第二节稳恒磁场
稳恒磁场 ppt文档

7-3 毕奥-萨伐尔定律
预习要点 1. 领会磁场叠加原理. 2. 毕奥-萨伐尔定律的内容及其数学表达式是
什么? 3. 如何应用毕奥-萨伐尔定律和磁场叠加原理
计算电流的磁场中磁感应强度的分布?
一 毕奥-萨伐尔定律和磁场叠加原理
一段长为dl通有电流为I
的电流元产生的磁感应强 度:
dB
I
dB 0 Idl er
偏转,在导体的上表面积累了正电荷.
B
b
d
v
+
d
+ F+m +
+q
+
- - - - -
I
UH
Fe
qEHqvdB EH vdB
UH vdBb
I qnvdSqnvdbd
UH
IB nqd
霍耳 系数
RH
1 nq
霍尔效应的应用测量半导体的性质和测量磁场等.
7-2 安培定律
预习要点 1. 安培定律的内容是什么? 它的矢量表达式是
大小:垂直穿过单位面积的磁力线根数.
B d m dS
2 磁通量
通过某一曲面的磁感线数为通过此曲面的磁通量.
dΦ BdS ΦsBdS 单位 1 W 1 b T 1 m 2
4 磁场中的高斯定理 磁力线为闭合曲线. 由于磁力线为闭合曲线,穿入穿
出闭合面的磁力线根数相同,正负 通量抵消.
穿过闭合面的磁通量等于0.
× × × ×B
0,M0
. I . . . . . .F . . .
.....
I
F
.
F
. . . .B .
π,M0
B
π 2,MMmax
Ø 结论: 均匀磁场中,任意形状刚性闭
稳恒磁场优秀课件 (2)

r
I
dB
P * r Idl
真空的磁导率 04π107Tm/A
2.对一段载流导线 磁感强度叠加原理:任意形状的载流导线在给定点 P产生的磁场,等于各段电流元在该点产生的磁场 的矢量和.
B dB0
L 4π
Idlr r3
毕奥—萨伐尔定律
dB0Idl4siπnr(2Idl,r) 或
dB0
4π
Idl r
大小: B Fmax
q0
方向: 小磁针在该点的N极指向
Fm
B
单位: T(特斯拉) 1T=104G (高斯)
磁矩Pm是矢量,其方向与 线圈的法线方向一致,n表
示沿法线方向的单位矢量.
法线与电流流向成右螺旋系
I
pm
Pm I0Sn
磁场方向:线圈受到磁力矩使试验线圈转到一定的位 置而稳定平衡.在平衡位置时,线圈所受的磁力矩为 零,此时线圈正法线所指的方向,定义为线圈所在处 的磁场方向.
q n sdt qns
dt
dB 4 0qn rs2dlr04 0 qnrs2dlr0
电流元Idl中载流子(运动电荷)有 dN个
dNnsdlnsdt
B
dB dN
4 0 q(ndsN )d r2lr0
B 40 qr2 r0
毕奥-萨伐尔定律 的微观形式
q
r
p
B
r
p
B
三、载流线圈的磁矩
•磁矩:
稳恒磁场
§10.1 电流 电流密度
引言
一、电流强度
单位时间内通过某截面的电量。
大小: I dq
dt
单位:安培(A)
方向:规定为正电荷运动方向。
二、电流密度
稳恒磁场

安培定律
一、安培力
安培力:电流元在磁场中受到的磁力. 安培力:电流元在磁场中受到的磁力. 一个自由电子受的洛仑兹力为: 一个自由电子受的洛仑兹力为
f 洛 = qv × B = −ev × B
电流元所受磁力: 电流元所受磁力
方向: 方向:×
v
dl
B
I
设截面积为S,单位体积电子数为 设截面积为 单位体积电子数为n 单位体积电子数为
1 2 m = NISn = NI πR n 2
方向:与 B 成600夹角. 夹角. 方向: (2)此时线圈所受力矩的大小为: )此时线圈所受力矩的大小为:
)60
0
B
3 2 πR M = mB sin60 = NIB 4 方向: m× B 方向: ×
0
n
即垂直于 B向上,从上往下俯视,线圈是逆时针转动。 向上,从上往下俯视,线圈是逆时针转动。
1T = 1N ⋅ S ⋅ m−1 ⋅ C−1
磁通量
一、磁力(感)线 磁力( 直线电流的磁力线
磁场的高斯定理
圆电流的磁力线
通电螺线管的磁力线
I
I
I
I
通量(通过一定面积的磁力线数目) 二、磁通量(通过一定面积的磁力线数目)
v v dΦ = B ⋅ dS
v v Φ = ∫s B ⋅ dS
单位
1Wb= 1T ⋅ m
I
该式对任意形状的线圈都适用. 该式对任意形状的线圈都适用.
