第七章 应力和应变分析 强度理论(2)
合集下载
工程力学7第七章应力状态和应变状态分析

x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
0
x y
2
(
x y
2
)
2
2
2 x
y
y
y
2
090
0
x y
2
(
x y
2
2、为什么要研究一点的应力状态 单向应力状态和纯剪切应力状态的强度计算
σmax≤ [σ] τ
max≤[τ
]
梁截面上的任意点的强度如何计算?
分析材料破坏机理
F F F F T
T
3、怎么研究一点的应力状态
单元体
•各面上的应力均匀分布
• 相互平行的一对面上 应力大小相等、符号相同
满足:力的平衡条件 切应力互等定理
§7-2 平面应力状态分析
一、解析法:
1.任意斜面上的应力 y
y
y
y
y
n
y
x
a
x
e
d
x
x
x
bz
x
x
x
e
x
x
y
f
yy
x
x
b
c
y
y
y
f t
应力的符号规定同前 α角以从x轴正向逆时针 转到斜面的法线为正
(设ef的面积为dA)
x y x y cos 2 x sin 2 2 2 x y sin 2 x cos 2 2
第七章应力和应变分析

2
tg20
2 xy x
y
mm
ax in
x
y
±
(x
2
y
2
)2
2 xy
0 0极值正应力就是主应力!
明德 砺志 博学 笃行
max在剪应力相对的项限内,
且偏向于x 及y大的一侧。
y
2
主 单元体
x
令:d d
0
1
tg212xxy y
y
xy 1
Ox
mmainx
± (x
y
2
)2 2 xy
014 , 即极值剪应力面与主面 成450
(4)最大切应力
max
1
2
2
22.1MPa
明德 砺志 博学 笃行
§7-4 二向应力状态分析——图解法
y
n
x
2
y
x
2
y
c
os2
xysin2
y
xy
x
x
2
y
s
in2
xyc
os2
Ox
对上述方程消去参数(2),得:
x
y
xy
x
2
y
2
2
x
2
y
2
2 xy
n
明德 砺志 博学 笃行
y n 二、应力圆的画法
明德 砺志 博学 笃行
例 分析受扭构件的破坏规律。
解:确定危险点并画其原
C
yx
始单元体
M
C
xy
x y 0
xy
T WP
xy
求极值应力
y
yx
m m
ax in
tg20
2 xy x
y
mm
ax in
x
y
±
(x
2
y
2
)2
2 xy
0 0极值正应力就是主应力!
明德 砺志 博学 笃行
max在剪应力相对的项限内,
且偏向于x 及y大的一侧。
y
2
主 单元体
x
令:d d
0
1
tg212xxy y
y
xy 1
Ox
mmainx
± (x
y
2
)2 2 xy
014 , 即极值剪应力面与主面 成450
(4)最大切应力
max
1
2
2
22.1MPa
明德 砺志 博学 笃行
§7-4 二向应力状态分析——图解法
y
n
x
2
y
x
2
y
c
os2
xysin2
y
xy
x
x
2
y
s
in2
xyc
os2
Ox
对上述方程消去参数(2),得:
x
y
xy
x
2
y
2
2
x
2
y
2
2 xy
n
明德 砺志 博学 笃行
y n 二、应力圆的画法
明德 砺志 博学 笃行
例 分析受扭构件的破坏规律。
解:确定危险点并画其原
C
yx
始单元体
M
C
xy
x y 0
xy
T WP
xy
求极值应力
y
yx
m m
ax in
刘鸿文《材料力学》复习笔记和课后习题(含考研真题)详解(应力和应变分析强度理论)【圣才出品】

平面的外法线方向。
7 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
三、三向应力状态分析 1.三向应力圆 如图 7-1-4 所示,以三个主应力表示的单元体,由三个相互垂直的平面分别作应力圆, 将三个平面的应力圆绘在同一平面上得到三向应力状态下的应力圆,如图 7-1-5 所示。与 每一主应力所对应的应力圆可由与该主平面相正交的其余面上的应力作出。 注意:作三向应力圆应至少知道一个主应力的大小和方向。
1 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
