,那么,
满足该图表的a4的最小可能值为__ .
9.若方程51
1
22
m
x x
+
+=
--
无解,则______
m=.
10.在很小的时候,我们就用手指练习过数数. 一个小朋友按如图所示的规则练习数数,数到2006时对应的指头是_____________ (填出指头的名称,各指头的名称依次为大拇指、食指、中指、无名指、小指).
11.如图,一个啤酒瓶的高度为30cm,瓶中装有高度12cm的水,将瓶盖盖好后倒置,这时瓶中水面高度20cm, 则瓶中水的体积和瓶子的容积之比为 . (瓶底的厚度不计) .
12.某校七年级2班的男生人数是女生人数的1.8倍,在一次数学测试中,全班成绩的平均分是75分,其中女生的平均分比男生的平均分高20%,则女生的平均分是.
三、解答题(每小题15分,共60分)
13.若干个工人装卸一批货物,每个工人的装卸速度相同。

如果这些工人同时工作,则需10小时装卸完毕。

现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第
一个人装卸时间的1
4。

问:
(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?20cm
30cm
12cm
第11题第10题
14.已知函数y=x-5,令x=0.5、1、1.5、2、2.5、3、3.5、4、4.5、5,可得函数图象上的10个点。

在这10个点中随机取出两个点P (a,b );Q (m,n), 问:P 、Q 在同一反比例函数图象上的概率是多少?
15. 在矩形ABCD 中,AD =4,点P 在AD 上,
且AP ∶PD =a ∶b .
(1) 求△PCD 的面积S 1与梯形ABCP 的面积S 2的比值21S S
(用含a ,b 的代数式表示);
(2) 将线段PC 绕点P 逆时针旋转90º至PE ,求△APE 的面积S (用含a ,b 的代数式表示).
(第15题)
16.二次函数2
18
y x =
的图象如图所示,过y 轴上一点()02M ,的直线与抛物线交于A ,B 两点,过点A ,B 分别作y 轴的垂线,垂足分别为C ,D .
(1)当点A 的横坐标为2-时,求点B 的坐标;
(2)在(1)的情况下,分别过点A ,B 作AE x ⊥轴于E ,BF x ⊥轴于F ,在EF 上是否存在点P ,使APB ∠为直角.若存在,求点P 的坐标;若不存在,请说明理由; (3)当点A 在抛物线上运动时(点A 与点O 不重合),求AC ·BD 的值.
y
D B
M A C O
x
2006学年湖州市初中数学竞赛复赛试卷答案
一、选择题, 1.C
解:由
352-x >2
a -1 解得 x >46
13-a 对于不等式a
x
<6
当a >0时,x <6a ,则x <6a 的解不全是x >4
6
13-a 的解,2不合题意 当a <0时,x >6a ,则6a ≥4
6
13-a 解得a ≥-
116,故11
6
≤a <0 2.C
解:能组成三角形的只有 (1,7,7)、(2,6,7)、(3,5,7)、(3,6,6)、(4,4,7)、(4,5,6)、(5,5,5)七种 3.C .
解:由已知可得122=-m m ,122
=-n n .又)763)(147(2
2
--+-n n a m m =8,
所以 8)73)(7(=-+a 解得a =-9 4.B 5.B 6.C 二、填空题
7.a + b + c 8.20 9.-4 10.无名指 11. 116 12.84分
三、解答题
13.(1)设装卸工作需x 小时完成,则第一人干了x 小时,最后一个人干了4
x
小时,两人共干活()4x x +小时,平均每人干活
1()24
x
x +小时, 由题意知,第二人与倒数第二人,第三人与倒数第三人,…,平均每人干活的时间
也是
1()24
x
x +小时。

根据题设,得1()1024
x
x +=,解得16x =(小时)。

(5分)
(2)共有y 人参加装卸工作,由于每隔t 小时增加一人,因此最后一人比第一人少干
(1)y t -小时,按题意,得1
16(1)164
y t --=⨯,即(1)12y t -=。

解此不定方程得212y t =⎧⎨=⎩,36y t =⎧⎨=⎩,44y t =⎧⎨=⎩,53y t =⎧⎨=⎩,72y t =⎧⎨=⎩,13
1y t =⎧⎨=⎩
(10分)
即参加的人数2y =或3或4或5或7或13。

14.
45
4
(15分) 15.解:(1) b a a AP +=
4,b
a b
PD +=4, 设AB =h ,则S 1=b a bh
+2,S 2=b
a h
b a ++)24(.
∴ b
a b S S +=221.
(7分)
(2) 过E 作AD 的垂线交AD (或AD 的延长线)于点F ,过P 作BC 的垂线交BC 于点G . 在Rt △PFE 和Rt △PGC 中,
PE =PC ,∠EPF =∠CPG ,∴△PFE ≌△PGC .
∴EF =GC =PD =b
a b
+4. ∴2)(8442121b a ab b a b b a a EF AP S +=
+⋅+⋅=⋅⋅=.(8分)
16.解:(1)根据题意,设点B 的坐标为2
18
x x ⎛
⎫ ⎪⎝

,,其中0x >.
点A 的横坐标为2-,122A ⎛⎫∴- ⎪⎝⎭
,.
AC y ⊥轴,BD y ⊥轴,()02M ,,
AC BD ∴∥,32MC =
,2
128
MD x =-. Rt Rt BDM ACM ∴△∽△. BD MD AC MC
∴=.
(第18题)
即2
12832
2
x x -=.
解得12x =-(舍去),28x =.
()88B ∴,. (7分)
(2)存在.
连结AP ,BP .
由(1),1
2
AE =
,8BF =,10EF =. 设EP a =,则10PF a =-.
AE x ⊥轴,BF x ⊥轴,90APB =∠, AEP PFB ∴△∽△. AE EP
PF BF ∴=
. 1
2108
a
a ∴=-. 解得521a =±.经检验521a =±均为原方程的解.
∴点P 的坐标为()3210+,或()
3210-,.
(3)根据题意,设2
18
A m m ⎛
⎫ ⎪⎝
⎭,,2
18
B n n ⎛⎫ ⎪⎝

,,不妨设0m <,0n >.
由(1)知
BD MD
AC MC
=
, 则22128128n n m m -=--或2
212812
8
n n m m -=
--. 化简,得()()160mn m n +-=.
0m n -≠,
16mn ∴=-.
即 A C ·BD=16 . (8分)。

相关文档
最新文档