例1如图,求圆心O点的 B . 如图,求圆心 点的 I O
• × R
B=
µ0 I
4R
I
O• •
R
B=
µ0 I
8R
R
• •O
稳恒磁场(上)

• 长直载流导线磁场的环流
(a)沿磁力线圆形回路积分
B dl
0I dl
0I 2 r
2r
2 r
B dl 0I
LB dl ?
I
dl
r
B
B dl 0I
(积分回路不变,电流反向)
(b)任意积分回路
B dl B cos dl
0I 2r
rd
I d
B
r dl时Idl
方向 与dfmax 所在的平面正交,指向
由右手螺旋法则确定
注:B不叫磁场强度
四、磁感应线(磁力线)
• 正像电场的分布可借助于电场线来描述一 样,磁场的分布也可以用磁感应线来描述
• 磁感应线是一些有方向的曲线, 其上每点 的切线方向为该点磁感应强度矢量的方向, 磁感应线较密的地方,磁场较强
• 爱因斯坦:“提出一个问题往往比解 决一个问题更为重要。因为解决一个 问题也许只是一个数学上或实验上的 技巧问题,而提出新的问题、新的可 能性,从新的角度看旧的问题,却需 要创造性的想象力,而且标志着科学 的真正进步。”
研究课题
受到奥斯特实验的启发,科学家们相继提 出了重要的科学课题
•1、毕奥-萨伐尔:电流元的磁场 •2、安培:两个任意电流元间的相互作用 •3、法拉第:电流磁效应的逆效应 •4、磁作用的机制
r102
)
r122
1→2的作用
dB
o 4
I1dl1
r102
r122
电流元产生的磁场, B.S.L定律
df Idl dB
安培力公式
三、磁感应强度B的定义
• 由安培力公式可以定义某点的磁感应强度
电流元受到闭合 dF Idl dB Idl B
大学物理Ⅱ稳恒磁场知识点3

稳恒磁场小结1、磁感应强度 B 描写磁场大小和方向的物理量2、磁通量mΦ:穿过某一曲面的磁力线根数。
定义:θφcos ⋅⋅=⋅=⎰⎰⎰⎰S B S B d d ss m单位:韦伯, Wb nˆ NIS S NI P m == 3、磁矩m :描写线圈性质的物理量。
定义:单位:安培·米2方向:与电流满足右手定则。
一、基本概念n I二、磁感应强度B的计算20ˆ4rr l d I B d ⨯=πμ1)载流直导线的磁场aI B πμ20=)cos (cos 4210θθπμ-=aI B 无限长直导线的磁场1 利用毕萨定律求B PlId rθB1θIa P2θ二、磁感应强度B的计算20ˆ4rr l d I B d ⨯=πμ2)圆电流轴线上的磁场232220)(2x R R I B +=μ在圆弧电流圆心处:πθμ220R I B =在圆电流圆心处:RI B 20μ=1利用毕萨定律求B IB⊗θI⊗B l I d ROPxBiLI 1I 2I 3∑-=12I I Ii应用:分析磁场对称性;选定适当的安培环路。
各电流的正、负:I 与L呈右手螺旋时为正值;反之为负值。
⎰∑=⋅LIl d B 0μ2 利用安培环路定理计算磁场 B⎰∑=⋅LI l d B 0μ 1)、密绕长直螺线管内部nIB 0μ=rIN B πμ20=2) 螺绕环内部3)圆柱载流导体内部r < R 区域圆柱载流导体外一点r > R 区域r R IB 202πμ=rI B πμ20=4)圆柱面载流导体内部r < R 区域圆柱载流导体外一点r > R 区域I B μ0==B20 ˆ4rr v q B ⨯= πμ3 运动电荷的磁场Pqv+rθ大小 20 sin 4rv q B θπμ=三、两个重要定理1、磁场中的高斯定理0=⋅=Φ⎰⎰S m S d B2、磁场中的环路定理⎰∑=⋅LIl d B 0μ(1)磁场是“无源场”。
2稳恒磁场02解读

B
0 I
B
dB
I
.