实例:在滚珠轴承中,滚珠与外圈接触点处的应力状态,可以作为三向应力状态的实例。 二、二向应力状态分析 1.解析法 如图 7-1-1(a)所示,一单元体 abcd 处于平面应力状态,采用截面法取左边部分单 元体 eaf 为研究对象,如图 7-1-1(b)所示。
5 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
图 7-1-3(a)
图 7-1-3(b) ③求主应力数值和主平面位置 a.求主应力数值的方法 如图 7-1-3(b)所示,点 A1 和点 B1 分别为代表最大主应力和最小主应力,其大小为
6 / 135
圣才电子书 十万种考研考证电子书、题库视频学习平台
圣才电子书 十万种考研考证电子书、题库视频学习平台
第 7 章 应力和应变分析强度理论
7.1 复习笔记
一、应力状态 一点的应力状态:过一点不同方向面上应力的集合。 应力状态的研究对象是单元体,其特征为:①单元体的尺寸无限小,每个面上应力均匀 分布;②任意一对平行平面上的应力相等。 主单元体是指各侧面上切应力均为零的单元体。其中,单元体上切应力为零的面称为主 平面,主平面上的正应力称为主应力。 说明:一点处必定存在一个单元体,使得三个相互垂直的面均为主平面,三个互相垂直 的主应力分别记为 σ1、σ2、σ3,且规定按代数值大小的顺序来排列,即 σ1≥σ2≥σ3。 应力状态分类及实例 (1)单向应力状态:也称为简单应力状态,三个主应力 σ1、σ2、σ3 中只有一个不等 于零。 实例:简单的拉伸或压缩。 (2)平面(二向)应力状态:三个主应力 σ1、σ2、σ3 中有两个不等于零。 实例:薄壁圆筒横截面上的点和圆形容器包含直径的任意横截面上的点。 (3)空间(三向)应力状态:和平面应力状态统称为复杂应力状态,三个主应力 σ1、 σ2、σ3,均不等于零。
工程力学c材料力学部分第七章 应力状态和强度理论

无论是强度分析还是刚度分析,都需要求出应力的极值, 无论是强度分析还是刚度分析,都需要求出应力的极值,为了找 到构件内最大应力的位置和方向 需要对各点的应力情况做出分析。 最大应力的位置和方向, 到构件内最大应力的位置和方向,需要对各点的应力情况做出分析。
受力构件内一点处所有方位截面上应力的集合,称为一点的 受力构件内一点处所有方位截面上应力的集合,称为一点的 研究一点的应力状态时, 应力状态 。研究一点的应力状态时,往往围绕该点取一个无限小 的正六面体—单元体来研究。 单元体来研究 的正六面体 单元体来研究。
σ2
σ2
σ1
σ1
σ
σ
σ3
三向应力状态
双向应力状态
单向应力状态 简单应力状态
复杂应力状态 主应力符号按代数值的大小规定: 主应力符号按代数值的大小规定:
σ1 ≥ σ 2 ≥ σ 3
平面应力状态的应力分析—解析法 §7−2 平面应力状态的应力分析 解析法
图(a)所示平面应力单元体常用平面图形(b)来表示。现欲求 )所示平面应力单元体常用平面图形( )来表示。现欲求 垂直于平面xy的任意斜截面 上的应力 垂直于平面 的任意斜截面ef上的应力。 的任意斜截面 上的应力。
二、最大正应力和最大剪应力
σα =
σ x +σ y
2
+
σ x −σ y
2
cos 2α − τ x sin 2α
τα =
令
σ x −σ y
2
sin 2α + τ x cos 2α
dσ α =0 dα
σ x −σ y
2
sin 2α +τ x cos2α = 0
可见在 τ α
=0
材料力学应力和应变分析强度理论

§7–5 广义虎克定律
y
一、单拉下旳应力--应变关系
x
x
E
y
E
x
ij 0 (i,j x,y,z)
二、纯剪旳应力--应变关系
z
E
x
z
y
xy
xy
G
i 0 (i x,y,z)
z
yz zx 0
x
x
xy
x
三、复杂状态下旳应力 --- 应变关系
y
y
x
y x
z
xy
z
x
依叠加原理,得:
x
1
(MPa)
解法2—解析法:分析——建立坐标系如图
45 25 3
95
60°
i j
x
2
y
(
x
2
y
)2
2 xy
y
1
25 3 y 45MPa
° 5
0
Ox
6095MPa 6025 3MPa
yx 25 3MPa xy
x ?