dI
B
安B
的方向与 I 成右螺旋
0 r R,
r R,
I
2π R 0 I B 2π r
B
0 Ir
2
0 I
2π R
B
R
哈尔滨工程大学理学院
o R
r
安培环路定理
第6章
稳恒磁场
例4 无限长载流圆柱面的磁场。
(3)Ii 的正负规定:当Ii 的方向与环路的绕行方向 符合右手螺旋法则时为正,反之为负。 (4)要正确理解“电流穿过闭合回路”一词的含 义。于闭合回路是任意的,什么样的电流才能算穿过 回路呢?
哈尔滨工程大学理学院
安培环路定理
第6章
稳恒磁场
下面看一道例题: 讨论:由毕奥—萨伐尔定律得
L o
•
P
哈尔滨工程大学理学院
安培环路定理
第6章
稳恒磁场
例3 无限长载流圆柱体的磁场。 解: (1)对称性分析; (2)选取回路。
I
rR
2π rB 0 I
B d l 0 I
l
L
R R
r
2π r 2 πr 0 r R B d l 0 I 2 l πR 2 0r 0 Ir 2π rB 2 I B 2 2 π R R
哈尔滨工程大学理学院
安培环路定理
第6章
稳恒磁场
y
B1 1 r1 o 2 r2 B2 x
1 方法二:B1 0 Jr1 2 1 B2 0 Jr2 2
如图,将B1,B2在坐标轴 投影得:
1
2
大学物理稳恒磁场

要点二
详细描述
当电流通过导体时,导体中的自由电子在磁场中受到洛伦 兹力的作用,产生电子漂移现象,使导体受到与电流和磁 场方向垂直的作用力。电荷产生洛伦兹力,影响电荷的运动轨迹。
详细描述
当带电粒子在磁场中运动时,受到洛伦兹力的作用,使 粒子的运动轨迹发生偏转,偏转方向与粒子的带电性质 和运动方向有关。
磁场的散度和旋度
总结词
磁场的散度和旋度是描述磁场分布的重要物理量,散 度表示磁场线穿入的净通量,而旋度表示磁场线的环 绕程度。
详细描述
磁场的散度描述了磁场线穿入的净通量,如果一个点 的磁场散度为正,表示该点附近的磁场线有穿入的趋 势,即磁场线从外部指向该点;如果散度为负,则表 示磁场线有穿出的趋势,即磁场线从该点指向外部。 而磁场的旋度则描述了磁场线的环绕程度,它与磁感 应强度的方向和变化率有关。了解磁场的散度和旋度 对于理解磁场的基本性质和解决相关问题非常重要。
磁感应强度和磁通量
磁感应强度
描述磁场强弱的物理量,单位是特斯 拉(T)。
磁通量
表示磁场中穿过某一面积的磁力线数 量,单位是韦伯(Wb)。
磁场中的介质
磁介质
能够影响磁场分布的物质,根据磁化性质可分为顺磁质、抗磁质和铁磁质。
磁化强度
描述介质被磁化程度的物理量,与介质内部微观粒子磁矩有关。
02
CATALOGUE
互感和变压器原理
总结词
互感现象是两个线圈之间磁场耦合的现 象,变压器则是利用互感现象实现电压 变换的电气设备。
VS
详细描述
当两个线圈靠得很近时,一个线圈中的电 流会在另一个线圈中产生感应电动势,这 种现象称为互感现象。变压器是利用互感 现象实现电压变换的电气设备,它由一个 初级线圈和一个次级线圈组成,当初级线 圈中有交流电通过时,次级线圈中会产生 感应电动势,从而实现电压的升高或降低 。
稳恒磁场内容.