x
y
2
sin 2
xy cos 2
25 3 x 45 sin 120o 25 3 cos120o
y
z
z
y
证明: 单元体平衡 M z 0
xy x
x
( xydydz)dx( yxdzdx)dy0
xy yx
五、取单元体: 例1 画出下图中旳A、B、C点旳已知单元体。
F
A
y
F x
x
A
B
C z
x B x
zx
xz
F
Mex
yx
C
xy
FP
工程力学第7章_2 强度理论jt

1、破坏判据: 2、强度准则
1 1 2 2 2 3 2 3 1 2 s 2
1 1 2 2 2 3 2 3 1 2 2
3、适用范围:适用于破坏形式为屈服的构件。
即许用切应力约为许用正应力的0.6倍。这是按第四强度理论 得到的许用切应力与许用正应力之间的关系。
28
强度理论的应用:
一、强度计算的步骤: 1、外力分析:确定所需的外力值。
2、内力分析:画内力图,确定可能的危险面。
3、应力分析:画危面应力分布图,确定危险点并画出单元体, 求主应力。 4、强度分析:选择适当的强度理论,计算相当应力,然后进行 强度计算。
1 , 2 0, 3
对塑性材料,按最大切应力理论得强度条件为
1 3 ( ) 2 [ ]
[ ] 2
另一方面,剪切的强度条件是
[ ]
[ ] 0.5[ ] 2
27
比较上面两式,可见
如按畸变能密度理论,则纯剪切强度条件为
max
x y
2
1 2
2 y 4 xy 29.28MPa x 2
min
x y
2
1 2
2 y 4 xy 3.72MPa x 2
1=29.28MPa,2=3.72MPa, 3=0
r1 1 30MPa
4、破坏形式还与温度、变形速度等有关!
[例3] 直径为d=0.1m的圆杆受力如图,T=7kNm,P=50kN, 为铸铁构
件,[]=40MPa,试用第一强度理论校核杆的强度。 T P T A A A P
材料力学第七章 应力状态

主平面的方位:
tan
2a0
2 xy x
y
主应力与主平面的对应关系: max 与切应力的交点同象限
例题:一点处的平面应力状态如图所示。
已知 x 60MPa, xy 30MPa, y 40MPa, a 30。
试求(1)a 斜面上的应力; (2)主应力、主平面; (3)绘出主应力单元体。
x y cos 2a
2
x sin 2a
x
a
x y sin 2a
2
x cos 2a
300
10 30 2
10 30 cos 60020sin 600
2
2.32 MPa
300
10 30 sin 600 2
20cos 600
1.33 MPa
a
20 MPa
c
30 MPa
b
n1
y xy
a x
解:(1)a 斜面上的应力
y xy
a
x
2
y
x
2
y
cos 2a
xy
sin 2a
60 40 60 40 cos(60 ) 30sin(60 )
2
2
a x 9.02MPa
a
x
y
2
sin
2a
xy
cos
2a
60 40 sin(60 ) 30cos(60 ) 2
58.3MPa
2
1.33 MPa
300 600 x y 40 MPa
在二向应力状态下,任意两个垂直面上,其σ的和为一常数。
在二向应力状态下,任意两个垂直面上,其σ 的和为
一常数。
证明: a
x y
第七章 应力状态、应变分析和强度理论

§7-3 平面应力状态分析--解析法
二、 正应力极值
1 1 ( x y ) ( x y ) cos 2 xy sin 2 2 2 d ( x y ) sin 2 2 xy cos 2 d
设α=α0 时,上式值为零,即
2
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念
3、三向(空间)应力状态 三个主应力1 、2 、3 均不等于零
2 1
3 1
3 2
1 0, 2 0, 3 0
§7-1 应力状态的概念
仅在微体四侧面作用应力,且 应力作用线均平行于微体的不 受力表面-平面应力状态
1
1
1
1
3
3
1 0, 2 0, 3 0
1 0, 2 0, 3 0