Ⅱ 内容提要一.磁感强度B 的定义用试验线圈(P m )在磁场中受磁力矩定义:大小 B=M max /p m ,方向 试验线圈稳定平衡时p m 的方向.二.毕奥—沙伐尔定律1.电流元I d l 激发磁场的磁感强度d B =[μ0 /( 4π)]I d l ×r /r 3三.磁场的高斯定理1.磁感线(略);2.磁通量 Φm =S d ⋅⎰B S3.高斯定理 d 0⋅=⎰S B S 稳恒磁场是无源场.四.安培环路定理真空中0d i l I μ⋅=∑⎰ B l介质中 0d i l I ⋅=∑⎰ H l稳恒磁场是非保守场,是涡旋场或有旋场.五.磁矩 P m :1.定义 p m = I ⎰S d S3. 载流线圈在均匀磁场中受力矩M= p m ×B六.洛伦兹力1.表达式 F m = q v ×B (狭义)F = q (E +v ×B ) (广义)2.带电粒子在均匀磁场中运动:回旋半径R=mv sinα/(qB)回旋周期T=2πm /(qB)回旋频率ν= qB /(2πm)螺距d=2π mv cosα/(qB)七.安培力1. 表达式d F m= I d l ×B;八.介质的磁化3. 磁场强度矢量各向同性介质B=μ0μr H=μH九.几种特殊电流的磁场:1.长直电流激发磁场有限长B=μ0 I (cosθ1-cosθ2) / (4πr) 无限长B=μ0I / (2πr)方向都沿切向且与电流成右手螺旋;2.园电流在轴线上激发磁场B=μ0IR2/[2(x2+R2)3/2]中心B=μ0I/(2R )张角α的园弧电流中心的磁感强度B=[μ0I/(2R )]⋅[α/(2π)]方向都沿轴向且与电流成右手螺旋;3.无限长密饶载流螺线管激发的磁场管内B=μ0nI管外B=04.密绕载流螺饶环环内磁场B=μ0NI //(2πr)5.无限大均匀平面电流激发磁场B=μ0 j/26.无限长均匀圆柱面电流激发磁场:柱面内B=0,柱面外B=μ0I /(2πr)7.无限长均匀圆柱体电流激发磁场:柱内B=μ0Ir/(2πR2)柱外B=μ0I /(2πr)1.半径为R的薄圆盘均匀带电,总电量为Q . 令此盘绕通过盘心且垂直盘面的轴线作匀速转动,角速度为ω,求轴线上距盘心x处的磁感强度的大小和旋转圆盘的磁矩.在圆盘上取细圆环电荷元dQ=σ2πrdr,[σ=Q/(πR 2) ],等效电流元为dI=dQ/T=σ2πrdr/(2π/ω)=σωrdr(1)求磁场, 电流元在中心轴线上激发磁场的方向沿轴线,且与ω同向, 大小为dB=μ0dIr 2/[2(x 2+r 2)3/2]=μ0σωr 3dr/[2(x 2+r 2)3/2]()()()2223003/232222200d d 42R Rr r x r r B r x r x μσωμσω+==++⎰⎰ =()()()2222032220d 4R r x r x r x μσω+++⎰ =()()222032220d 4Rx r x r x μσω++⎰ =222022002R R x r x r x μσω⎛⎫ ⎪++ ⎪+⎝⎭=220222222Q R x x R R x μωπ⎛⎫+- ⎪+⎝⎭(2)求磁距. 电流元的磁矩dP m =dI S=σωrdr πr 2=πσωr 2dr30Rm P r dr πσω=⎰=π σ ωR 4/4=ω QR 2/41、无限长直圆柱体,半径为R ,沿轴向均匀流有电流. 设圆柱体内(r < R)的磁感强度感强度为B2,则有:(A 为B1,圆柱体外(r >R)的磁) B1、B2均与r 成正比.(B) B1、B2均与r 成反比.(C) B1与r 成正比, B2与r 成反比.(D) B1与r 成反比, B2与r 成正比.【C 】3. 在图12.1(a)和12.1(b)中各有一半径相同的圆形回路L1和L2,圆周内有电流I 2和I 2,其图12.1∙ ∙ ∙ P 1 I 1 I 2 L 1 (a ) I 3 L 2P 2 ∙ ∙ ∙ I 1 I 2 ∙(b )分布相同,且均在真空中,但在图12.1(b )中,L2回路外有电流I 3,P1、P2为两圆形回路上的对应点,则:(A) 1 d L ⋅⎰B l =2 d L ⋅⎰ B l , 12P P =B B . (B) 1 d L ⋅⎰B l ≠2 d L ⋅⎰ B l , 12P P =B B . (C) 1 d L ⋅⎰ B l =2 d L ⋅⎰ B l , 12P P ≠B B . (D) 1 d L ⋅⎰ B l ≠2d L ⋅⎰ B l , 12P P ≠B B . 