§7-1 应力状态的概念 2、二向(平面)应力状态 三个主应力1 、2 、3 中有两个不等于零
3 2 3 2
3
2
1
3
1
1
1
1 0, 2 0, 3 0
Ft 0
dA ( x dAcos )cos ( x dAcos )sin ( y dAsin )sin ( y dAsin )cos 0
§7-3 平面应力状态分析--解析法
一、任意斜截面上的应力公式 已知: x , y , x , y , dA 求: ,
sin 2 xy cos 2
2 xy 2 ( 50) tan 2 0 1 x y 40 60 2 0 45 135
y =60 MPa xy = -50MPa =-30°
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
450 450
45
o
1 E E 由此得 45 1
1 [ 45o 45o ] E
τ
0
T m 由圆轴扭转应力公式: Wt Wt
所以
d E m Wt 45 16 1
3
o
例 边长为10mm的铝质方块,紧密无隙 地嵌入一个深度和宽度都是10mm的钢槽 中,如图所示。当铝块受到P=60MPa的 作用时,设钢块不变形。若铝的弹性模量 E=70GPa,v=0.3.求铝块的三个主应力、 三个主应变。
3dydx ~ 3dz
1 dW= 2 1dydz 1dx 1 2dxdz 2dy 2 1 3dxdy 3dz 2 1 1 2 2 3 3 dxdydz
2、应变比能(Strain-Energy Density)
x y xy
sin 2 cos 2 2 2 2
x y xy
二、应变圆
cos 2 sin 2 2 2 2 sin 2 cos 2
x y x y xy
x
y
xy
2
2
2
2
( ) ( ) sin 2 ( ) 2 2 2 2
x y xy
(dl ) dl dx dy dy cos sin cos dl dl dl
x y xy
cos sin sin cos
2 2
x
y
xy
cos 2 sin 2 2 2 2
V1 (1 1 2 3 )dxdydz
于是,单元体单位体积的改变
V1 V 1 2 3 V
2.体积应变与应力的关系
1 2 1 2 3 ( 1 2 3 ) E
3(1 2 ) 1 2 3 m E 3 K
y
1 x y z x E E E 1 x y z
E
E
x
y
z
E
1 z E
y 得出 x 、 和 z 方向的线应变表达式为
1 x x ( y z ) E 1 y y ( z x ) E 1 z z ( x y ) E
一、任意方位的应变分析
研究正应变
(OB) dx cos
x
x
(OB) dy sin
y
y
(OB) dy cos
xy
xy
(dl ) (OB)
(OB) (OB) (OB)
x y xy
(dl ) dx cos dy sin dy cos
ε zρ
E
( τ ρ τ ρ ) 0
因此,该薄壁圆筒变形后 的厚度并无变化,仍然为 t=10mm.
§7.9 复杂应力状态的应 变密度
变形(应变)比能
1、微元应变能(Strain Energy)
2
1dydz ~ 1dx
1
dy
2dxdz ~ 2dy
3
dx
dz
此题有实际意义,传动轴上所受的外力偶矩m的 大小,有时采用实验方法。测得轴上某个方向的 正应变,再由应变值计算出外力偶矩大小。
解题思路:寻找已知量ε-45o和未知量m间的联 系。
1.本题已知正应变ε-45o,通过广义胡克定律可将 正应变ε-45o和正应力σ-45o (σ45o)联系起来。 2.再通过应力状态分析,找到正应力σ-45o (σ45o)和横截面上的剪应力τ的关系。 3.而τ是由外力偶矩引起的,由此即可求出外力 偶矩m的大小。
x y
2
x
y
xy
x' y'
1 R 2
x y 4 2 xy
2
R c
x'
应 力 圆
x y
2
应 变 圆
2
R
C(
C
x
y
2
,0)
x y
R (
2
) (
2
xy
2
)
2
三、最大应变与主应变
1 [( ) ( ) ] 2
uv
1 2 2 1 2 3 6E
ud uv u
作
7.26 7.28