【C 】.5. 如图12.3,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知(A) d 0 L ⋅=⎰ B l , 且环路上任意点B ≠0.(B) d 0 L ⋅=⎰ B l , 且环路上任意点B=0.(C) d 0 L ⋅≠⎰ B l , 且环路上任意点B ≠0.(D) d 0 L ⋅≠⎰ B l , 且环路上任意点B=0. I LO 图12.2【A 】6. 三条无限长直导线等距地并排安放, 导线Ⅰ、Ⅱ、Ⅲ分别载有1A 、2A 、3A 同方向的电流,由于磁相互作用的结果,导线单位长度上分别受力F1、F2和F3,如图13.2所示,则F1与F2的比值是:(A) 7/8. (B)5/8.(C) 7/18. (D)5/4.【A 】二、填空题1. 如图13.3所示, 在真空中有一半径为R 的3/4圆弧形的导线, 其中通以稳恒电流I, 导线置于均匀外磁场中,且B 与导线所在平面平行.则该载流导 O O B I cb R a 图13.3R Ⅲ Ⅱ Ⅰ F3 F 2 F 1 3A 2A 1A 图13.2线所受的大小为 BIR .2. 磁场中某点磁感强度的大小为2.0Wb/m 2,在该点一圆形试验线圈所受的磁力矩为最大磁力矩 6.28×10-6m ⋅N,如果通过的电流为10mA,则可知线圈的半径为 10-2m, 这时线圈平面法线方向与该处磁场方向的夹角为 π/2 m M P B =⨯ .3. 一半圆形闭合线圈, 半径R = 0.2m , 通过电流I =5A , 放在均匀磁场中. 磁场方向与线圈平面平行, 如图13.4所示. 磁感应强度B = 0.5T. 则线圈所受到磁力矩为 0.157N·m .三、计算题1. 如图13.5所示,半径为R 的半圆线圈 ACD 通有电流I 2, 置于电流为I 1的无限长直线 电流的磁场中, 直线电流I 1 恰过半圆的直径, 两导线相互绝缘. 求半圆线圈受到长直线电流 I 1的磁力. RI B 图13.4 C D I 1 I 2A 图13.5解:在圆环上取微元I2dl= I2Rdθ该处磁场为B=μ0I1/(2πRcosθ)I2dl与B垂直,有dF= I2dl B sin(π/2) dF=μ0I1I2dθ/(2πcosθ)dFx=dFcosθ=μ0I1I2dθ /(2π)dFy=dFsinθ=μ0I1I2sinθdθ /(2πcosθ) 201222x I I dFππμθπ-=⎰=μ0I1I2/2因对称Fy=0.故F=μ0I1I2/2 方向向右.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四.静磁场的基本方程
微分形式:
B 0 J
B 0
积分形式:
L
B dl 0 I
BdS 0
S
反映静磁场为无源有旋场,磁感线总闭合。它 的激发源仍一般情况积分形式 一般情况微分形式
0
dt
S
流出为正 J dS dV 流入为负 V t J 0 J 0 t
⑴ 反映空间某点电流与电荷之间的关系,电流线一般不闭合 ⑵ 若空间各点电荷与时间无关,则为稳恒电流。
毕奥萨伐尔定律
0 dB 4
安培定律
Id l r r
3
0 dB 4
j (x') r r
3
dv
d F Id l d B
d F J dV d B
三、磁场的散度和旋度方程
1)散度: B 0
2)旋度
稳恒情况: J 0
J (不变 ) E (不变 ) (不变 )
二、磁场以及有关的两个定律
• 磁场:通电导线间有相互作用力。与静电场类比 假定导线周围存在着场,该场与永久磁铁产生的 磁场性质类似,因此称为磁场。磁场也是物质存 在的形式,用磁感应强度来描述。
第二节 电流和磁场
一、电荷守恒定律——电流连续性方程
I 单位时间通过空间任意曲面的电量(单位:安培)
J 大小:单位时间垂直通过单位面积的电量
方向:沿导体内一点电荷流动的方向
dS
J
电荷守恒的实验定律
• 语言描述:封闭系统内的总电荷严格保持不变。对 于开放系统,单位时间流出区域V的电荷总量等于 V内电量的减少率。 dQ