变形后,三个棱边的长度变为
dx 1dx (1 1 )dx dy 2 dy (1 2 )dy dz 3 dz (1 3 )dz
由于是单元体,变形后三个棱边仍互相 垂直,所以,变形后的体积为
V1 (1 1 )(1 2 )(1 3 )dxdydz
1 1 1 2 2 3 3 dxdydz dW 2 u dxdydz dV
1 1 1 2 2 3 3 2
3、体积改变比能与形状改变比能
2
2
1
3
+
3
1
1 令 ( 1 2 3 ) 3
• 在小变形及线弹性范围内,线应变 只与正应力有关,而与剪应力无关; • 剪应变只与剪应力有关,而与正应 力无关,满足应用叠加原理的条件。 • 所以,我们利用单向应力状态和纯 剪切应力状态的虎克定律,分别求 出各应力分量相对应的应变, • 然后,再进行叠加。
正应力分量在不同方向对应的应变
z Ex Ey
6
例 壁厚t=10mm、外径D=60mm的圆筒,在 表面上k点与其轴线成45度角和135度角,x、 y两方向上分别贴上应变片,然后使其承受外 力矩m的作用,发生扭转变形,如图所示。 已知圆筒材料的弹性模量为E=200GPa, v=0.3。若该圆筒的变形在弹性范围内,且k 点横截面上的剪应力为 =80MPa,试求圆筒 k点处的线应变 x、 y及变形后的筒壁厚度。
E K 3(1 2 )
称为体积弹性模量
m
1 ( 1 2 3 ) 3
是三个主应力的平均值
体积应变只与平均应力有关,或者说只与三个主应力之 和有关,而与三个主应力之间的比值无关。体积应变与 平均应力成正比,称为体积虎克定律。
例题:图示直径为d的圆截面轴,承受力偶 矩m的作用。设由实验测得轴表面上与轴线 成-45o方向正应变ε-45o,试求力偶矩m之值。 材料的弹性常数E、μ均为已知。
u ud uv
ud uv
: Strain-Energy Density Corresponding to the Distortion : Strain-Energy Density Corresponding to the Change of Volume
ud
1 2 2 2 1 2 2 3 3 1 6E
§7.8 广义胡克定律
一、广义胡克定律
1. 单向应力状态的虎克定律
1 E 或 E 轴向拉伸 或压缩时 由于轴向变形还
引起横向变形
E
2. 纯剪切应力状态的虎克定律
G
或
1 G
3.复杂应力状态的广义 虎克定律
一般情况 下,描述 一点处的 应力状态 需要九个 应力分量
y [ y ( z x )] / E 5.2 10
4
4
(2)求变形后的筒壁厚度 由于k点处的径向方向即为z方向,且 z=2=0,所以
z [ z ( x y )] / E 0
薄壁圆筒纯扭转变形时,筒内任一点 都处在纯剪切应力状态。用类似方法 可推知筒壁中任一点处(该点到圆心 的距离为 )的径向应变为
王培荣
2013年7月9日
教学要求 •1.了解三向应力状态的应力圆画法,熟练掌 握单元体最大剪应力计算方法。 •2.掌握广义胡克定律及其应用。 •3.了解关于复杂应力状态下变形比能、形状 改变比能和体积改变比能的一些主要结论和 公式。
§7.5 三向应力状态
三向应力状态特例的一般情形
至少有一个主应力及其主方向已知
max 2 2 x y x y xy min
Tan 2
0
xy
x
2 y
y
2
max
1 ( ) ] 2
x xy
四、通常采用测定一点处沿εa、εb、 εc三个方向的线应变的方法,来确定该点处 的主应变εl、ε2及其方向。
εa、εb、εc
εx、εy、γxy
ε1、ε2
yx
y x z
yx xy
y x z
xy
2 1
3
200 50 300
"
'
'''
50
300
50
" '''
'
*§7.6位移与应变分量
自学
*§7.7 平面应变分析
当构件内某 点处的变形 均平行于某 一平面时, 则称该点处 于平面应变 状态。
P 10 10 10 z x y
解:(1)求主应力及主应变
铝块在压力P作用下,上、下两个面及y面 上受到压应力为 P σy 60 106 N m 2 60MPa A 铝块在前、后两个面不受约束,在P的